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Abstract. Hazy images are common in real scenarios and many dehaz-
ing methods have been developed to automatically remove the haze from
images. Typically, the goal of image dehazing is to produce clearer images
from which human vision can better identify the object and structural
details present in the images. When the ground-truth haze-free image
is available for a hazy image, quantitative evaluation of image dehaz-
ing is usually based on objective metrics, such as Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM). However, in many ap-
plications, large-scale images are collected not for visual examination by
human. Instead, they are used for many high-level vision tasks, such
as automatic classification, recognition and categorization. One funda-
mental problem here is whether various dehazing methods can produce
clearer images that can help improve the performance of the high-level
tasks. In this paper, we empirically study this problem in the important
task of image classification by using both synthetic and real hazy im-
age datasets. From the experimental results, we find that the existing
image-dehazing methods cannot improve much the image-classification
performance and sometimes even reduce the image-classification perfor-
mance.

Keywords: Hazy images · Haze removal · Image classification · Dehaz-
ing · Classification accuracy.

1 Introduction

Haze is a very common atmospheric phenomenon where fog, dust, smoke and
other particles obscure the clarity of the scene and in practice, many images
collected outdoors are contaminated by different levels of haze, even on a sunny
day and in computer vision society, such images are usually called hazy images,
as shown in Fig. 1(a). With intensity blurs and lower contrast, it is usually more
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difficult to identify object and structural details from hazy images, especially
when the level of haze is strong. To address this issue, many image dehazing

methods [9, 25, 26, 20, 33, 2, 3, 21, 15] have been developed to remove the haze and
try to recover the original clear version of an image. Those dehazing methods
mainly rely on various image prior, such as dark channel prior [9] and color
attenuation prior [33]. As shown in Fig. 1, the images after the dehazing are
usually more visually pleasing – it can be easier for the human vision to identify
the objects and structures in the image. Meanwhile, many objective metrics, such
as Peak Signal-to-Noise Ratio (PSNR) [11] and Structural Similarity (SSIM) [30],
have been proposed to quantitatively evaluate the performance of image dehzaing
when the ground-truth haze-free image is available for a hazy image.

(a) (b) (c) (d)  

Fig. 1. An illustration of image dehazing. (a) A hazy image. (b), (c) and (d) are the
images after applying different dehazing methods to the image (a).

However, nowadays large-scale image data are collected not just for visual
examination. In many cases, they are collected for high-level vision tasks, such as
automatic image classification, recognition and categorization. One fundamental

problem is whether the performance of these high-level vision tasks can be signif-

icantly improved if we preprocess all hazy images by applying an image-dehazing

method. On one hand, images after the dehazing are visually clearer with more
identifiable details. From this perspective, we might expect the performance im-
provement of the above vision tasks with image dehazing. On the other hand,
most image dehazing methods just process the input images without introduc-
ing new information to the images. From this perspective, we may not expect
any performance improvement of these vision tasks by using image dehazing
since many high-level vision tasks are handled by extracting image information
for training classifiers. In this paper, we empirically study this problem in the
important task of image classification.

By classifying an image based on its semantic content, image classification

is an important problem in computer vision and has wide applications in au-
tonomous driving, surveillance and robotics. This problem has been studied for
a long time and many well known image databases, such as Caltech-256 [8],
PASCAL VOCs [7] and ImageNet [5], have been constructed for evaluating the
performance of image classification. Recently, the accuracy of image classifica-
tion has been significantly boosted by using deep neural networks. In this paper,
we will conduct our empirical study by taking Convolutional Neural Network
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(CNN), one of the most widely used deep neural networks, as the image clas-
sifier and then evaluate the image-classification accuracy with and without the
preprocessing of image dehazing.

