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Abstract. This paper presents a novel Mutual Learning to Adapt model
(MuLA) for joint human parsing and pose estimation. It effectively ex-
ploits mutual benefits from both tasks and simultaneously boosts their
performance. Different from existing post-processing or multi-task learn-
ing based methods, MuLA predicts dynamic task-specific model param-
eters via recurrently leveraging guidance information from its parallel
tasks. Thus MuLA can fast adapt parsing and pose models to provide
more powerful representations by incorporating information from their
counterparts, giving more robust and accurate results. MuLA is imple-
mented with convolutional neural networks and end-to-end trainable.
Comprehensive experiments on benchmarks LIP and extended PASCAL-
Person-Part demonstrate the effectiveness of the proposed MuLA model
with superior performance to well established baselines.

Keywords: Human Pose Estimation · Human Parsing · Mutual Learn-
ing

1 Introduction

Human parsing and pose estimation are two crucial yet challenging tasks for hu-
man body configuration analysis in 2D monocular images, which aim at segment-
ing human body into semantic parts and allocating body joints for human in-
stances respectively. Recently, they have drawn increasing attention due to their
wide applications, e.g., human behavior analysis [22,9], person-identification [29,20]
and video surveillance [14,30]. Although analyzing human body from different
perspectives, these two tasks are highly correlated and could provide beneficial
clues for each other. Human pose can offer structure information for body part
segmentation and labeling, and on the other hand human parsing can facili-
tate localizing body joints in difficult scenarios. Fig. 1 gives examples where
considering such mutual guidance information between the two tasks can cor-
rect labeling and localization errors favorably, as highlighted in Fig. 1 (b), and
improve parsing and pose estimation results, as shown in Fig. 1 (c).

Motivated by the above observation, some efforts [26,12,8,25,24,10] have been
made to extract and use such guidance information to improve performance of
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(a) (b) (c)

Fig. 1. Illustration of our motivation for joint human parsing and pose estimation. (a)
Input image. (b) Results from independent models. (c) Results of the proposed MuLA
model. MuLA can leverage mutual guidance information between human parsing and
pose estimation to improve performance of both tasks, as shown with highlighted body
parts and joints. Best viewed in color

the two tasks mutually. However, existing methods usually train the task-specific
models separately and leverage the guidance information for post-processing,
suffering several drawbacks. First, they heavily rely on hand-crafted features
extracted from outputs of one task to assist the other, in an ad hoc manner.
Second, they only utilize guidance information in inference procedure and fail to
enhance model capacity during training. Third, they are one-stop solutions and
too rigid to fully utilize enhanced models and iteratively improve the results.
Last but not least, the models are not end-to-end learnable.

Targeting at these drawbacks, we propose a novel Mutual Learning to Adapt

(MuLA) model to sufficiently and systematically exploit mutual guidance infor-
mation between human parsing and pose estimation. In particular, our MuLA
has a carefully designed interweaving architecture that enables effective between-
task cooperation and mutual learning. Moreover, instead of simply fusing learned
features from two tasks as in existing works, MuLA introduces a learning to adapt

mechanism where the guidance information from one task can be effectively
transferred to modify model parameters for the other parallel task, leading to
augmented representation and better performance. In addition, MuLA is capable
of recurrently performing model adaption by transforming estimation results to
the representation space and thus can continuously refine semantic part labels
and body joint locations based on enhanced models in the previous iteration.

Specifically, the MuLA model includes a representation encoding module,
a mutual adaptation module and a classification module. The representation
encoding module encodes input images into preliminary representations for hu-
man parsing and pose estimation individually, and meanwhile provides guidance
for model adaptation. With such guidance information, the mutual adaptation
module learns to dynamically predict model parameters for augmenting repre-
sentations by incorporating useful prior learned from the other task, enabling
effective between-task interaction and cooperation in model training. Introduc-
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ing such a mutual adaptation module improves the learning process of one task
towards benefiting the other, providing easily transferable information between
tasks. In addition, these dynamic parameters are efficiently learned in a one-
shot manner according to different inputs, leading to fast and robust model
adaptation. MuLA fuses mutually-tailored representations with the preliminary
ones in a residual manner to produce augmented representations for making
final prediction, through the classification modules. MuLA also allows for iter-
ative model adaption and improvement by transforming estimation results to
the representation space, which serve as enhanced input for the next stage. The
proposed MuLA is implemented with deep Convolutional Neural Networks and
is end-to-end learnable.

