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Abstract. This paper presents a novel spherical convolutional neural network

based scheme for saliency detection for 360◦ videos. Specifically, in our spheri-

cal convolution neural network definition, kernel is defined on a spherical crown,

and the convolution involves the rotation of the kernel along the sphere. Consid-

ering that the 360◦ videos are usually stored with equirectangular panorama, we

propose to implement the spherical convolution on panorama by stretching and

rotating the kernel based on the location of patch to be convolved. Compared with

existing spherical convolution, our definition has the parameter sharing proper-

ty, which would greatly reduce the parameters to be learned. We further take

the temporal coherence of the viewing process into consideration, and propose

a sequential saliency detection by leveraging a spherical U-Net. To validate our

approach, we construct a large-scale 360◦ videos saliency detection benchmark

that consists of 104 360◦ videos viewed by 20+ human subjects. Comprehen-

sive experiments validate the effectiveness of our spherical U-net for 360◦ video

saliency detection.
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1 Introduction

Visual attention prediction, commonly known as saliency detection, is the task of infer-

ring the objects or regions that attract human’s attention in a scene. It is an important

way to mimic human’s perception and has numerous applications in computer vision

[1] [2] [3]. By far, almost all existing works focus on image or video saliency detection,

where the participants are asked to look at images or videos with a limited field-of-view

(FoV). And an eye tracker is adopted to record their eye fixations. The process, how-

ever, differs from the natural way human eyes perceive the 3D world: in real world,

a participant actually actively explores the environment by rotating the head, seeking

an omnidirectional understanding of the scene. In this paper, we propose to mimic this

process by exploring the saliency detection problem on 360◦ videos.

Despite significant progresses in Convolutional Neural Networks (CNN) [4] for

saliency detection in images/videos [5] [6], there are very little, if few, studies on
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Fig. 1. Distortion introduced by equirectangular projection. Left: 360◦ image on sphere; Right:

360◦ image on equirectangular panorama.

panoramic saliency detection. The brute-force approach of warping the panoramic con-

tents onto perspective views is neither efficient nor robust: partitioning the panoramas

into smaller tiles and project the results using local perspective projection can lead to

high computational overhead as saliency detection would need to be applied on each

tile. Directly applying perspective based saliency detection onto the panorama images

is also problematic: panoramic images exhibit geometric distortion where many useful

saliency cues are not valid. Some latest approaches attempt to employ tailored convolu-

tional networks for the spherical panoramic data. Yet, they either focus on coping with

spherical data with radius components while ignoring distortions caused by equiangu-

lar cube-sphere representation [7], or dynamically stretching the kernels to fit the local

content and therefore cannot achieve kernel parameter sharing [8]. Actually, when hu-

man explores the 360◦ contents, our brain uses the same mechanism to detect saliency

when changing the view angle or FOV. In other words, if we leverage the CNN for 360◦

video saliency detection, the convolution operation corresponding to different view an-

gle/FOV should maintain the same kernels.

To better cope the 360◦ video saliency detection task, we propose a new type of

spherical convolutional neural networks. Specifically, we define the kernel on a spher-

ical crown, and the convolution corresponds to the rotation of kernel on sphere. This

definition has the parameter sharing property. Further, considering that the 360◦ videos

are usually stored with equirectangular panorama, we propose to extend the spherical

convolution to the panorama case by re-sampling the kernel based on the position of

the patch to be convolved. We further propose a spherical mean square loss to com-

pensate the distortion effect caused by equirectangular projection. In 360◦ videos, the

participants search the environment continuously. This implies that the gaze in the pre-

vious frame affects the gaze in the subsequent frames. Then we propose to leverage

such temporal coherence for efficient saliency detection by instantiating the spherical

convolutional neural networks with a novel spherical U-Net [9]. Experiments validate

the effectiveness of our scheme.

By far, nearly all saliency detection datasets are based on narrow FoV perspective

images while only a few datasets on 360◦ images. To validate our approach, we con-

struct a large-scale 360◦ videos saliency detection benchmark that consists of 104 360◦

videos viewed by 20+ human subjects. The duration of each video ranges from 20 sec-

onds to 60 seconds. We use the aGlass eye tracker to track gaze. Fig. 2 shows some

example frames on several 360◦ videos in our dataset. We compare our spherical con-
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Fig. 2. The examples of five domains in our 360◦ video dataset.

volutional neural network with several state-of-the-art techniques on this new data and

show our technique significantly outperforms prior art in accuracy and robustness.

The contributions of this paper are summarized as follows: i) A new type of spheri-

cal convolutional neural networks is defined, and the kernels are shared across all patch-

es on the sphere. Thus our definition is more natural and useful for spherical saliency

detection. We further extend it to panorama case; ii) We propose a sequential salien-

cy detection scheme and instantiate the spherical convolutional neural networks with

a spherical U-net architecture for frame-wise saliency detection; iii) We build a large-

scale 360◦ video saliency detection dataset which would facilitate the evaluation of

saliency detection in 360◦ videos. The dataset and code have been released to facilitate

further research on 360◦ video saliency detection1.

