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Abstract. The goal of this paper is to estimate the 3D coordinates of
the hand joints from a single depth image. To give consideration to both
the accuracy and the real time performance, we design a novel three-
branch Convolutional Neural Networks named Hand Branch Ensemble
network (HBE), where the three branches correspond to the three parts
of a hand: the thumb, the index finger and the other fingers. The struc-
tural design inspiration of the HBE network comes from the understand-
ing of the differences in the functional importance of different fingers. In
addition, a feature ensemble layer along with a low-dimensional embed-
ding layer ensures the overall hand shape constraints. The experimental
results on three public datasets demonstrate that our approach achieves
comparable or better performance to state-of-the-art methods with less
training data, shorter training time and faster frame rate.

Keywords: hand pose estimation, depth image, Convolutional Neural
Networks

1 Introduction

The research of 3D hand pose estimation is a hotspot in the field of computer
vision, virtual reality and robotics [5, 18]. With the advent of depth cameras,
studies based on depth image have made significant progress [28]. Nevertheless,
there is still a challenge for the recovery of 3D hand poses due to the poor
quality of depth images, high joint flexibility, local self-similarity and severe
self-occlusions.

In general, depth based hand pose estimation can be categorized into two
main approaches as either generative model-based or discriminative learning-
based methods. Model based approaches assume a pre-defined hand model and
then fit it to the input depth image by minimizing specific objective function-
s [21, 22, 24, 13, 26, 32, 31]. However, the accuracy of these methods is highly de-
pendent on the objective function and sensitive to initialization. Additionally,
such tracking-based model approaches are awkward to deal with large changes
between two adjacent frames, which are common as the hand tends to move
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fast. Alternatively, learning based approaches train a model with a large amoun-
t of data, and the hand pose parameters can be regressed directly. In this way,
detecting hand pose frame by frame is easy to handle with fast hand movements.

Recently, learning based approaches have achieved remarkable performance
in hand pose estimation from a single depth image. Although traditional machine
learning methods have made significant progress, their performances are too
dependent on the hand-craft features [28, 12, 35, 30, 27]. In recent years, Deep
Learning methods have been paid more attention due to their abilities of learning
effective features automatically. Early studies regressed joint locations from a
depth image with a simple 2D Convolutional Neural Network [20, 33, 39, 16],
which had high frame rate but low precision. To improve the accuracy, different
strategies were proposed. One way was to improve the data quality. [19] used
data augmentation to reduce the prediction error. [8, 17] converted the 2.5D
depth image to 3D voxel representation to make use of the 3D spatial structure.
[23] learned the feature mapping from a synthetic image with high quality to
a real image. The other way was to design more complex network to extract
more features. [19, 17, 10, 9] added residual module in their network. [17, 34] used
encoder and decoder to learn features in the latent space. [8, 17] applied a 3D
CNN instead of 2D CNN to estimate per-voxel likelihood of 3D locations for each
hand joint. By combining the effective strategies mentioned above, [17] achieved
the best results in the Hands In the Million (HIM2017) Challenge Competition
so far [36]. However, their methods were too complex both in data preprocessing
procedure and in network structure to get the efficient training and testing.

In order to improve the efficiency while ensuring accuracy, in this paper,
we design a highly efficient and relatively simple Convolutional Neural Network
structure named Hand Branch Ensemble network(HBE). The proposed network
can achieve comparable accuracy with state-of-the-art studies even better than
them using fewer training data and shorter training time but faster frame rates.
Fig. 1 gives an overview of our proposed network structure. The core idea is to
take advantage of the prior knowledge of the motion and the functional impor-
tance of different fingers [29, 2, 15, 4]. Since the thumb and the index finger play
an even more important role in the grasping, manipulation and communication,
while the middle finger, ring finger and little finger play an auxiliary role in
most cases, we simplify the five-finger structure into three parts: thumb, index
fingers and the other fingers. Correspondingly, the proposed HBE network learns
the features of each part by each branch respectively. It makes full use of the
shallow low-level image features that are more sensitive to the size, orientation
and location information, which can greatly reduce the computational complex-
ity and the training time. Moreover, we propose a branch ensemble strategy by
concatenating features from the last fully connected layers of each branch and
then the integrated features are used to infer the joint coordinates with the ex-
tra regression layers. Different from REN [10] training individual fully-connected
layers on multiple feature regions and combining them as ensembles, our ensem-
ble strategy directly exploits the features of different hand parts, which is more
intuitive for the hand pose estimation. Motivated by Deep Prior [20], we add a
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bottleneck layer as a low dimensional embedding to learn the hand pose physical
prior before the output layer.
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Fig. 1. The Hand Branch Ensemble(HBE) network: based on the activity space and
functional importance of five fingers. The top branch handles the thumb, the median
branch handles the index finger and the bottom branch handles the other fingers. The
features are ensemble along with an additional fully connected layer and a bottleneck
layer