We evaluate the proposed MuLA model on Look into Person (LIP) [10] and
extended PASCAL-Person-Part [24] benchmarks. The experiment results well
demonstrate its superiority over existing methods in exploiting mutual guidance
information for joint human parsing and pose estimation. Our contributions are
summarized in four aspects. First, we propose a novel end-to-end learnable model
for jointly learning human parsing and pose estimation. Second, we propose a
novel mutual adaptation module for dynamic interaction and cooperation be-
tween two tasks. Third, the proposed model is capable of iteratively exploiting
mutual guidance information to consistently improve performance of two tasks.
Fourth, we achieve new state-of-the-art on LIP dataset, and outperform the
previous best model for joint human parsing and pose estimation on extended
PASCAL-Person-Part dataset.

2 Related Work

Due to their close correlations, recent works have exploited human parsing (hu-
man pose estimation) to assist human pose estimation (human parsing) or lever-
aged their mutual benefits to jointly improve the performance for both tasks.

In [12], ladicky et al. proposed to utilize body parts as additional constraint
for the pose estimation model. Given locations of all joints, they introduced a
body part mask component to predict labels of pixels belonging to each body
part, which can be optimized with the overall model together. In [25], Xia et al.

proposed to exploit pose estimation results to guide human parsing by leverag-
ing joint locations to extract segment proposals for semantic parts, which are
selected and assembled using an And-Or graph to output a parse of the person.
In [10], Gong et al. proposed to improve human parsing with pose estimation
in a self-supervised structure-sensitive manner through weighting segmentation
loss with joint structure loss. Similar to [10], Zhao et al. [28] proposed to improve
human parsing via regarding human pose structure from a global perspective for
feature aggregation considering the importance of different positions. Yamaguchi
et al. [26] proposed to optimize human parsing and pose estimation and improve
the performance of two tasks in an alternative manner: utilizing pose estimation
results to generate body part locations for human parsing and then exploiting hu-
man parsing results to update appearance features in the pose estimation model
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Fig. 2. Illustration of overall architecture of the proposed Mutual Learning to Adapt
model (MuLA) for joint human parsing and pose estimation. Given an input image,
MuLA utilizes the novel mutual adaptation module to build dynamic interaction and
cooperation between parsing and pose estimation models in an iterative way for fully
exploiting their mutual benefits to simultaneously improve their performance

for refining joint locations. Dong et al. [8] proposed a Hybrid Parsing Model for
unified human parsing and pose estimation under the And-Or graph framework.
They utilized body joints to assist human parsing via constructing the mixture
of joint-group templates for body part representation, and exploited body parts
to improve human pose estimation through forming parselets to constrain the
position and co-occurrence of body joints. In [24], Xia et al. proposed to utilize
deep learning models for joint human parsing and pose estimation. They utilized
parsing results for hand-crafted features to assist pose estimation by considering
relationships of body joints and parts, and then exploited the generated pose
estimation results to construct joint label maps and skeleton maps for refining
human parsing. With the powerful deep learning models, they achieved superior
performance over previous methods.

Despite previous success, existing methods suffer from limitations of hand-
crafted features relying on estimation results for exploiting guidance information
to improve the counterpart models. In contrast, the proposed Mutal Learning
to Adapt model can mutually learn to fast adapt the model of one task con-
ditioned on representations of the other for specific inputs. In addition, MuLA
utilizes the guidance information in both training and inference phases for joint
human parsing and pose estimation. Moreover, it is end-to-end learnable via
implementation with CNNs.

3 The Proposed Approach

3.1 Formulation

For an RGB image I∈RH×W×3 with heightH and widthW , we use S={si}
H×W
i=1

to denote the human parsing result of I, where si∈{0, . . . , P} is the semantic
part label of the ith pixel and P is the total number of semantic part cate-
gories. Specially, 0 represents the background category. We use J={(xi, yi)}

N
i=1
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to denote body joint locations of the human instance in I, where (xi, yi) repre-
sents the spatial coordinates of the ith body joint and N is the number of joint
categories. Our goal is to design a unified model for simultaneously predicting
human parsing S and pose J via fully exploiting their mutual benefits to boost
performance for both tasks.

Existing methods for joint human parsing and pose estimation usually extract
hand-crafted features from the output of one task to assist the other task at
post-processing. They can neither extract powerful features nor strengthen the
models. Targeting at such limitations, we propose a Mutual Learning to Adapt

(MuLA) model to substantially exploit mutual benefits from human parsing and
pose estimation towards effectively improving performance of the counterpart
models, through learning to adapt model parameters. In the following, we use
g[ψ,ψ∗](·) and h[φ,φ∗](·) to denote the parsing and pose models respectively, with
parameters specified in the subscripts. Specifically, ψ∗ and φ∗ denote parameters
that are adaptable to the other task. Then, our proposed MuLA is formulated
as following recurrent learning process:

S(t) = g
[ψ(t),ψ

(t)
∗

]
(F

(t)
S ), where ψ

(t)
∗ = h′(F

(t)
J , Ĵ),

J (t) = h
[φ(t),φ

(t)
∗

]
(F

(t)
J ), where φ

(t)
∗ = g′(F

(t)
S , Ŝ),

(1)

where t is the iteration index, Ŝ and Ĵ are parsing and pose annotations for the

input image I, and F
(t)
S and F

(t)
J denote the extracted features for parsing and

pose prediction respectively. Note, at the beginning, F
(1)
S =F

(1)
J =I.