2 Related Work

2.1 Convolution Neural Networks for Spherical Data

Though CNN has demonstrated their effectiveness for many computer vision tasks [10]

[11], the data fed into traditional CNN are perspective images. To tackle the spherical

data, methods in [12] [13] firstly project a spherical image with equirectangular projec-

tion, then standard CNN is applied. However, such equirectangular projects introduce

distortion in Fig. 1. The patches of the same size on sphere may correspond to regions of

different shapes based on their coordinates (θ, φ). So the standard convolution with the

shared kernels is no longer perceptually meaningful. To solve this problem, [8] propose

to stretch kernels in standard CNN to fit the shape of the patch on the equirectangu-

lar plane in convolution. This can avoid the distortion problem to some extent. But the

filters shape in their solution depends on the longitude of the patch on the sphere, con-

sequently, the kernels in their method are not shared, which introduces the expensive

computational and storage costs. Further, Boomsma et al. [7] propose to adopt the e-

quiangular cubed-sphere representation for sphere data representation, then concentric

cubed-sphere convolution is applied. But their solution is proposed for sphere data with

radii components (like a solid ball), which differs from the data type of ours. Besides,

equiangular cubed-sphere representation still introduce distortion in each facet, which

damages to the accuracy of convolution. Different from these work, in [14][15], the

1 GitHub: https://github.com/xuyanyu-shh/Saliency-detection-in-360-video
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spherical image is repeatedly projected to tangent planes at all locations, and the con-

volution is conducted on these planes. Although such solution improves accuracy, it

also brings expensive computational costs. Further, the disjoint projection planes make

the intermediate representation cannot be shared for higher layer convolution. Recently,

Cohen et al. [16] propose a new type of Spherical CNN on SO(3) manifold, and their

solution is expressive and rotation-equivariant. With Fast Fourier Transform, their so-

lution can be greatly accelerated. However, the concept of SO(3) CNN is not so adhere

to our intuition to process 2D spherical images and quite distincts from the concept of

planner CNN.

Though many CNN models have been proposed for spherical data, none are cus-

tomized for 360◦ videos. Actually, when we change the FOV in 360◦ videos, our brain

actually uses the same mechanism for environment exploration. In other words, the k-

ernels used for saliency detection should be shared across all views. This motivates us

to design a new type of spherical CNN: we define kernels with the spherical crown

shape, we rotate and convolve the kernel with patches on the sphere-polar coordinate

system. 2 In this way, the kernel can be shared. So our solution is more natural and more

interpretable for saliency detection in 360◦ videos.

2.2 Video Saliency Detection

Many efforts have been done to study the video saliency detection, either hand-crafted

features based methods [17][18][19] [20], or deep learning based methods [21][22]

[23][6] [24], yet the study of video saliency detection in 360◦ videos is still at its prim-

itive stage. [25] [12] are two pioneer work along this direction, but the 360◦ data used

in these work are static images. Actually, the videos with dynamic contents are more

common in real applications. To understand the behavior of human in dynamic 360◦

videos, especially 360◦ sports videos, Hu et al. propose to predict the salient objects

by feeding projected panorama images into CNN directly. However, the distortion of

projection is not considered, which would reduce the accuracy. In addition, the salient

objects are manually labeled, which does not necessarily reflect the real behavior of

human visual attention. In order to better understand the users’ behavior in VR scenes,

we propose to study the eye fixation in 360◦ videos. To the best of our knowledge, this

is the first work that works on eye fixation prediction in 360◦ videos. We also build a

dataset to facilitate the evaluation of our work.

2 Since the sphere image is usually stored with planar format, we actually project spherical

image on the Euclidean plane with equirectangular projection, then we re-sample kernel based

on the shape of the projected patch to be convolved, after that we convolved the target patch

with the transformed kernel.



Saliency Detection in 360◦ Videos 5

37

1414

28

11

Skateboarding Parkour Dance

BMX Basketball

θ

0.0
0.5

1.0
1.5

2.0

2.5

3.0

ϕ

0
1

2
3

4
5

6

fr
e
q
u
e
n
cy

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Fig. 3. Dataset Analysis: (a) the distribution of the five sports domains based on the number of

videos; (b) the distribution of eye fixations on equirectangular panorama. (Best viewed in color)

3 360
◦ Dynamic Video Saliency Detection Dataset

3.1 Data Collection

We collect the 360◦ videos from Sports-360 dataset [13], and remove the video clips

whose length is less than 20 seconds3, and use the remaining 104 video clips as the data

used for saliency detection in 360◦ videos. The video contents involve five sports (i.e.

basketball, parkour, BMX, skateboarding, and dance), and the duration of each video is

between 20 and 60 seconds. Fig. 3 (a) shows the distribution of five sports videos. Then

we display the videos with an HTC VIVE HMD and a ’7invensun a-Glass’ eye tracker

is embedded into the HMD to record the eye fixation points of the participants when

they watching videos.