More specifically, in this paper we pick eight state-of-the-art image dehazing
methods and examine whether they can help improve the image-classification
accuracy. To guarantee the comprehensiveness of empirical study, we use both
synthetic data of hazy images and real hazy images for experiments and use
AlexNet [14], VGGNet [22] and ResNet [10] for CNN implementation. Note that
the goal of this paper is not the development of a new image-dehazing method or
a new image-classification method. Instead, we study whether the preprocessing
of image dehazing can help improve the accuracy of hazy image classification. We
expect this study can provide new insights on how to improve the performance
of hazy image classification.

2 Related Work

Hazy images and their analysis have been studied for many years. Many of the
existing researches were focused on developing reliable models and algorithms
to remove haze and restore the original clear image underlying an input hazy
image. Many models and algorithms have been developed for outdoor image
haze removal. For example, in [9], dark channel prior was used to remove haze
from a single image. In [20], an image dehazing method was proposed with a
boundary constraint and contextual regularization. In [33], color attenuation
prior was used for removing haze from a single image. In [3], an end-to-end
method was proposed for removing haze from a single image. In [21], multi-
scale convolutional neural networks were used for haze removal. In [15], a haze-
removal method was proposed by directly generating the underlying clean image
through a light-weight CNN and it can be embedded into other deep models
easily. Besides, researchers also investigated haze removal from the images taken
at nighttime hazy scenes. For example, in [16], a method was developed to remove
the nighttime haze with glow and multiple light colors. In [32], a fast haze removal
method was proposed for nighttime images using the maximum reflectance prior.

Image classification has attracted extensive attention in the community of
computer vision. In the early stage, hand-designed features [31] were mainly
used for image classification. In recent years, significant progress has been made
on image classification, partly due to the creation of large-scale hand-labeled
datasets such as ImageNet [5], and the development of deep convolutional neu-
ral networks (CNN) [14]. Current state-of-the-art image classification research
is focused on training feedforward convolutional neural networks using “very
deep” structure [22, 23, 10]. VGGNet [22], Inception [23] and residual learn-
ing [10] have been proposed to train very deep neural networks, resulting in
excellent image-classification performances on clear natural images. In [18], a
cross-convolutional-layer pooling method was proposed for image classification.
In [28], CNN is combined with recurrent neural networks (RNN) for improving
the performance of image classification. In [6], three important visual recogni-
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tion tasks, image classification, weakly supervised point-wise object localization
and semantic segmentation, were studied in an integrative way. In [27], a con-
volutional neural network using attention mechanism was developed for image
classification.

Although these CNN-based methods have achieved excellent performance
on image classification, most of them were only applied to the classification of
clear natural images. Very few of existing works explored the classification of
degradation images. In [1], strong classification performance was achieved on
corrupted MNIST digits by applying image denoising as an image preprocessing
step. In [24], a model was proposed to recognize faces in the presence of noise
and occlusion. In [29], classification of very low resolution images was studied by
using CNN, with applications to face identification, digit recognition and font
recognition. In [12], a preprocessing step of image denoising is shown to be able
to improve the performance of image classification under a supervised training
framework. In [4], image denoising and classification were tackled by training a
unified single model, resulting in performance improvement on both tasks. Image
haze studied in this paper is a special kind of image degradations and, to our
best knowledge, there is no systematic study on hazy image classification and
whether image dehazing can help hazy image classification.

3 Proposed Method

In this section, we elaborate on the hazy image data, image-dehazing meth-
ods, image-classification framework and evaluation metrics used in the empirical
study. In the following, we first discuss the construction of both synthetic and
real hazy image datasets. We then introduce the eight state-of-the-art image-
dehazing methods used in our study. After that, we briefly introduce the CNN-
based framework used for image classification. Finally, we discuss the evaluation
metrics used in our empirical study.

3.1 Hazy-Image Datasets

For this empirical study, we need a large set of hazy images for both image-
classifier training and testing. Current large-scale image datasets that are pub-
licly available, such as Caltech-256, PASCAL VOCs and ImageNet, mainly con-
sist of clear images without degradations. In this paper, we use two strategies to
get the hazy images. First, we synthesize a large set of hazy images by adding
haze to clear images using available physical models. Second, we collect a set of
real hazy images from the Internet.

