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Abstract. Consensus maximization is one of the most widely used ro-
bust fitting paradigms in computer vision, and the development of al-
gorithms for consensus maximization is an active research topic. In this
paper, we propose an efficient deterministic optimization algorithm for
consensus maximization. Given an initial solution, our method conducts
a deterministic search that forcibly increases the consensus of the initial
solution. We show how each iteration of the update can be formulated
as an instance of biconvex programming, which we solve efficiently using
a novel biconvex optimization algorithm. In contrast to our algorithm,
previous consensus improvement techniques rely on random sampling or
relaxations of the objective function, which reduce their ability to signifi-
cantly improve the initial consensus. In fact, on challenging instances, the
previous techniques may even return a worse off solution. Comprehen-
sive experiments show that our algorithm can consistently and greatly
improve the quality of the initial solution, without substantial cost.4

Keywords: Robust fitting · Consensus maximization · Biconvex pro-
gramming

1 Introduction

Due to the existence of noise and outliers in real-life data, robust model fitting
is necessary to enable many computer vision applications. Arguably the most
prevalent robust technique is random sample consensus (RANSAC) [11], which
aims to find the model that has the largest consensus set. The RANSAC algo-
rithm approximately solves this optimization problem, by repetitively sampling
minimal subsets of the data, in the hope of “hitting” an all-inlier minimal subset
that gives rise to a model hypothesis with high consensus.

Many variants of RANSAC have been proposed [7]. Most variants attempt to
conduct guided sampling using various heuristics, so as to speed up the retrieval

4 Matlab demo program is available in the supplementary material.
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of all-inlier minimal subsets. Fundamentally, however, taking minimal subsets
reduces the span of the data and produces biased model estimates [20, 27]. Thus,
the best hypothesis found by RANSAC often has much lower consensus than the
maximum achievable, especially on higher-dimensional problems. In reality, the
RANSAC solution should only be taken as a rough initial estimate [9].

To “polish” a rough RANSAC solution, one can perform least squares (LS)
on the consensus set of the RANSAC estimate (i.e. the Gold Standard Algo-
rithm [12, Chap. 4]). Though justifiable from a maximum likelihood point of
view, the efficacy of LS depends on having a sufficiently large consensus set to
begin with.

A more useful approach is Locally Optimized RANSAC (LO-RANSAC) [9,
18], which attempts to enlarge the consensus set of an initial RANSAC estimate,
by generating hypotheses from larger-than-minimal subsets of the consensus set.5

The rationale is that hypotheses fitted on a larger number of inliers typically lead
to better estimates with even higher support. Ultimately, however, LO-RANSAC
is also a randomized algorithm. Although it conducts a more focused sampling,
the algorithm cannot guarantee improvements to the initial estimate. As we will
demonstrate in Sec. 5.2, often on more challenging datasets, LO-RANSAC is
unable to significantly improve upon the RANSAC result.

Due to its combinatorial nature, consensus set maximization is NP-hard [4].
While this has not deterred the development of globally optimal algorithms [21,
30, 19, 10, 6, 5, 25, 3], the fundamental intractability of the problem means that
global algorithms are essentially variants of exhaustive search-and-prune pro-
cedures, whose runtime scales exponentially in the general case. While global
algorithms have their place in computer vision, currently they are mostly con-
fined to problems with low-dimensions and/or small number of measurements.

1.1 Deterministic algorithms—a new class of methods

Recently, efficient deterministic algorithms for consensus maximization are gain-
ing attention [17, 22]. Different from random sampling, such algorithms begin
with an initial solution (obtained using least squares or a random sampling
method) and iteratively performs deterministic updates on the solution to im-
prove its quality. While they do not strive for the global optimum, such algo-
rithms are able to find excellent solutions due to the directed search.

To perform deterministic updating, the previous methods relax the objective
function (Le et al. [17] use ℓ1 penalization, and Purkait et al. [22] use a smooth
surrogate function). Invariably this necessitates the setting of a smoothing pa-
rameter that controls the degree of relaxation, and the progressive tightening of
the relaxation to ensure convergence to a good solution. As we will demonstrate
in Sec. 5.4, incorrect settings of the smoothing parameter and/or its annealing
rate may actually lead to a worse solution than the starting point.