The above formulation in Eqn. (1) highlights the most distinguishing feature
of MuLA from existing methods: MuLA explicitly adapts some model parameters
of one task (e.g. parsing model parameter ψ∗) to the guidance information of
the other task (e.g. pose estimation) via adapting functions h′(·, ·) and g′(·, ·).

In this way, the adaptive parameters ψ
(t)
∗ and φ

(t)
∗ encode useful information

from the parallel tasks. With these parameters, the MuLA model can learn
complementary representations and boost performance for both human parsing
and pose estimation tasks, by more flexibly and effectively exploiting interaction

and cooperation between them. In addition, MuLA bases ψ
(t)
∗ and φ

(t)
∗ on the

input images. Different inputs would modify the model parameters dynamically,
making the model robust to various testing senarios. Moreover, MuLA has the
ability to iteratively exploit mutual guidance information between two tasks via
the recurrent learning process and thus continuously improves both models.

The overall architecture of MuLA is shown in Fig. 2. Concretely, MuLA
presents an interweaving architecture and consists of three components: a rep-

resentation encoding module, a mutual adaptation module and a classification

module. The representation encoding module consists of two encoders ES
ψ

(t)
e

(·)

and EJ
φ
(t)
e

(·) for transforming inputs F
(t)
S and F

(t)
J into high-level preliminary

representations for human parsing and pose estimation.

The mutual adaptation module targets at adapting parameters ψ
(t)
∗ and φ

(t)
∗

to augment preliminary representations from ES
ψ

(t)
e

(·) and EJ
φ
(t)
e

(·) by leveraging
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auxiliary guidance information from the parallel tasks. Inspired by the “Learning
to Learn” framework [2], for achieving fast and effective adaptation, within func-
tions g′(·, ·) and h′(·, ·), we design two learnable adapters A

ψ
(t)
a

(·) and A
φ
(t)
a

(·)

to learn to predict these adaptive parameters. For reliable and robust parameter
prediction, we take the highest-level representation from ES

ψ
(t)
e

(·) and EJ
φ
(t)
e

(·) as

mutual guidance information. Namely, A
ψ

(t)
a

(·) and A
φ
(t)
a

(·) take ES
ψ

(t)
e

(F
(t)
S ) and

EJ
φ
(t)
e

(F
(t)
J ) as inputs and output φ

(t)
∗ and ψ

(t)
∗ . Formally,

ψ
(t)
∗ = h′(F

(t)
J , Ĵ) := A

φ
(t)
a

(
EJ
φ
(t)
e

(F
(t)
J )

)
,

φ
(t)
∗ = g′(F

(t)
S , Ŝ) := A

ψ
(t)
a

(
ES
ψ

(t)
e

(F
(t)
S )

)
.

(2)

Here ψ
(t)
∗ and φ

(t)
∗ can tailor preliminary representations extracted by ψ

(t)
e and

φ
(t)
e for better human parsing and pose estimation via leveraging their mu-

tual guidance information. We utilize the tailored representations extracted by

ψ
(t)
e and φ

(t)
e together with ψ

(t)
∗ and φ

(t)
∗ for making final predictions, and use

ES
[ψ

(t)
e ,ψ

(t)
∗

]
(·) and EJ

[φ
(t)
e ,φ

(t)
∗

]
(·) to denote the derived adaptive encoders in MuLA.

The mutual adaptation module allows for dynamic interaction and cooperation
between two tasks within MuLA for fully exploiting their mutual benefits.

MuLA uses two classifiers CS
ψ

(t)
w

(·) and CJ
φ
(t)
w

(·) following the mutual adapta-

tion module for predicting human parsing S(t) and pose J (t). Specifically, [ψ
(t)
e ,

ψ
(t)
w ] and [φ

(t)
e , φ

(t)
w ] together instantiate parameters ψ(t) and φ(t) in Eqn. (1),

respectively. For iteratively exploiting mutual guidance information, we design
two mapping modules MS

ψ
(t)
m

(·, ·) and MJ

φ
(t)
m

(·, ·) to map representations from

ES
[ψ

(t)
e ,ψ

(t)
∗

]
(·) and EJ

[φ
(t)
e ,φ

(t)
∗

]
(·) together with prediction results S(t) and J (t) into

inputs F
(t+1)
S and F

(t+1)
J for the next stage. Namely,

F
(t+1)
S =MS

ψ
(t)
m

(
ES

[ψ
(t)
e ,ψ

(t)
∗

]
(F

(t)
S ), S(t)

)
and F

(t+1)
J =MJ

φ
(t)
m

(
EJ

[φ
(t)
e ,φ

(t)
∗

]
(F

(t)
J ), J (t)

)
.