We synthesize hazy images by the following equation [13], where the atmo-
spheric scattering model is used to describe the hazy image generation process:

I(x, y) = t(x, y) · J(x, y) + [1− t(x, y)] ·A, (1)

where (x, y) is the pixel coordinate, I is the synthetic hazy image, and J is the
original clear image. A is the global atmospheric light. The scene transmission
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t(x, y) is distance-dependent and defined as

t(x, y) = e−βd(x,y), (2)

where β is the atmospheric scattering coefficient and d(x, y) is the normalized
distance of the scene at pixel (x, y). We compute the depth map d(x, y) of an
image by using the algorithm proposed in [17]. An example of such synthetic
hazy image, as well as its original clear image and depth map, are shown in
Fig. 2. In this paper, we take all the images in Caltech-256 to construct synthetic
hazy images and the class label of each synthetic image follow the label of the
corresponding original clear image. This way, we can use the synthetic images
for image classification.

(a) (b) (c) 

Fig. 2. An illustration of hazy image synthesis. (a) Clear image. (b) Depth map of (a).
(c) Synthetic hazy image.

While we can construct synthetic hazy images by following well-acknowledged
physical models, real haze models can be much more complicated and a study on
synthetic hazy image datasets may not completely reflect what we may encounter
on real hazy images. To address this issue, we collect a new dataset of hazy
images by collecting images from the Internet. This new dataset contains 4,610
images from 20 classes and we named it as Haze-20. These 20 image classes are
bird (231), boat (236), bridge (233), building (251), bus (222), car (256), chair
(213), cow (227), dog (244), horse (237), people (279), plane (235), sheep (204),
sign (221), street-lamp (216), tower (230), traffic-light (206), train (207), tree
(239) and truck (223), and in the parenthesis is the number of images collected
for each class. The number of images per class varies from 204 to 279. Some
examples in Haze-20 are shown in Fig. 3.

In this study, we will try the case of training the image-classifier using clear
images and testing on hazy images. For synthetic hazy images, we have their
original clear images, which can be used for training. For real images in Haze-20,
we do not have their underlying clear images. To address this issue, we collect a
new HazeClear-20 image dataset from the Internet, which consists of haze-free
images that fall in the same 20 classes as in Haze-20. HazeClear-20 consists of
3,000 images, with 150 images per class.
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Fig. 3. Sample hazy images in our new Haze-20 dataset.

3.2 Dehazing Methods

In this paper we try eight state-of-the-art image-dehazing methods: Dark-Channel
Prior (DCP) [9], Fast Visibility Restoration (FVR) [25], Improved Visibil-
ity(IV) [26], Boundary Constraint and Contextual Regularization (BCCR) [20],
Color Attenuation Prior (CAP) [33], Non-local Image Dehazing (NLD) [2], De-
hazeNet (DNet) [3], andMSCNN [21]. We examine each of them to see whether
it can help improve the performance of hazy image classification.

– DCP removes haze using dark channel prior, which is based on a key obser-
vation – most local patches of outdoor haze-free images contain some pixels
whose intensity is very low in at least one color channel.

– FVR is a fast haze-removal algorithm based on the median filter. Its main
advantage is its fast speed since its complexity is just a linear function of
the input-image size.

– IV enhances the contrast of an input image so that the image visibility is
improved. It computes the data cost and smoothness cost for every pixel by
using Markov Random Fields.

– BCCR is an efficient regularization method for removing haze. In particular,
the inherent boundary constraint on the transmission function combined
with a weighted L1-norm based contextual regularization, is modeled into
an optimization formulation to recover the unknown scene transmission.

– CAP removes haze using color attenuation prior that is based on the dif-
ference between the saturation and the brightness of the pixels in the hazy
image. By creating a linear model, the scene depth of the hazy image is
computed with color attenuation prior, where the parameters are learned by
a supervised method.