5 This is typically invoked from within a main RANSAC routine.
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1.2 Our contributions

We propose a novel deterministic optimization algorithm for consensus maxi-
mization. The overall structure of our method is a bisection search to increase
the consensus of the current solution. The key to the effectiveness of our method
is to formulate the feasibility test in each iteration as a biconvex program, which
we solve efficiently via a biconvex optimization algorithm. Unlike [17, 22], our
method neither relaxes the objective function, nor requires tuning of smoothing
parameters. On both synthetic and real datasets, we demonstrate the superior
performance of our method over previous consensus improvement techniques.

2 Problem definition

Given a set of N outlier contaminated measurements, consensus maximization
aims to find the model x ∈ D that is consistent with the largest data subset

maximize
x∈D

I(x), (1)

where D is the domain of model parameters (more details later), and

I(x) =

N
∑

i=1

I (ri(x) ≤ ǫ) (2)

counts the number of inliers (consensus) of x. Function ri(x) gives the residual

of the i-th measurement w.r.t. x, ǫ is the inlier threshold and I is the indicator
function which returns 1 if the input statement is true and 0 otherwise.

Fig. 1 illustrates the objective function I(x). As can be appreciated from the
inlier counting operations, I(x) is a step function with uninformative gradients.

2.1 The update problem

Let x̃ be an initial solution to (1); we wish to improve x̃ to yield a better solution.
We define this task formally as

find x ∈ D, such that I(x) ≥ δ, (3)

domain D

Fig. 1: Illustrating the update problem. Given the current solution x̃ and a target
consensus δ, where δ > I(x̃), the update problem (3) aims to find another solu-
tion x̂ with I(x̂) ≥ δ. Later in Sec. 4, problem (3) will be embedded in a broader
algorithm that searches over δ to realize deterministic consensus maximization.
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where δ > I(x̃) is a target consensus value. See Fig. 1 for an illustration. For
now, assume that δ is given; later in Sec. 4 we will embed (3) in a broader
algorithm to search over δ.

Also, although (3) does not demand that the revised solution be “close” to
x̃, it is strategic to employ x̃ as a starting point to perform the update. In Sec. 3,
we will propose such an algorithm that is able to efficiently solve (3).

2.2 Residual functions and solvable models

Before embarking on a solution for (3), it is vital to first elaborate on the form
of ri(x) and the type of models that can be fitted by the proposed algorithm.
Following previous works [14, 15, 5], we focus on residual functions of the form

ri(x) =
qi(x)

pi(x)
, (4)

where qi(x) is convex quadratic and pi(x) is linear. We also insist that pi(x) pos-
itive. We call ri(x) the quasiconvex geometric residual since it is quasiconvex [2,
Sec. 3.4.1] in the domain

D = {x ∈ R
d | pi(x) > 0, i = 1, . . . , N}, (5)

Note that D in the above form specifies a convex domain in R
d.

Many model fitting problems in computer vision have residuals of the type (4).
For example, in multiple view triangulation where we aim to estimate the 3D
point x ∈ R

3 from multiple (possibly incorrect) 2D observations {ui}
N
i=1,

ri(x) =
‖(P

(1:2)
i − uiP

(3)
i )x̄‖2

P
(3)
i x̄

(6)

is the reprojection error in the i-th camera, where x̄ = [xT 1]T ,

Pi =

[

P
(1:2)
i

P
(3)
i

]

∈ R
3×4 (7)

is the i-th camera matrix with P
(1:2)
i and P

(3)
i respectively being the first-two

rows and third row of P. Insisting that x lies in the convex domain D = {x ∈

R
3 | P

(3)
i x̄ > 0, ∀i} ensures that the estimated x lies in front of all the cameras.

Other model fitting problems with quasiconvex geometric residuals include
homography fitting, camera resectioning, and the known rotation problem; see [14]
for details and other examples. However, note that fundamental matrix estima-
tion is not a quasiconvex problem [14]; in Sec. 5, we will show how the proposed
technique can be adapted to robustly estimate the fundamental matrix.

3 Solving the update problem

As the decision version of (1), the update problem (3) is NP-complete [4] and
thus can only be approximately solved. In this section, we propose an algorithm
that works well in practice, i.e., able to significantly improve x̃.
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3.1 Reformulation as continuous optimization

With quasicovex geometric residuals (4), the inequality ri(x) ≤ ǫ becomes

qi(x)− ǫpi(x) ≤ 0. (8)

Since qi(x) is convex and pi(x) is linear, the constraint (8) specifies a convex
region in D. Defining

r′i(x) := qi(x)− ǫpi(x) (9)

and introducing for each r′i(x) an indicator variable yi ∈ [0, 1] and a slack variable
si ≥ 0, we can write (3) using complementarity constraints [13] as

find x ∈ D (10a)

subject to
∑

i

yi ≥ δ, (10b)

yi ∈ [0, 1], ∀i, (10c)

yisi = 0, ∀i, (10d)

si − r′i(x) ≥ 0, ∀i, (10e)

si ≥ 0, ∀i. (10f)

Intuitively, yi reflects whether the i-th datum is an inlier w.r.t. x. In the following,
we establish the integrality of yi and the equivalence between (10) and (3).