(3)

By the definition in Eqn. (3), F
(t)
S and F

(t)
J provide preliminary representations

at the start of the next stage and avoid learning from scratch at each stage. In
addition, S(t) and J (t) offer additional guidance information for generating better
prediction results and alleviate learning difficulties in subsequent stages [23,15].

To train MuLA, we add groundtruth supervision Ŝ and Ĵ for human parsing
and pose estimation at each stage, and define the following loss function:

L =

T∑

t=1

(
LS

(
CS
ψ

(t)
w

(
ES

[ψ
(t)
e ,ψ

(t)
∗

]
(F

(t)
S )

)
, Ŝ

)
+ βLJ

(
CJ
φ
(t)
w

(
EJ

[φ
(t)
e ,φ

(t)
∗

]
(F

(t)
J )

)
, Ĵ

))

(4)
where T denotes the total number of iterations in MuLA, LS(·, ·) and LJ(·, ·)
represent loss functions for human parsing and pose estimation, respectively, and
β is a weight coefficient for balancing LS(·, ·) and LJ(·, ·). In next subsection,
we will provide details on implementation of MuLA.
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Fig. 3. (a) The CNN implementation of MuLA for one stage. Given inputs F
(t)
S

and

F
(t)
J

at stage t, the parsing and pose encoders generate preliminary representations R
(t)
S

and R
(t)
J

. Then, the parameter adapters predict dynamic parameters ψ
(t)
∗ and φ

(t)
∗ for

learning complementary representations R
(t)
S∗

and R
(t)
J∗

via dynamic convolutions, which
are exploited to tailor preliminary representations via addition in a residual manner for
producing refined representations R̄

(t)
S

and R̄
(t)
J

. Finally, MuLA feeds R̄
(t)
S

and R̄
(t)
J

to
classifiers for parsing and pose estimation, respectively. (b) The network architecture
of parameter adapter, consisting of three convolution and two pooling layers. For each
layer, the kernel size, the number of channel/pooling types, stride and padding size are
specified from top to bottom

3.2 Implementation

We implement MuLA with deep Convolutional Neural Networks (CNNs), and
show architecture details in Fig. 3 (a).

Representation Encoding Module This module is composed of two encoders

ES
ψ

(t)
e

(·) and EJ
φ
(t)
e

(·), targeting at encoding inputs F
(t)
S and F

(t)
J into discrimina-

tive representations R
(t)
S and R

(t)
J for estimating parsing and pose results, as well

as for predicting adaptive parameters. We implement ES
ψ

(t)
e

(·) and EJ
φ
(t)
e

(·) with

two different state-of-the-art architectures: the VGG network [19] and Hourglass
network [15]. VGG network is a general architecture widely applied in various
vision tasks [18,5]. We utilize its fully convolutional version with 16 layers, de-
noted as VGG16-FCN, for both tasks. In addition, we modify VGG16-FCN to
reduce the total stride from 32 to 8 via removing the last two max-pooing layers,
aiming to enlarge feature maps for improving part labeling and joint localization
accuracy. The Hourglass network has a U-shape architecture which is initially
designed for human pose estimation. We extend it to parsing by making the out-
put layer aim for semantic part labeling instead of joint confidence regression.
Other configurations of Hourglass network exactly follow [15]. Note that paring
and pose encoders need not have the same architecture as they are independent
from each other.
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Mutual Adaptation Module This module includes two adapters A
φ
(t)
a

(·) and

A
ψ

(t)
a

(·) to predict adaptive parameters ψ
(t)
∗ and φ

(t)
∗ which are used to tailor

preliminary representations R
(t)
S and R

(t)
J . In particular, we implement A

ψ
(t)
a

(·)

and A
φ
(t)
a

(·) with the same small CNN for predicting convolution kernels of

counterpart models, as shown in Fig. 3 (b). The adapter networks take R
(t)
S and

R
(t)
J as inputs and output tensors φ

(t)
∗ ∈Rh×h×c and ψ

(t)
∗ ∈Rh×h×c as convolution

kernels, where h is the kernel size and c=ci×co is the number of kernels with
input and output channel number ci and co, respectively.