– NLD is a haze-removal algorithm based on a non-local prior, by assuming
that colors of a haze-free image are well approximated by a few hundred of
distinct colors in the form of tight clusters in RGB space. In a hazy image,
these tight color clusters change due to haze and form lines in RGB space
that pass through the airlight coordinate.

– DNet is an end-to-end haze-removal method based on CNN. The layers of
CNN architecture are specially designed to embody the established priors
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in image dehazing. DNet conceptually consists of four sequential operations
– feature extraction, multi-scale mapping, local extremum and non-linear
regression, which are constructed by three convolution layers, a max-pooling,
a Maxout unit and a bilinear ReLU activation function, respectively.

– MSCNN uses a multi-scale deep neural network for image dehazing by
learning the mapping between hazy images and their corresponding trans-
mission maps. It consists of a coarse-scale net which predicts a holistic trans-
mission map based on the entire image, and a fine-scale net which refines
results locally. The network consists of four operations: convolution, max-
pooling, up-sampling and linear combination.

3.3 Image Classification Model

In this paper, we implement CNN-based model for image classification by using
AlexNet [14], VGGNet-16 [22] and ResNet-50 [10] on Caffe. The AlexNet [14]
has 8 weight layers (5 convolutional layers and 3 fully-connected layers). The
VGGNet-16 [22] has 16 weight layers (13 convolutional layers and 3 fully-connected
layers). The ResNet-50 [10] has 50 weight layers (49 convolutional layers and 1
fully-connected layer). For those three networks, the last fully-connected layer
has N channels (N is the number of classes).

3.4 Evaluation Metrics

We will quantitatively evaluate the performance of image dehazing and the per-
formance of image classification. Other than visual examination, Peak Signal-to-
Noise Ratio (PSNR) [11] and Structural Similarity (SSIM) [30] are widely used
for evaluating the performance of image dehazing when the ground-truth haze-
free image is available for each hazy image. For image classification, classification
accuracy is the most widely used performance evaluation metric.

Note that, both PSNR and SSIM are objective metrics based on image statis-
tics. Previous research has shown that they may not always be consistent with the
image-dehazing quality perceived by human vision, which is quite subjective. In
this paper, what we concern about is the performance of image classification after
incorporating image dehazing as preprocessing. Therefore, we will study whether
PSNR and SSIM metrics show certain correlation to the image classification per-
formance. In this paper, we simply use the classification accuracy Accuracy = R

N

to objectively measure the image-classification performance, where N is the to-
tal number of testing images and R is the total number of testing images that
are correctly classified by using the trained CNN-based models.

4 Experiments

4.1 Datasets and Experiment Setup

In this section, we evaluate various image-dehazing methods on the hazy images
synthesized from Caltech-256 and our newly collected Haze-20 datasets.
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We synthesize hazy images using all the images in Caltech-256 dataset, which
has been widely used for evaluating image classification algorithms. It contains
30,607 images from 257 classes, including 256 object classes and a clutter class.
In our experiment, we select six different hazy levels for generating synthetic
images. Specifically, we set the parameter β = 0, 1, 2, 3, 4, 5 respectively in Eq.(2)
for hazy image synthesis where β = 0 corresponds to original images in Caltech-
256. In Caltech-256, we select 60 images randomly from each class as training
images, and the rest are used for testing. Among the training images, 20% per
class are used as a validation set. We follow this to split the synthetic hazy image
data: an image is in training set if it is synthesized from an image in the training
set and in testing set otherwise. This way, we have a training set of 60 × 257
= 15,420 images (60 per class) and a testing set of 30,607 − 15,420 = 15,187
images for each hazy level.