The proposed HBE network is evaluated on three challenging benchmarks:
the HIM2017 Challenge Dataset [37], the ICVL hand pose dataset [30] and the
MSRA dataset [27]. The experiments show that our method achieves results
comparable or better than state-of-the-art methods.

In summary, our contributions are:

1. We propose a new three-branch Convolutional Neural Network estimating
full 3D hand joint locations from a single depth image. The structural design
inspiration comes from the understanding of the differences in the functional
importance of different fingers. In addition, a branch feature ensemble strategy
is introduced to merge features of each branch along with a fully connected
layer and a low-dimensional embedding layer, which emphasizes the correlation
of different hand parts and ensures the overall hand shape constraints.

2. We design a relatively lightweight architecture and achieve comparable
or better performance to state-of-the-art methods on publicly available datasets
with less training data, shorter training time and faster frame rate.

The paper is organized as follows. After reviewing the related work in Section
2, we describe our proposed method in Section 3. Experimental results and
discussions are reported in Section 4, and the conclusions are drawn in Section
5.
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2 Related Work

In this section, we briefly discuss the Deep Learning based works on hand pose
estimation, especially those closely related to our method. These approaches
have achieved good performance due to the success of Deep Learning as well
as the public large hand pose datasets [30, 27, 33, 38, 6]. However, most studies
estimated the hand pose with all joints directly through a single-branch net-
work. Deep Prior [20] proposed a bottleneck layer into the network for the first
time to learn a pose prior, and Deep Model [39] adopted a forward kinematics
based layer to ensure the geometric validity of the estimated poses. In spite of
introducing hand physical constraints, the performances of these networks are
not good enough.

To improve the accuracy, the single-branch network was designed more com-
plicated to extract complex features. [19] improved Deep Prior greatly in ac-
curacy by using residual network architecture, data augmentation, and better
hand segmentation. [17] also used residual blocks and converted the depth im-
age into a 3D representation form. They implemented an intricate 3D CNN in a
voxel-to-voxel mapping manner for prediction. Although the accuracy is signifi-
cantly improved, data conversion and network structure are too complex so that
training and testing process are time-consuming. REN [10] also applied residual
blocks in their feature extraction module and divided the feature maps of the
last convolutional layer into several regions which were integrated in the subse-
quent fully connected layers. However, REN used uniform grid to extract region
features without considering the spatial information of the hand feature maps.

Hierarchical branch structure can better model the hand topology. Based on
REN, Pose-REN [3] boosted the accuracy by iterative refinement. Similar to our
approach, they fused features of different joints and different fingers according
to the topology of the hand. But they used posterior branch strategy focusing on
the iterative refinement. In contrast, we use anterior branch to extract features
of different hand parts. The network designed in this way can estimate simpler
local poses, and let the training process converge faster. By a posterior branch
structure [16] uses 6 branches to represent the wrist and each finger based on
the hand geometric structure. Different from their work, we consider it both
from the hand functional and kinematic features according to the biological
viewpoint, designing an anterior branch structure with learning specific features
of each functional part first and then merging them to learn the global features
by a bottleneck layer. In addition, we group the last three fingers in one branch
rather than one branch for each finger, which guarantees the muscle-association
among them and speeds up the network convergence.

3 Methodology

In this section, we will elaborate on our proposed method, network structure
and implementation details. Our goal is to estimate the 3D coordinates of J
joints: C = {ci}

J

i=1
with ci = [xi; yi; zi] in the hand from a single depth image.
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We design a novel three-branch Convolutional Neural Network based on the
functional importance and activity space of different fingers, and then ensemble
features to regress all 3D joint locations. The overview of our proposed HBE
network is shown in Fig. 1.