However, it is not feasible to directly predict all the convolution kernels due to
their large scale. To reduce the number of kernels to predict by adapters A

ψ
(t)
a

(·)

and A
φ
(t)
a

(·), we follow [2] to use a way analogous to SVD for decomposing

parameters ψ
(t)
∗ and φ

(t)
∗ via

ψ
(t)
∗ = U

(t)
S ⊗ ψ̃

(t)
∗ ⊗c V

(t)
S and φ

(t)
∗ = U

(t)
J ⊗ φ̃

(t)
∗ ⊗c V

(t)
J , (5)

where ⊗ denotes convolution operation, ⊗c denotes channel-wise convolution

operation, U
(t)
S /U

(t)
J and V

(t)
S /V

(t)
J are auxiliary parameters and can be viewed

as parameter bases, and ψ̃
(t)
∗ ∈Rh×h×ci and φ̃

(t)
∗ ∈Rh×h×ci are the actual param-

eters to predict by A
φ
(t)
a

(·) and A
ψ

(t)
a

(·). In this way, the number of predicted

parameters can be reduced by an order of magnitude.
For tailoring preliminary represenations with adaptive parameters, we uti-

lize dynamic convolution layers for direclty applying ψ
(t)
∗ and φ

(t)
∗ to conduct

convolution operations on R
(t)
S and R

(t)
J , which is implemented by just replacing

static convolution kernels with the predicted dynamic ones in the traditional
convolution layer:

R
(t)
S∗ = ψ

(t)
∗ ⊗R

(t)
S = U

(t)
S ⊗ ψ̃

(t)
∗ ⊗c V

(t)
S ⊗R

(t)
S ,

R
(t)
J∗ = φ

(t)
∗ ⊗R

(t)
J = U

(t)
J ⊗ φ̃

(t)
∗ ⊗c V

(t)
J ⊗R

(t)
J ,

(6)

where R
(t)
S∗ and R

(t)
J∗ are dynamic representations learned from the guidance

information of task counterparts, overcoming drawbacks of existing methods

with hand-crafted features from estimation results. In addition, R
(t)
S∗ and R

(t)
J∗ are

efficiently generated in a one-shot manner, avoiding the time-consuming iterative
updating scheme utilized by traditional methods for representation learning.

We implement U
(t)
S /U

(t)
J and V

(t)
S /V

(t)
J with 1×1 convolutions and apply them

together with ψ̃
(t)
∗ /φ̃

(t)
∗ sequentially on R

(t)
S /R

(t)
J to produce R

(t)
S∗/R

(t)
J∗.

Through leveraging mutual benefits between human parsing and pose esti-

mation, R
(t)
S∗ and R

(t)
J∗ can provide powerful complementary cues to tailor R

(t)
S

and R
(t)
J for better labeling semantic parts and localizing body joints. We fuse

complementary representations and preliminary ones via addition in a residual

manner for generating tailored representations R̄
(t)
S and R̄

(t)
J for final predictions:

R̄
(t)
S = R

(t)
S +R

(t)
S∗ and R̄

(t)
J = R

(t)
J +R

(t)
J∗. (7)
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Classification Module Given representations R̄
(t)
S and R̄

(t)
J , we apply two lin-

ear classifiers CS
ψ

(t)
w

(·) and CJ
φ
(t)
w

(·) for predicting semantic part probability maps

S(t) and body joint confidence maps J (t), respectively. In particular, we imple-
ment classifiers with 1×1 convolution layers.

After getting S(t) and J (t), the mapping modules MS

ψ
(t)
m

(·, ·) and MJ

φ
(t)
m

(·, ·)

transform them and tailored representations R̄
(t)
S and R̄

(t)
J into inputs F

(t+1)
S

and F
(t+1)
J for the next stage. Following [15], we use 1×1 convolutions on S(t)

and J (t) to map predictions into the representation space. We also apply 1×1

convolutions on R̄
(t)
S and R̄

(t)
J to map highest-level representations of the previous

stage into preliminary representations for the following stage. We integrate these

two representations via addition for obtaining F
(t+1)
S and F

(t+1)
J .

Training and Inference As exhibited in the loss function in Eqn. (4), we apply
both parsing and pose supervision at each mutual learning stage for training the
MuLA model. In particular, we utilize CrossEntropy loss and Mean Square Error
loss for parsing and pose models respectively. MuLA is end-to-end trainable by
gradient back propagation.

At the inference phase, MuLA simultaneously estimates parsing and pose for
an input image in one forward pass. The semantic part probability maps S(T )

and body joint confidence maps J (T ) from the last stage of MuLA are used for
final predictions. In particular, for human parsing, the category with maximum
probability at each position of S(T ) is output as the semantic part label. For
pose estimation, in the single-person case, we take the position with maximum
confidence for each confidence map in J (T ) as the location of each type of body
joints; in the multi-person case, we perform Non-Maximum Suppression (NMS)
on each confidence map in J (T ) for generating joint candidates.