Lemma 1. Problems (10) and (3) are equivalent.

Proof. Observe that for any x,

a1: If r′i(x) > 0, the i-th datum is outlying to x, and (10d) and (10e) will force
si ≥ r′i(x) > 0 and yi = 0.

a2: If r′i(x) ≤ 0, the i-th datum is inlying to x, and (10f) and (10d) allow si and
yi to have only one of the following settings: a2.1: si > 0 and yi = 0; or
a2.2: si = 0 and yi being indeterminate.

If x is infeasible for (3), i.e., I(x) < δ, condition a1 ensures that (10b) is violated,
hence x is also infeasible for (10). Conversely, if x is infeasible for (10), i.e.,
∑

i yi < δ, then I(x) < δ, hence x is also infeasible for (3).

If x is feasible for (3), we can always set yi = 1 and si = 0 for all inliers
to satisfy (10b), ensuring the feasibility of x to (10). Conversely, if x is feasible
for (10), by a1 there are at least δ inliers, thus x is also feasible to (3). ⊓⊔

From the computational standpoint, (10) is no easier to solve than (3). How-
ever, by constructing a cost function from the bilinear constraints (10d), we
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arrive at the following continuous optimization problem

minimize
x∈D, s∈RN , y∈RN

∑

i

yisi (11a)

subject to
∑

i

yi ≥ δ, (11b)

yi ∈ [0, 1], ∀i, (11c)

si − r′i(x) ≥ 0, ∀i, (11d)

si ≥ 0, ∀i, (11e)

where s = [s1, . . . , sN ]
T
and y = [y1, . . . , yN ]

T
. The following lemma establishes

the equivalence between (11) and (3).

Lemma 2. If the globally optimal value of (11) is zero, then there exists x that

satisfies the update problem (3).

Proof. Due to (11c) and (11e), the objective value of (11) is lower bounded by
zero. Let (x∗, s∗,y∗) be a global minimizer of (11). If

∑

i y
∗
i s

∗
i = 0, then x∗

satisfies all the constraints in (10), thus x∗ is feasible to (3). ⊓⊔

3.2 Biconvex optimization algorithm

Although all the constraints in (11) are convex (including x ∈ D), the objective
function is not convex. Nonetheless, the primary value of formulation (11) is to
enable the usage of convex solvers to approximately solve the update problem.
Note also that (11) does not require any smoothing parameters.

To this end, observe that (11) is in fact an instance of biconvex program-

ming [1]. If we fix x and s, (11) reduces to the linear program (LP)

minimize
y∈RN

∑

i

yisi (12a)

subject to
∑

i

yi ≥ δ, (12b)

yi ∈ [0, 1], ∀i, (12c)

which can be solved in close form.6 On the other hand, if we fix y, (11) reduces
to the second order cone program (SOCP)

minimize
x∈D,s∈RN

∑

i

yisi (13a)

subject to si − r′i(x) ≥ 0, ∀i, (13b)

si ≥ 0, ∀i. (13c)

6 Set yi = 1 if si is one of the δ-smallest slacks, and yi = 0 otherwise.
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Algorithm 1 Biconvex optimization (BCO) for the continuous problem (11).

Require: Initial solution x̃, target consensus δ.
1: Initialize x̂← x̃, set ŝ using (14).
2: while not converged do

3: ŷ← solve LP (12).
4: (x̂, ŝ)← solve SOCP (13).
5: end while

6: return x̂, ŝ and ŷ.

Note that si does not have influence if the corresponding yi = 0; these slack
variables can be removed from the problem to speed up optimization.7

The proposed algorithm (called Biconvex Optimization or BCO) is simple:
we initialize x as the starting x̃ from (3), and set the slacks as

si = max {0, r′i(x̃)}, ∀i. (14)

Then, we alternate between solving the LP and SOCP until convergence. Since (11)
is lower-bounded by zero, and each invocation of the LP and SOCP are guaran-
teed to reduce the cost, BCO will always converge to a local optimum (x̂, ŝ, ŷ).