For the collected real hazy images in Haze-20, we select 100 images randomly
from each class as training images, and the rest are used for testing. Among
the training images, 20% per class are used as a validation set. So, we have a
training set of 100×20 = 2, 000 images and a testing set of 4, 610−2, 000 = 2, 610
images. For HazeClear-20 dataset, we also select 100 images randomly from each
class as training images, and the rest are used for testing. Among the training
images, 20% per class are used as a validation set. So, we have a training set of
100× 20 = 2, 000 images and a testing set of 50× 20 = 1, 000 images.

While the proposed CNN model can use AlexNet, VGGNet, ResNet or an-
other network structures, for simplicity, we use AlexNet, VGGNet-16, ResNet-
50 on Caffe in this paper. The CNN architectures are pre-trained on ImageNet
dataset that consists of 1,000 classes with 1.2 million training images. We then
use the collected images to fine-tune the pre-trained model for image classifica-
tion, in which we change the number of channels in the last fully connected layer
from 1,000 to N , where N is the number of classes in our datasets. To more
comprehensively explore the effect of haze-removal to image classification, we
study different combinations of the training and testing data, including training
and testing on images without applying image dehazing, training and testing on
images after dehazing, and training on clear images but testing on hazy images.

4.2 Quantitative Comparisons on Synthetic and Real Hazy Images

To verify whether haze-removal preprocessing can improve the performance of
hazy image classification, we test on the synthetic and real hazy images with and
without haze removal for quantitative evaluation. The classification results are
shown in Fig. 4, where (a-e) are the classification accuracies on testing synthetic
hazy images with β = 1, 2, 3, 4, 5, respectively using different dehazing methods.
For these five curve figures, the horizontal axis lists different dehazing methods,
where “Clear” indicates the use of the testing images in the original Caltech-256
datasets and this assumes a perfect image dehazing in the ideal case. The case of
“Haze” indicates the testing on the hazy images without any dehazing. (f) is the
classification accuracy on the testing images in Haze-20 using different dehazing
methods, where “Clear” indicates the use of testing images in HazeClear-20 and
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“Haze” indicates the use of testing images in Haze-20 without any dehazing.
AlexNet 1, VGGNet 1 and ResNet 1 represent the case of training and testing
on the same kinds of images, e.g., training on the training images in Haze-20 after
DCP dehazing, then testing on testing images in Haze-20 after DCP dehazing,
by using AlexNet, VGGNet and ResNet, respectively. AlexNet 2, VGGNet 2 and
ResNet 2 represent the case of training on clear images, i.e., for (a-e), we train on
training images in original Caltech-256, and for (f), we train on training images
in HazeClear-20, by using AlexNet, VGGNet and ResNet, respectively.

(a) (b)

(c) (d)

(e) (f)

Fig. 4. The classification accuracy on different hazy images. (a-e) Classification accura-
cies on testing synthetic hazy images with β = 1, 2, 3, 4, 5, respectively. (f) Classification
accuracy on the testing images in Haze-20.

We can see that when we train CNN models on clear images and test them
on hazy images with and without haze removal (e.g., AlexNet 2, VGGNet 2

and ResNet 2 ), the classification performance drop significantly. From Fig. 4(e),
image classification accuracy drop from 71.7% to 21.7% when images have a
haze level of β = 5 by using AlexNet. Along the same curve shown in Fig. 4(e),
we can see that by applying a dehazing method on the testing images, the
classification accuracy can move up to 42.5% (using MSCNN dehazing). But it
is still much lower than 71.7%, the accuracy on classifying original clear images.
These experiments indicate that haze significantly affects the accuracy of CNN-
based image classification when training on original clear images. However, if we
directly train the classifiers on the hazy image of the same level, the classification
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accuracy moves up to 51.9%, as shown in the red curve in Fig. 4(e), where no
dehazing is involved in training and testing images. Another choice is to apply
the same dehazing methods to both training and testing images: From results
shown in all the six subfigures in Fig. 4, we can see that the resulting accuracy is
similar to the case where no dehazing is applied to training and testing images.
This indicates that the dehazing conducted in this study does not help image
classification. We believe this is due to the fact that the dehazing does not
introduce new information to the image.