4 Experiments

4.1 Experimental Setup

Datasets We evaluate the proposed MuLA model on two benchmarks for si-
multaneous human parsing and pose estimation: the Look into Person (LIP)
dataset [10] and extended PASCAL-Person-Part dataset [24]. The LIP dataset
includes 50,462 single-person images collected from various realistic scenarios,
with pixel-wise annotations provided for 19 categories of semantic parts and
location annotations for 16 types of body joints. In particular, LIP images are
split into 30,462 for training, 10,000 for validation and 10,000 for testing. The
extended PASCAL-Person-Part is a challenging multi-person dataset, contain-
ing annotations for 14 body joints and 6 semantic parts. In total, there are 3,533
images, which are split into 1,716 for training and 1,817 for testing.

Data Augmentation We conduct data augmentation strategies commonly
used in previous works [28,3] for both human parsing and pose estimation, includ-
ing random rotation in [−40◦, 40◦], random scaling in [0.8, 1.5], random cropping
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Table 1. VGG16-FCN based ablation
studies on LIP validation set

Methods PCK mIOU

VGG16-FCN 69.1 34.5
VGG16-FCN-Add 69.7 36.5
VGG16-FCN-Multi 69.4 35.8
VGG16-FCN-Concat 69.5 36.1
VGG16-FCN-MTL 65.3 31.2
VGG16-FCN-Self 69.8 36.1

VGG16-FCN-LA-Pose 75.0 32.1
VGG16-FCN-LA-Parsing 66.5 40.0

VGG16-FCN-MuLA 76.0 40.2

Table 2. Hourglass network based ab-
lation studies on LIP validation set

Methods PCK mIOU

HG-0s-1u-MuLA 78.8 38.5
HG-1s-1u-MuLA 82.2 43.5

HG-2×1u 80.8 41.3
HG-2s-1u-MuLA (1st Stage) 82.8 45.5
HG-2s-1u-MuLA (2nd Stage) 83.1 45.6
HG-2s-1u-MuLA 84.4 46.9

HG-3s-1u-MuLA 85.0 47.8
HG-4s-1u-MuLA 85.1 48.9
HG-5s-1u-MuLA 85.4 49.3

based on the person center with translational offset in [−40px, 40px], and ran-
dom horizontally mirroring. We resize and pad augmented training samples into
256×256 as input to CNNs.

Implementation We train MuLA from scratch for LIP and extended PASCAL-
Person-Part datasets with their own training samples, separately. For multi-
person pose estimation on extended PASCAL-Person-Part dataset, we follow
the method proposed in [16]. It partitions joint candidates into corresponding
persons via a dense regression branch in the pose model of MuLA for transform-
ing joint candidates into the centroid embedding space. We implement MuLA
with PyTorch [17] and use RMSProp [21] as the optimizer. We set the initial
learning rate as 0.0025 and drop it with multiplier 0.5 at the 150th, 170th,
200th and 230th epochs. We train MuLA for 250 epochs in total. We perform
multi-scale testing to produce final predictions for both human parsing and pose
estimation. Our codes and pre-trained models will be made available.

Metrics Following conventions, Mean Intersection-over-Union (mIOU) [10] is
used for evaluating human parsing performance. We use PCK [27] and Mean
Average Precision (mAP) [11,16] for measuring accuracy of single- and multi-
person pose estimation, respectively.

4.2 Results on LIP Dataset

Ablation Analysis We evaluate the proposed MuLA model with two kinds of
backbone architectures, i.e., the VGG16-FCN and Hourglass networks, for both
human parsing and pose estimation as mentioned in Sec. 3.2.

Firstly, we conduct ablation experiments on LIP validation set with VGG16-
FCN based model, denoted as VGG16-FCN-MuLA, to investigate efficacy of
MuLA on leveraging mutual guidance information to simultaneously improve
parsing and pose performance. The results are shown in Table 1. To demonstrate
effectiveness of the adaptive representations learned by MuLA, we compare with
prevalent strategies that directly fuse representations from parallel models, in-
cluding addition, multiplication, concatenation. We denote these baselines as
VGG16-FCN-Add/Multi/Concat respectively. To evaluate the advantages of the
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interweaving architecture of MuLA, we also compare it with traditional multi-
task learning framework for joint human parsing and pose estimation, imple-
mented by adding both parsing and pose supervision on a single VGG16-FCN,
denoted as VGG16-FCN-MTL. To investigate effects of the residual architecture
followed by the adaptation modules, we wipe off mutual interaction between
tasks through replacing dynamic convolution layers with traditional convolu-
tion layers. Such a variant is denoted as VGG16-FCN-Self. To validate advan-
tages of bidirectionally utilizing guidance information between two tasks, we
simplify MuLA by alternatively removing parsing and pose adapters, result-
ing in single-direction adaptation models, denoted as VGG16-FCN-LA-Pose and
VGG16-FCN-LA-Parsing.