In respect to solving the update problem (3), if the local optimum (x̂, ŝ, ŷ)
turns out to be the global optimum (i.e.,

∑

i ŷiŝi = 0), then x̂ is a solution
to (3), i.e., I(x̂) ≥ δ. Else, x̂ might still represent an improved solution over
x̃. Compared to randomized search, our method is by design more capable of
improving x̃. This is because optimizing (11) naturally reduces the residual of
outliers that “should be” an inlier, i.e., with yi = 1, which may still lead to a
local refinement, i.e., I(x̂) > δl = I(x̃), regardless of whether problem (3) is
feasible or not. In the next section, we will construct an effective deterministic
consensus maximization technique based on Algorithm 1.

4 Main algorithm—deterministic consensus maximization

Given an initial solution x(0) to (1), e.g., obtained using least squares or a ran-
dom sampling heuristic, we wish to update x(0) to a better solution. The main
structure of our proposed algorithm is simple: we conduct bisection over the
consensus value to search for a better solution; see Algorithm 2.

A lower and upper bound δl and δh for the consensus, which are initial-
ized respectively to I(x(0)) and N , are maintained and progressively tightened.
Let x̃ be the current best solution (initialized to x(0)); then, the midpoint
δ = ⌊0.5(δl + δh)⌋ is obtained and the update problem via the continuous bicon-
vex formulation (11) is solved using Algorithm 1. If the solution x̂ for (11) has a
higher quality than the incumbent, x̃ is revised to become x̂ and δl is increased
to I(x̂). And if I(x̂) < δ, δh is decreased to δ. Algorithm 2 ends when δh = δl+1.

7 Given the optimal x̂ for (13), the values of the slack variables that did not participate
in the problem can be obtained as si = max{0, r′i(x̂)}.
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Algorithm 2 Bisection (non-global) for deterministic consensus maximization.

Require: Initial solution x(0) for (1) obtained using least squares or random sampling.
1: x̃← x(0), δh ← N , δl ← I(x

(0)).
2: while δh > δl + 1 do

3: δ ← ⌊0.5(δl + δh)⌋.
4: (x̂, ŝ, ŷ)← BCO(x̃, δ) (see Algorithm 1).
5: if I(x̂) > I(x̃) then
6: x̃← x̂, δl ← I(x̂).
7: end if

8: if I(x̂) < δ then

9: δh ← δ.
10: end if

11: end while

12: return x̃, δl.

Since the “feasibility test” in Algorithm 2 (Step 4) is solved via a non-convex
subroutine, the bisection technique does not guarantee finding the global so-
lution, i.e., the quality of the final solution may underestimate the maximum
achievable quality. However, our technique is fundamentally advantageous com-
pared to previous methods [9, 17, 22] since it is not subject to the vagaries of
randomization or require tuning of hyperparameters. Empirical results in the
next section will demonstrate the effectiveness of the proposed algorithm.

5 Results

We call the proposed algorithm IBCO (for iterative biconvex optimization). We
compared IBCO against the following random sampling methods:

– RANSAC (RS) [11] (baseline): the confidence ρ was set to 0.99 for computing
the termination threshold.

– PROSAC (PS) [8] and Guided MLESAC (GMS) [26] (RS variants with guided
sampling): only tested for fundamental matrix and homography estimation
since inlier priors like matching scores for correspondences were needed.

– LO-RANSAC (LRS) [9]: subset size in inner sampling was set to half of the
current consensus size, and the max number of inner iterations was set to 10.

– Fixing LO-RANSAC (FLRS) [18]: subset size in inner sampling was set to 7×
minimal subset size, and the max number of inner iterations was set to 50.

– USAC [23]: a modern technique that combines ideas from PS and LRS.8 USAC
was evaluated only on fundamental matrix and homography estimation since
the available code only implements these models.

Except USAC which was implemented in C++, the other sampling methods were
based on MATLAB [16]. Also, least squares was executed on the final consensus
set to refine the results of all the random sampling methods.

8 Code from htts://http://www.cs.unc.edu/~rraguram/usac/USAC-1.0.zip.
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Convex subproblem LP SOCP

Solvers used Gurobi Sedumi

Methods using the solver EP, SS IBCO

Table 1: Convex solvers used in deterministic methods.

In addition to the random sampling methods, we also compared IBCO against
the following deterministic consensus maximization algorithms:

– Exact Penalty (EP) method [17]: The method9 was retuned for best perfor-
mance on our data: we set the penalty parameter α to 1.5 for fundamental
matrix estimation and 0.5 for all other problems. The annealing rate κ for
the penalty parameter was set to 5 for linear regression and 2D homography
estimation and 1.5 for triangulation and fundamental matrix estimation.