3.1 Network Architecture

Hands are frequently used to deal with different tasks, and each finger has dif-
ferent importance and occupies different activity space [2, 15]. The thumb has a
unique structure as the opposable characteristic, which plays an important role
in in communication or dexterous manipulation. Therefore, the thumb is the
most important due to the highest DOF and the largest activity space, so we
use a separate branch to learn its features. Although each of the other four fin-
gers have the same DOF, the index finger is closest to thumb and the two fingers
alone can generate some gestures, thus the index finger is the second most im-
portant and is assigned to a separate branch. Considering the muscle-associated
movement among the last three fingers and high correlation in activity, we group
them in a single branch.

We design the hand pose estimation network based on above mentioned fin-
gers functional importance. The five-finger structure of the hand is simplified
into three parts, corresponding to the three branches of the network respective-
ly. As shown in Fig. 1, three convolutional branches in this network are used
to extract the features of each hand part. Since the function of the middle, the
ring and the little finger is less important and similar in movements, we merge
them into one part and abstractly understand the 5-finger structure of the hand
as a 3-part structure. Each part is of equal importance. Therefore, the feature
extraction network structure of each branch is the same.

The features from each branch are fused to predict the hand pose. Here we
introduce the branch ensemble strategy: features from the last fully connected
layers in all branches are concatenated and used to infer 3D joint coordinates
with an extra regression layer. It should be pointed out that before the output
layer, inspired by the idea of Deep Prior [20], we add a linear bottleneck layer.
The bottleneck embedding forces the network to learn a low dimensional rep-
resentation of the hand pose as a global physical constraint of the hand shape
in the network. The label dimensions (J × 3) of the training data are reduced
by Principal Component Analysis (PCA) and used as the ground truth of the
bottleneck embedding layer. The principal component and the mean value of the
low-dimensional data are used as the weights and the biases of the output layer
respectively. Finally, the output layer recovers the low-dimensional predictions
of the bottleneck layer to the original J × 3-dimensional joint positions.

3.2 Branch Details

When designing the feature extraction layers, we believe that the regression
problem of predicting joint positions is rather different from the classification
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problem of object recognition, because semantic features are crucial to the lat-
ter one. Since shallow network learns low-level spatial features that are more
susceptible to the size, direction, and position of an object. Common convolu-
tional layers and max pooling layers for the feature extraction module in each
branch are shown in Fig. 2. The estimation of the complex global pose is re-
duced to the estimations of simpler local poses, enabling the network to be more
lightweight and easier to train. A larger convolution kernel that can obtain more
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Fig. 2. The structure details of the feature extraction branch. Ci represents the con-
volutional layer, MP represents the maxpooling layer, and FC represents the fully
connected layer

spatial information and lager receptive fields, is very useful for location regres-
sion and effective to infer the occluded joints. At each branch, we use a stack
of two 5× 5 convolutional layers instead of a single larger one, which gains the
same size of effective receptive field to a single 9×9 convolutional layer as well as
decreases the number of parameters, as calculated in [25]. In the feature mapping
module, we add Batch Normalization(BN) layer after each fully connected layer.
The distribution change of the training data is accumulated after processed by
the middle hidden layers, which will affect the network training. The BN layer
has the ability to solve this data distribution change problem, which makes the
gradient transfer more fluent and improves the robustness and generalization
ability of the training model [11]. All layers use Rectified Linear Unit (ReLU)
activation functions.

3.3 Loss Function

The loss function of our network is defined as:

Loss = L+ λR(w) (1)
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where λR(w) is the L2-norm regularization term and the regularization coeffi-
cient λ is set to 0.001 in our experiments. L is the mean square error between
the predicted value and the ground truth. Specifically, we define the loss term L
in the form:

L = α× Lthumb + β × Lindex + γ × Lothers + σ × Ld (2)

where Lthumb is the loss of the thumb branch, Lindex is the loss of the index
finger branch, Lothers is the loss of the other fingers branch, Ld is the loss of
low-dimensional embedding layer, and {α, β, γ, σ} are factors to balance these
losses. In our experiment we set them to be 1 for simplification.