From Table 1, we can see that the proposed VGG16-FCN-MuLA significantly
improves performance of baseline VGG16-FCN by a large margin on both human
parsing and pose estimation, from 34.5% to 40.2% mIoU and 69.1% to 76.0%
PCK, respectively. These results clearly show efficacy of MuLA on exploiting mu-
tual benefits to jointly enhance model performance. We can also observe direct
fusion of representations from both models as VGG16-FCN-Add/Multi/Concat
cannot sufficiently utilize guidance information, resulting in very limited perfor-
mance improvement. In contrast to these naive fusion strategies, VGG16-FCN-
MuLA can learn more powerful representations via dynamically adapting pa-
rameters. Traditional multi-task learning framework VGG16-FCN-MTL suffers
performance decline for both parsing and pose estimation, due to limitations
brought by its tied architecture trying to learn single representation for both
tasks. In contrast, MuLA learns separate representations for each task, pro-
viding a flexible and effective model for multi-task learning. Adding a residual
architecture to the adaptation modules only slightly improves performance for
both tasks, revealing performance gain is not simply from network architecture
engineering. Instead, MuLA indeed learns useful complementary representations.

Single-direction learning to adapt variants VGG16-FCN-LA-Pose/Parsing
can successfully leverage parsing (or pose) information to adapt pose (or parsing
respectively) models, leading to performance improvement. This verifies effec-
tiveness of our proposed learning to adapt module in exploiting guidance infor-
mation from parallel models. However, we can also observe such single-direction
learning harms performance of “source” tasks, due to over-concentration on the
“target” tasks. It demonstrates the necessity of mutual learning for simultane-
ously boosting performance of human parsing and pose estimation.

To evaluate the power of MuLA on iteratively exploiting mutual benefits
between human parsing and pose estimation, we further perform ablation stud-
ies with the Hourglass based model. The results are summarized in Table 2.
We use HG-ms-nu-MuLA to denote the model containing m stages each with
n-unit depth (32-layer per unit depth per Hourglass module is the basic con-
figuration in [15]). Specially, HG-0s-1u-MuLA denotes independent Hourglass
networks (without mutual learning to adapt) are utilized for the two tasks. We
purposively make all stages have the same architecture for disentangling effects of
architecture variations on performance. In particular, HG-2s-1u-MuLA (1st/2nd
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Table 3. Comparison with state-of-
the-arts on LIP for human pose esti-
mation task

Methods PCK

Hybrid Pose Machine 77.2
BUPTMM-POSE 80.2
Pyramid Stream Network 82.1
Chou et al. [7] 87.4

Our model 87.5

Table 4. Comparison with state-of-
the-arts on LIP for human parsing task

Methods PixelAcc MeanAcc mIoU

SegNet [1] 69.0 24.0 18.2
FCN-8s [13] 76.1 36.8 28.3
DeepLabV2 [4] 82.7 51.6 41.6
Attention [5] 83.4 54.4 42.9
Attention+SSL [10] 84.4 54.9 44.7
SS-NAN [28] 87.6 56.0 47.9

Our model 88.5 60.5 49.3

Stage) denotes ablation cases of HG-2s-1u-MuLA where only the 1st or 2nd stage
contains the module for mutual-learning to adapt. We use HG-k×nu to denote
standard Hourglass network with k stacked Hourglass modules of n-unit depth.

From Table 2, we can observe that increasing the number of stages in MuLA
from 0 to 5 can continuously improve the performance for both tasks, from 38.5%
to 49.3% mIoU for human parsing and 78.8% to 85.4% PCK for pose estimation.
Comparing HG-2s-1u-MuLA with HG-2×1u, we can find the proposed MuLA
model can learn valuable representations from model counterparts rather than
benefiting from stacking Hourglass modules. Comparing HG-2s-1u-MuLA with
HG-2s-1u-MuLA (1st/2nd Stage), we can see that removing mutual-learning
process at any stage will always harm the performance for both parsing and pose
estimation, demonstrating that the proposed adaptation module is effective at
leveraging mutual guidance information and necessary to be applied for all the
stages in MuLA. In addition, we find using more than 5 stages for MuLA will
not bring observable improvement. Hence, we set T=5 for efficiency.

Comparisons with State-of-the-artsWe compare our model HG-5s-1u-MuLA
with state-of-the-arts for both human parsing and pose estimation on LIP dataset.
The results are shown in Table 3 and 4.

For human pose estimation, the method in [7] wins the first place in Human
Pose Estimation track in the 1st LIP Challenge. It extensively exploits adversar-
ial training strategies. The pyramid stream network introduces top-down path-
way and lateral connections to combine features of different levels for recurrently
refining joint confidence maps. BUPTMM-POSE and Hybrid Pose machines are
from combining the Hourglass network and Convolutional Pose Machines. From
Table 3, we can find our model achieves superior accuracy over all these strong
baselines. It achieves new state-of-the-art 87.5% PCK on the LIP dataset.