There are also many non-CNN-based image classification methods. While it
is difficult to include all of them into our empirical study, we try the one based
on sparse coding [31] and the results are shown in Fig. 5, where β = 1, 2, 3, 4, 5
represent haze levels of synthetic hazy images in Caltech-256 dataset and Haze-20

represents Haze-20 dataset. For this specific non-CNN-based image classification
method, we can get the similar conclusion that the tried dehazing does not help
image classification, as shown in Fig. 5. Comparing Figs. 4 and 5, we can see that
the classification accuracy of this non-CNN-based method is much lower than the
state-of-the-art CNN-based methods. Therefore, we focus on CNN-based image
classification in this paper.

Fig. 5. Classification accuracy (%) on synthetic and real-world hazy images by using a
non-CNN-based image classification method. Here the same kinds of images are used
for training, i.e., building the basis for sparse coding, and testing, just like the case
corresponding to the solid curves (AlexNet 1, VGGNet 1 and ResNet 1 ) in Fig. 4.

4.3 Training on Mixed-Level Hazy Images

For more comprehensive analysis of dehazing methods, we conduct experiments
of training on hazy images with mixed haze levels. For synthetic dataset, we
try two cases. In Case 1, we mix all six levels of hazy images by selecting 10
images per class from each level of hazy images as training set and among the
training images, two images per class per haze level are taken as validation
set. We then test on the testing images of the involved haze levels – actually
all six levels for this case – respectively. Results are shown in Fig. 6(a), (b)
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Classification accuracy when training on mixed-level hazy images. (a, b, c) Mix
all six levels of synthetic images. (d) Mix two levels β = 0 and β = 5. (e) Mix two
levels β = 1 and β = 4. (f) Mix Haze-20 and HazeClear-20.

and (c) when using AlexNet, VGGNet and ResNet respectively. In Case 2, we
randomly choose images from two different haze levels and mix them. In this
case, 30 images per class per level are taken as training images and among the
training images, 6 images per class per level are used as validation images. This
way we have 60 images per class for training. Similarly, we then test on the
testing images of the involved two haze levels, respectively. Results are shown
in Fig. 6(d) and (e) for four different kinds of level combinations, respectively.
For real hazy images, we mix clear images in HazeClear-20 and hazy images in
Haze-20 by picking 50 images per class for training and then test on the testing
images in Haze-20 and HazeClear-20 respectively. Results are shown in Fig. 6(f).
Similarly, combining all the results, the use of dehazing does not clearly improve
the image classification accuracy, over the case of directly training and testing
on hazy images.

4.4 Performance Evaluation of Dehazing Methods

In this section, we study whether there is a correlation between the dehazing
metrics PSNR/SSIM and the image classification performance. On the synthetic
images, we can compute the metrics PSNR and SSIM on all the dehazing results,
which are shown in Fig. 7. In this figure, the PSNR and SSIM values are averaged
over the respective testing images. We pick the red curves (AlexNet 1 ) from
Fig. 4(a-e) and for each haze level in β = 1, 2, 3, 4, 5, we rank all the dehazing
methods based on the classification accuracy. We then rank these methods based
on average PSNR and SSIM at the same haze level. Finally we calculate the
rank correlation between image classification and PSNR/SSIM at each haze
level. Results are shown in Table 1. Negative values indicate negative correlation,
positive values indicate positive correlation and the greater the absolute value,
the higher the correlation. We can see that their correlations are actually low,
especially when β = 3.
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Fig. 7. Average PSNR and SSIM values on synthetic image dataset at different haze
levels.

Table 1. The rank correlation between image-classification accuracy and PSNR/SSIM
at each haze level.