Let ci be the outputs of the branch predicting joint positions in 3D form and
Ci be the ground-truth, both ci and Ci have the form of [xi; yi; zi]. We define
the loss of each branch as:

Lb =

Jb∑

i=1

‖ci − Ci‖
2

2
, b ∈ {thumb, index, others} (3)

where Jb is the number of joints in each branch.
As for the bottleneck embedding, let D be the number of reduced dimension

which is much less than J × 3, pi be the output of the bottleneck layer, Pi be
the dimension reduced training label as the ground truth. We define the loss of
the low-dimensional embedding as:

Ld =

D∑

i=1

‖pi − Pi‖
2

2
(4)

3.4 Implementation Details

The input of our network is a hand-only depth image, which is generated after
a series of preprocessing steps on the dataset. First of all, we cut out the hand
area according to the ground truth labels provided by the dataset, then fill
the cropped image up into a square, at last resize it to 128 × 128, and in the
meanwhile, we normalize the hand depth value in [-1,1]. Pixel values that are
larger than the maximum hand depth or unavailable because of noise are set
to 1. This depth normalization step is important for the network to adapt to
different distances from the hand to the camera.

Our model is trained and tested on a computer with Intel Core i7 CPU, 32GB
of RAM and an NVIDIA GTX1080 GPU. Our network is implemented in Python
using the Tensorflow [1] framework. Except for the output layer, all weights are
initialized from the zero-mean Normal distribution with 0.01 standard deviation.
The network is trained with back propagation using Adam [14] optimizer with a
batch size of 128 for 100 epochs. We use a dynamic learning rate with an initial
value of 0.001 and reduce it by a factor 0.95 for every epoch. And the dropout
rate is set to be 0.85 (keep probability).
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4 Experiments

In this section we evaluate our Hand Branch Ensemble(HBE) network on several
challenging public hand pose datasets. First of all, we introduce these datasets
and the parameters of our methods. Then we describe the evaluation metrics,
and finally we present and discuss our quantitative as well as qualitative results.

4.1 Datasets

We evaluate our network on three recent public hand pose datasets: the latest
high-quality HIM2017 Challenge dataset [37], the traditional widely used ICVL
dataset [30] and MSRA dataset [27].

ICVL Dataset [30] includes a training set of 330K hand pose depth frames
with additional in-plane rotations augmented frames and 1.5K testing depth
images. In our experiments, we only use 110K training data by random sampling.
The dataset provides 16 annotated 3D joints.

MSRA Dataset [27] contains 76K depth frames from 9 subjects with 21 an-
notated joints. Following [27], we use the leave-one-subject-out cross-validation
strategy and average the results over the 9 subjects.

Hands In the Million (HIM2017) Challenge Dataset contains the
frame based hand pose estimation dataset and the continuous action tracking
dataset [36]. We focus on the frame based estimation dataset, which samples
poses from BigHand2.2M dataset [38] and FHAD datasets [6] consisting 957K
training and 295K testing depth images. The training data is randomly shuffled
instead of continuous action sequence. Including both the first-person view and
the third-person view hand pose depth images, this dataset is more challenging
for its abundant perspectives and hand poses. Moreover, this dataset provides
accurate 21-joint 3D location annotations.

In our experiment, we randomly sample 72K training data from the original
HIM2017 Challenge dataset as our training set. Since the original test set pro-
vided by the Challenge does not contain the ground truth, we have difficulties
to measure the accuracy of our method by ourselves. In order to evaluate more
fairly, considering that the original test set contains a total of 295,510 frames
of SEEN and UNSEEN subjects, we randomly sample 295,510 frames from the
original training set to form a new test set (not included in our training set).
Since our test set only contains the SEEN subject, we only compare the results
of SEEN in the Challenge leaderboard.

4.2 Evaluation metrics

We follow the common evaluation metrics on hand pose estimation:
1. Mean joint error: The mean 3D distance error for all joints for each frame

and average across all testing frames.
2. Correct frame proportion: The proportion of frames that have all joints

within a certain distance to ground truth annotation.
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4.3 Self-comparisons

Firstly, we compare the effect of the number of branches on the results, as shown
in the left figure of Fig. 3. Single-branch means that we do not decompose the
hand by part but predict all the joints of the hand directly through a single
branch CNN. With regard to the Two-branch, we train a two-branch network
with one branch handles the thumb and the other branch manages the other
fingers. Obviously, the Three-branch stands for the original three-branch network.
As for the Four-branch, the last branch handles the ring and the little finger
together, the other branches handle the other fingers one by one. The Five-branch
means that each branch corresponds to one finger. By adjusting the number of
convolution channels, the parameters of each network remain roughly constant.
These networks are trained and tested on the HIM2017 Challenge dataset.