– Smooth Surrogate (SS) method [22]: Using our own implementation. The
smoothing parameter γ was set to 0.01 as suggested in [22].

For the deterministic methods, Table 1 lists the convex solvers used for their
respective subproblems. Further, results for these methods with both FLRS and
random initialization (x(0) was generated randomly) were provided, in order to
show separately the performance with good (FLRS) and bad (random) initial-
ization. We also tested least squares initialization, but under high outlier rates,
its effectiveness was no better than random initialization. All experiments were
executed on a laptop with Intel Core 2.60GHz i7 CPU and 16GB RAM.

5.1 Robust linear regression on synthetic data

Data of size N = 1000 for 8-dimensional linear regression (i.e., x ∈ R
8) were

synthetically generated. In linear regression, the residual takes the form

ri(x) = ‖aTi x− bi‖2, (15)

which is a special case of (4) (set pi(x) = 1), and each datum is represented by
{ai ∈ R

8, bi ∈ R}. First, the independent measurements {ai}
N
i=1 and parameter

vector x were randomly sampled. The dependent measurements were computed
as bi = aTi x and added with noise uniformly distributed between [−0.3, 0.3]. A
subset of η% of the dependent measurements were then randomly selected and
added with Gaussian noise of σ = 1.5 to create outliers. To guarantee the outlier
rate, each outlier is regenerated until the noise is not within [-0.3,0.3]. The inlier
threshold ǫ for (1) was set to 0.3.

Fig. 2 shows the optimized consensus, runtime and model accuracy of the
methods for η ∈ {0, 5, ..., 70, 75}, averaged over 10 runs for each data instance.
Note that the actual outlier rate was sometimes slightly lower than expected since
the largest consensus set included some outliers with low noise value. For η = 75
the actual outlier rate was around 72% (see Fig. 2(a)). To prevent inaccurate
analysis caused by this phenomenon, results for η > 75 were not provided.

9 Code from https://cs.adelaide.edu.au/~huu/.
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Fig. 2: Robust linear regression results with varied η (approx. outlier rate).

Fig. 2(b) demonstrates for each method the relative consensus difference
to RS. It is evident that both IBCO variants outperformed other methods in
general. Unlike other methods, whose improvement to RS was low at high outlier
rates, both IBCO variants were consistently better than RS by more than 11%.
Though IBCO was only marginally better than EP for outlier rates lower than
65%, Fig. 2(a) shows that for most of the data instances, both IBCO variants
found consensus very close or exactly equal to the maximum achievable. The
cost of IBCO was fairly practical (less than 5 seconds for all data instances, see
the data tip in Fig. 2(c)). Also the runtime of the random sampling methods
(RS, LRS, FLRS) increased exponentially with η. Hence, at high η, the major
cost of FLRS+EP, FLRS+SS and FLRS+IBCO came from FLRS.

To demonstrate the significance of having higher consensus, we further per-
formed least squares fitting on the consensus set of each method. Given a least
squares fitted model xLS , define the average residual on ground truth inliers (the
data assigned with less than 0.3 noise level) as:

e(xLS) =

∑

i∗∈I∗ ri∗(xLS)

|I∗|
, (16)
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where I∗ was the set of all ground truth inliers. Fig. 2(d) shows e(xLS) for all
methods on all data instances. Generally, higher consensus led to a lower average
residual, suggesting a more accurate model.

5.2 Homography estimation

Five image pairs from the NYC Library dataset [29] were used for 2D homog-
raphy estimation. On each image pair, SIFT correspondences were produced by
the VLFeat toolbox [28] and used as inputs. Fig. 3 depicts examples of inputs, as
well as consensus sets from FLRS and FLRS+IBCO. The transfer error in one
image [12, Sec. 4.2.2] was used as the distance measurement. The inlier thresh-
old ǫ was set to 4 pixels. The 4-Point algorithm [12, Sec. 4.7.1] was used in all
random sampling approaches for model fitting on minimal samples.

Fig. 4, shows the quantitative results, averaged over 50 runs. Though marginally
costlier than SS and random approaches, both IBCO variants found consider-
ably larger consensus sets than other methods for all data. Meanwhile, different
from the linear regression case, EP no longer had simiar result quality to IBCO.
Also note that for challenging problems, e.g., Ceiling1 and Sign, the two IBCO
variants were the only methods that returned much higher consensus than RS.