Correlation β = 1 β = 2 β = 3 β = 4 β = 5

(Accuracy, PSNR) -0.3095 0.3571 0.0952 -0.2143 0.1905

(Accuracy, SSIM) -0.2381 -0.5238 -0.0714 0.6905 0.6190

4.5 Subjective Evaluation

In this section, we conduct an experiment for subjective evaluation of the image
dehazing. By observing the dehazed images, we randomly select 10 images per
class with β = 3 and subjectively divide them into 5 with better dehazing effect
and 5 with worse dehazing effect. This way, we have 2,570 images in total (set M)
and 1,285 images each with better dehazing (set A) and worse dehazing (set B).
Classification accuracy (%) using VGGNet is shown in Fig. 8 and we can see that
there is no significant accuracy difference for these three sets. This indicates that
the classification accuracy is not consistent with the human subjective evaluation
of the image dehazing quality.

Fig. 8. Classification accuracy of different sets of dehazed images subjectively selected
by human.
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4.6 Feature Reconstruction

The CNN networks used for image classification consists of multiple layers to
extract deep image features. One interesting question is whether certain layers
in the trained CNN actually perform image dehazing implicitly. We picked a
reconstruction method [19] to reconstruct the image according to feature maps
of all the layers in AlexNet. The reconstruction results are shown in Fig. 9, from
which we can see that, for the first several layers, the reconstructed images do not
show any dehazing effect. For the last several layers, the reconstructed images
have been distorted, let alone dehazing. One possibility of this is that many
existing image dehazing methods aim to please human vision system, which
may not be good to CNN-based image classification. Meanwhile, many existing
image dehazing methods introduce information loss, such as color distortion, and
may increase the difficulty of image classification.

Input hazy image Conv1 Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8

Fig. 9. Sample feature reconstruction results for two images, shown in two rows respec-
tively. The leftmost column shows the input hazy images and the following columns
are the images reconstructed from different layers in AlexNet.

4.7 Feature Visualization

In order to further analyze different dehazing methods, we extract and visualize
the features at hidden layers using VGGNet. For an input image with sizeH×W ,
the activations of a convolution layer is formulated as an order-3 tensor with
H×W×D elements, where D is the number of channels. The term “activations”
is a feature map of all the channels in a convolution layer. The activations in haze-
removal images with different dehazing methods are displayed in Fig. 10. From
top to bottom are haze-removal images, and the activations at pool1, pool3 and
pool5 layers, respectively. We can see that different dehazing methods actually
have different activations, such as the activations of pool5 layer of NLD and
DNet.

5 Conclusions

In this paper, we conducted an empirical study to explore the effect of image
dehazing to the performance of CNN-based image classification on synthetic and
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DCP FVR BCCRIV CAP NLD MSCNNDNet

Fig. 10. Activations of hidden layers of VGGNet on image classification. From top
to bottom are the haze-removal images, and the activations at pool1, pool3 and pool5
layers, respectively.

real hazy images. We used physical haze models to synthesize a large number of
hazy images with different haze levels for training and testing. We also collected
a new dataset of real hazy images from the Internet and it contains 4,610 images
from 20 classes. We picked eight well-known dehazing methods for our empiri-
cal study. Experimental results on both synthetic and real hazy datasets show
that the existing dehazing algorithms do not bring much benefit to improve the
CNN-based image-classification accuracy, when compared to the case of directly
training and testing on hazy images. Besides, we analyzed the current dehazing
evaluation measures based on pixel-wise errors and local structural similarities
and showed that there is not much correlation between these dehazing metrics
and the image-classification accuracy when the images are preprocessed by the
exsiting dehazing methods. While we believe this is due to the fact that image
dehazing does not introduce new information to help image classification, we do
not exclude the possibility that the existing image-dehazing methods are not suf-
ficiently good in recovering the original clear image and better image-dehazing
methods developed in the future may help improve image classification. We hope
this study can draw more interests from the community to work on the important
problem of haze image classification, which plays a critical role in applications
such as autonomous driving, surveillance and robotics.
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