As shown in the left figure of Fig. 3, the original three-branch structure
achieves the best accuracy. The horizontal ordinate of Fig. 3 represents each
joint. C means the wrist, and T i(i = {1, 2, 3, 4}), Ii, Mi, Ri and Li represent the
joint in the thumb, index, middle, ring, and little finger, respectively. And Avg

means the mean joint error. For each finger, take the thumb for example, T1,
T2, T3 and T4 represent the MCP joint, PIP joint, DIP joint and the fingertip
respectively. The following graphs are represented in the same way.

There is a linkage between the middle finger and the ring finger, which is
forcibly destroyed by the structure of the Four-branch and the Five-branch. Fur-
ther more, in most cases, the last three fingers are in the same activity range, and
the Three-branch networks can extract their associated features and reduce the
redundancy in the feature combining and mapping. Therefore, the performance
of the Three-branch outperforms the others.
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Fig. 3. Self-comparisons. Left: Distribution of joint errors in different branch-
structures. Right: Distribution of joint errors in different bottleneck dimensions

The effect of the bottleneck layer with low-dimensional embedding has been
proved in the paper of Deep Prior [20]. In our experiments, we also use this
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method to introduce the physical prior of the overall hand pose shape. As for the
ICVL dataset, we follow [20] using a 30-dimensional embedding bottleneck layer.
And on the MSRA and HIM2017 dataset, we use a 35-dimensional embedding
layer according to our experimental results as shown in the right at Fig. 3, which
is evaluated on the MSRA P0 test set. The distribution of joint errors shows that
the 35 dimensions out of the original 63-dimensional pose spaces performs best.
The evaluation shows that enforcing a pose prior is beneficial compared to direct
regression in the full pose space, which is in line with the conclusion of [20], but it
is not significant in the improvement of accuracy according to our experiments.

Then we evaluate the importance of our ensemble strategy on the HIM2017
dataset. When we directly concatenating the joint predictions of three branches
instead of fusing features of each branch as our ensemble strategy, the mean
joint error reaches 5.71mm, while the mean joint error of our original network
with feature ensemble achieves 5.26mm, and the distribution of joint errors and
the correct frame proportion are shown in Fig. 4, which shows that the ensem-
ble strategy in fully connected layer achieves the best performance and further
confirms the effectiveness of the ensemble method used in our network.
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Fig. 4. Self-comparisons of the ensemble strategy. Left: Distribution of joint errors.
Right: Correct frame proportion

Qualitative Results: We present qualitative results on the ICVL, MSRA and
HIM2017 dataset in Fig. 5. As we can see, most of the hand poses can be pre-
dicted correctly on the three datasets.

4.4 Comparison with state-of-the-art methods

We compare the performance of the Hand Branch Ensemble(HBE) network on
three public challenging 3D hand pose datasets (HIM2017, ICVL and MSRA)
with some of the state-of-the-art methods, including Deep Prior [20], Deep Mod-
el [39], latent random forest (LRF) [30], Crossing Nets [34], V2V-PoseNet [17],
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MSRAICVL HIM2017

Fig. 5. The qualitative results on the MSRA, ICVL and HIM2017 Challenge dataset.
The ground truth is marked in blue lines and the prediction is marked in red lines.

Cascade [27], MultiView [7], Pose-REN [3] and Global2Local [16]. Some reported
results of previous works [30, 20, 39, 17] are calculated by their prediction avail-
able online. Other results [27, 16, 34, 3, 7] are calculated from the figures and
tables of their papers.

Table 1. The mean Joint Error on the ICVL Dataset

Methods Mean Joint Error (mm)

LRF 12.58
Deep Prior 11.56
Deep Model 10.4
Crossing Net 10.2

Cascade 9.9
Ours 8.62

V2V-PoseNet 6.28

Our network is evaluated on the ICVL dataset and compared with the state-
of-the-art methods. As shown in Table 1, we get better results than Cascade
but inferior to V2V-PoseNet. However, we use less data than them to train our
method and the parameters complexity is much less than them. Fig. 6 shows
the correct frame proportion on the ICVL dataset compared with Deep Pri-
or [20], Deep Model [39], latent random forest (LRF) [30], Crossing Nets [34]
and Cascade [27], where the horizontal axis represents the maximum allowed
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distance to ground truth. In general, we achieve comparable performance with
state-of-the-art methods on the ICVL dataset in standard evaluation metrics.