Table 4 shows comparison with state-of-the-arts for human parsing. In addi-
tion to mIoU, we also report pixel accuracy and mean accuracy, following con-
ventions [10,28,5]. In particular, the methods in [10,28] utilize human pose infor-
mation as extra supervision to assist human parsing via introducing a structure-
sensitive loss based on body joint locations. We can observe that our model
outperforms all previous methods consistently for all the evaluation metrics. It
gives new state-of-the-art 88.5% pixel accuracy, 60.5% mean accuracy and 49.3%
mIoU. This demonstrates our learning to adapt module indeed provides a more
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Table 5. Results on the PASCAL-
Person-Part dataset for Human Pose
Estimation

Methods mAP

Chen and Yuille [6] 21.8
Insafutdinov et al. [11] 28.6
Xia et at. [24] 39.2

Our baseline (w/o MuLA) 38.6
Our model 39.9

Table 6. Results on the PASCAL-
Person-Part dataset for Human Pars-
ing

Methods mIoU

Attention+SSL [10] 59.4
SS-NAN [28] 62.4
Xia et al. [24] 64.4

Our baseline (w/o MuLA) 62.9
Our model 65.1

effective way for exploiting human pose information to guide human parsing
than the other sophisticated strategies like structure-sensitive loss in [10,28].
Qualitative Results Fig. 4 (a) shows qualitative results to visually illustrate
the efficacy of MuLA in mutually boosting human parsing and pose estimation.
We can observe that MuLA can exploit body part information from human
parsing to constrain body joint locations, e.g., from the 1st and 2nd examples. On
the other hand, MuLA can use human pose to provide structure information to
benefit human parsing by improving accuracy of semantic part labeling, as shown
in the 3rd and 4th examples. Moreover, we can see that MuLA simultaneously
improves both parsing and pose quality for all the examples.

4.3 Results on PASCAL-Person-Part Dataset

Different from LIP dataset, the extended PASCAL-Person-Part dataset presents
more challenging pose estimation problems due to existence of multiple persons.
As mentioned in Sec. 4.1, we utilize the model in [16] as the pose model in MuLA
for partitioning joint candidates to corresponding person instances. We exploit
Hourglass network based MuLA with 5 stages for experiments. The results are
shown in Table 5 and 6.

We can see that our baseline models achieves 38.6% mAP and 62.9% mIoU
for multi-person pose estimation and human parsing. With the proposed MuLA
model, the performance for two tasks can be improved to 39.9% mAP and 65.1%
mIoU, respectively. We also observe that our model achieves superior perfor-
mance over previous methods for both tasks. In particular, [24] presents the
state-of-the-art model for joint human parsing and pose estimation via exploit-
ing hand-crafted features from estimation results as post-processing. The supe-
rior performance of our model over [24] further demonstrates the effectiveness
of learning to adapt with mutual guidance information for enhancing models for
joint human parsing and pose estimation.

We visualize human parsing and multi-person pose estimation results in Fig. 4
(b). We can see that MuLA can use body joint information to recover missing
detected parts, e.g., left arm of left person in the 1st example and right arm of
right person in the 2nd example. In addition, MuLA can also utilize semantic
part information to constrain body joint location, e.g., right knee of the right
person in the 1st example and left ankle of the left person in the 2nd example.
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(a) (b)

Fig. 4. Qualitative results on (a) LIP and (b) extended PASCAL-Person-Part dataset.
For each column, the first two rows are results of the baseline model HG-5×1u with-
out exploiting mutual guidance information and the last two rows are results of the
proposed model HG-5s-1u-MuLA. Best viewed in color

5 Conclusion

In this paper, we present a novel Mutual Learning to Adapt (MuLA) model for
solving the challenging joint human parsing and pose estimation problem. MuLA
uses a new interweaving architecture to leverage their mutual guidance informa-
tion to boost their performance simultaneously. In particular, MuLA achieves
dynamic interaction and cooperation between these two tasks by mutually learn-
ing to adapt parameters of parallel models for tailoring their preliminary rep-
resentations by injecting information from the other one. MuLA can iteratively
weave mutual guidance information for continuously improving performance for
both tasks. It effectively overcomes limitations of previous works that exploit
mutual benefits between two tasks through using hand-crafted features in the
post-processing. Comprehensive experiments on benchmarks have clearly verified
the efficacy of MuLA for joint human parsing and pose estimation. In particular,
MuLA achieved new state-of-the-art for both human parsing and pose estima-
tion tasks on the LIP dataset, and outperformed all previous methods devoted
to jointly performing these two tasks on PASCAL-Person-Part dataset.
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