5.3 Triangulation

Five feature tracks from the NotreDame dataset [24] were selected for triangu-
lation, i.e., estimating the 3D coordinates. The input from each feature track
contained a set of camera matrices and the corresponding 2D feature coordi-
nates. The re-projection error was used as the distance measurement [15] and
the inlier threshold ǫ was set to 1 pixel. The size of minimal samples was 2
(views) for all RANSAC variants. The results are demonstrated in Fig. 5. For
triangulation, the quality of the initial solution largely affected the performance
of EP, SS and IBCO. Initialized with FLRS, IBCO managed to find much larger
consensus sets than all other methods.

5.4 Effectiveness of refinement

Though all deterministic methods were provided with reliable initial FLRS so-
lutions, IBCO was the only one that effectively refined all FLRS results. EP and
SS sometimes even converged to worse than initial solutions. To illustrate these
effects, Fig. 6 shows the solution quality during the iterations of the three deter-
ministic methods (initialized by FLRS) on Ceiling1 for homography estimation
and Point 16 for triangulation. In contrast to EP and SS which progressively
made the initial solution worse, IBCO steadily improved the initial solution.

It may be possible to rectify the behaviour of EP and SS by choosing more
appropriate smoothing parameters and/or their annealing rates. However, the
need for data-dependent tuning makes EP and SS less attractive than IBCO.
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(a) Input correspondences
(N = 455).

(b) FLRS consensus set
(consensus: 323).

(c) FLRS + IBCO consen-
sus set (consensus: 353).

(d) Input correspondences
(N = 346).

(e) FLRS consensus set
(consensus: 321).

(f) FLRS + IBCO consen-
sus set (consensus: 331).

Fig. 3: Data and results of robust homography estimation for Building1 (top)
and Ceiling1 (bottom). Consensus sets were downsampled for visual clearance.
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Fig. 4: Robust homography estimation results.

5.5 Fundamental matrix estimation

Image pairs from the two-view geometry corpus of CMP10 were used for funda-
mental matrix estimation. As in homography estimation, SIFT correspondences
were used as the input data. Since the Sampson error [12, Sec. 11.4.3] and the
reprojection error [12, Sec. 11.4.1] for fundamental matrix estimation are not
linear or quasiconvex, the deterministic algorithms (EP, SS, IBCO) cannot be

10 http://cmp.felk.cvut.cz/data/geometry2view/
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Fig. 5: Robust triangulation results.
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Fig. 6: Consensus size in each iteration, given FLRS results as the initialization.
Observe that EP and SS converged to worse off solutions.

directly applied. Thus, we linearize the epipolar constraint and use the algebraic
error [12, Sec. 11.3] as the residual. The inlier threshold ǫ was set to 0.006 for
all data.

Further, a valid fundamental matrix satisfies the rank-2 constraint [12, Sec.
11.1.1], which is non-convex. For EP, SS, IBCO, we impose the rank-2 constraint
using SVD after each parameter vector updates (for IBCO, after each BCO run).

Fig. 7 depicts sample image pairs and generated SIFT correspondences, as
well as consensus sets from FLRS and FLRS+IBCO. The seven-point method [12,
Sec. 11.1.2] was used in USAC and the normalized 8-point algorithm [12, Sec. 11.2]
was used in all other RANSAC variants.

As shown in Fig. 8(a), unlike EP and SS who failed to refine the initial FLRS
results for all the tested data, IBCO was still effective even though the problem
contains non-convex constraints.
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(a) Input correspondences
(N = 186).

(b) FLRS consensus set
(consensus: 85).

(c) FLRS + IBCO consen-
sus set (consensus: 97).

(d) Input correspondences
(N = 101).

(e) FLRS consensus set
(consensus: 32).

(f) FLRS + IBCO consen-
sus set (consensus: 36).

Fig. 7: Data and results of fundamental matrix estimation for zoom (top) and
shout (bottom).
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Fig. 8: Robust fundamental matrix estimation results.

6 Conclusions

We proposed a novel deterministic algorithm for consensus maximization with
non-linear residuals. The basis of our method lies in reformulating the decision
version of consensus maximization into an instance of biconvex programming,
which enables the use of bisection for efficient guided search. Compared to other
deterministic methods, our method does not relax the objective of consensus
maximization problem and is free from the tuning of smoothing parameters,
which makes it much more effective at refining the initial solution. Experiments
show that our method is able to greatly improve upon initial results from widely
used random sampling heuristics.
Acknowledgements This work was supported by the ARC grant DP160103490.
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