Fig. 6. Correct frame proportion on the ICVL dataset

On the MSRA dataset, we compared with Cascade [27], MultiView [7], Cross-
ing Nets [34] and Global2Local [16] as shown in the left figure in Fig. 7. Glob-
al2Local [16] also uses a branch-like structure, but our method is quite different
from them as described in Section 2. The result also proves that our three-branch
anterior branch structure achieves a better performance.

Prior

Fig. 7. Comparison with state-of-the-art methods. Left: Correct frame proportion on
the MSRA dataset. Right: Correct frame proportion of SEEN subjects on the HIM2017
dataset. The curves of THU VCLab and NAIST RVLab are from [36]

We also implement our HBE network and Deep Prior network on HIM2017
Challenge dataset, and get the prediction results of all the joints on our test set.



Hand Branch Ensemble Network for Real-time 3D Hand Pose Estimation 13

Since our test set has the same size of the original test set, but only contains
the SEEN subjects, we only compare the results of SEEN in the Challenge
leaderboard. Table 2 shows the Challenge leaderboard and our comparison of
mean joint error in millimeter. The right figure in Fig. 7 shows the correct frame
proportion of SEEN subjects whose mean joint error within a certain value. The
result of Pose-REN from the THU VCLab and the result of NAIST RVLab are
from [36]. What we need to emphasize is that the comparison of the above is
only an approximate comparison. In spite of this, it can be seen from the results
that our method has a superior performance.

Table 2. The approximate comparison on the HIM2017 Challenge Dataset

Teams Methods AVG SEEN UNSEEN

mks0601 V2V-PoseNet 9.95 6.97 12.43
NVResearch & UMontreal RCN+ 9.97 7.55 12.00

NTU 3D CNN 11.30 8.86 13.33
THU VCLab Pose-REN 11.70 9.15 13.83
NAIST RVLab 5-branch 3D CNN 11.90 9.34 14.04
Deep Prior Deep Prior - - 9.63 - -

Ours HBE - - 5.26 - -

4.5 Computational complexity

We take the HIM2017 Challenge dataset as an example to compare the compu-
tational complexity of the proposed HBE network and V2V-PoseNet. We train
our network on a single GPU for 100 epochs taking 26250.24s (7.2h). The input
generation and data pretreatment take 435s, and loading the input data takes
7.04s. In the testing stage, it takes 1.5ms for processing a frame.

Table 3 compares the computational complexity of our HBE network with
V2V-PoseNet. We only use part of the original training set for training, while
V2V-PoseNet uses the entire training set spending 6 days training including
time-consuming I/O operations. With regard to the testing stage, we can achieve
673 fps on a single GPU, while V2V-PoseNet reaches 3.5 fps on a single GPU
and 35 fps in a multi-GPU environment. Unlike them, we don’t need to do voxel
data conversion and epoch models ensemble for testing, and our network has a
fast forwarding due to its simplicity. Besides, the number of parameters in our
proposed method is much less than V2V-PoseNet regressing 3D coordinates. In
summary, we use a much less training set and simpler network structure but
reach the same level as their result even better than them. Our method is faster,
more efficient and suitable for real-time applications.
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Table 3. The comparison of computational complexity on the HIM2017 Challenge
dataset

Items Parameter Quantity Testing on single GPU Testing on muti-GPU

V2V-PoseNet 457.5M 3.5fps 35fps
Ours 67.27M 673 fps - -

5 Conclusions

We propose a novel three-branch network called the Hand Branch Ensemble(HBE)
network for 3D hand pose estimation from a single depth image. According to
fingers activity space and functional importance we decompose the hand to three
parts: the thumb, the index and the other fingers. Each branch corresponds to
one part. The features of three branches are ensemble to predict all 3D joint
locations. Our network is trained with a small amount of training data and eval-
uated on three challenging datasets. Both the training and testing time are quite
short, and the experimental results demonstrate that our method outperforms
the state-of-the-art methods on the HIM2017 Challenge dataset and achieves
comparable performance on the ICVL and MSRA dataset. Our method has less
complexity and can adapt to a large range of view-points and varied hand poses.
Our proposed method provides a technical approach for tracking and analyzing
the complex interaction between humans and environment.
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