We recruit 27 volunteers (between 20 and 24 years) to participant in the experi-

ments. All 104 videos are divided into 3 sessions and each session contains 35 360◦

videos. Volunteers are asked to watch 360◦ videos at a fixed starting location (θ =
90, φ = 180) in random orders. We set a shorter break (20sec) between 2 videos and

a longer break (3 min) after watching 15 videos. We also calibrate the system after the

long break. In the end, each video is watched by at least 20 volunteers. The total time

used for data collection is about 2000 minutes.

Distribution of Gaze Points Fig. 3 (b) shows the distribution of all eye fixation angle

in θ, φ of all participants over all the videos on equirectangular panorama. The peak

in the center of panorama (θ = 90, φ = 180) is because all participants explore the

environment with the fixed starting location. Further, we can see that the eye fixation

points mostly centered around the equator, which means the volunteers tend to explore

the environment along the horizontal direction, and they seldom look down/up. There

are almost no eye fixation points around north/south pole.

3 We only use videos longer than 20 seconds rather than entire Sports-360 dataset because in

[12] Sitzmann et al. evaluate the exploration time for a given still scene, and show that ‘on

average, users fully explored each scene after about 19 seconds’.



6 Ziheng Zhang, Yanyu Xu et al.

q

f

x

y

z

1

1

1

x

y

z.
.

1

1

1

.

r

.

(a) (b)

Fig. 4. (a) Spherical coordinate system: φ is the angle between X axis and the orthogonal pro-

jection of the line on the XOY plane, and θ is the angle between the Z axis and the line; (b)

Spherical crown kernel: the red line represents the radius r. (Best viewed in color)

4 Spherical Convolutional Neural Networks

In this section, we introduce our spherical convolution on sphere and its extension on

panorama. A new spherical mean square error (sphere MSE) loss is also introduced

for spherical convolution on panorama. Note that the convolution operation in deep

learning usually refers to correlation in math.

The spherical convolution Spherical convolution is an operation on feature map f and

kernel k on sphere manifold S2. S2 is defined as the set of points x ∈ R
3 with norm

1, which can be parameterized by spherical coordinates θ ∈ [0, π] and φ ∈ [0, 2π] as

shown in Fig. 4 (a). To simplify the the notation, here we model spherical images and

filters as continuous functions f : S2 → R
K , whereK is the number of channels. Then

the spherical convolution is formulated as [26] :

[f ∗ k](x) =

∫
S2

f(Rn)k(R−1x)dR (1)

where n is the north pole and R is rotations on sphere represented by 3× 3 matrices.

In this paper, filter k only have non-zero values in spherical crown centered at north

pole, whose size is parameterized by rk, which corresponds to orthodromic distance

between north pole and borderline of the crown as shown in Fig. 4 (b). So the radius

rk controls the number of parameters in kernel k and the size of local receptive field.

Larger rk means there are more parameters in k and the local receptive field is larger.

Convolution on equirectangular panorama The spherical images or videos are usu-

ally stored as 2-D panorama through equirectangular projection represented by (θ,φ)

(θ ∈ [0, π] and φ ∈ [0, 2π]). So we extend equation (1) to the convolution between

feature map f and kernel k on projected panorama as

[f ∗ k](θ, φ) =

∫∫
f(θ′, φ′)k(θ′ − θ, φ′ − φ) sin θ′dθ′dφ′ (2)

There are several differences between spherical convolution on equirectangular and

convolution on perspective image. Firstly, we denote the points set for the kernel cen-

tered at (θ0, φ0) as Dk(θ0, φ0) = {(θ, φ)|g(θ, φ, θ0, φ0) ≤ 0}, where g(θ, φ, θ0, φ0) ≤
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0 corresponds to the equation of sphere crown (kernel) centered at (θ0, φ0). The behav-

ior of Dk is different from that in standard convolution for perspective image. Specifi-

cally, when we move the kernel and when its center is (θ0 +∆θ, φ0 +∆φ), the points

set for the moved kernel cannot be directly obtained by simply moving the Dk(θ0, φ0)
by (∆θ, ∆φ), which can be mathematically written as follows:

Dk(θ0 +∆θ, φ0 +∆φ) = {(θ, φ)|g(θ −∆θ, φ−∆φ, θ0, φ0) ≤ 0}

6= {(θ +∆θ, φ+∆φ)|g(θ, φ, θ0, φ0) ≤ 0}
(3)

Secondly, there is a sin θ′ term in the integrand in spherical convolution in equation

(2), which causes the different behavior of spherical convolution compared with the

convolution for projective images. Thirdly, there does not exist padding in spherical

convolution in equation (1) owing to the omnibearing view of 360◦ images. But, it

indeed needs padding in convolution on equirectangular panorama in equation (2), ow-

ing to the storage format. The padding needed here is circle shift. For example, when

kernel locates at the far left region, it needs to borrow some pixels from far right re-

gion for computing convolution. To simplify the notation, we also term the convolution

on equirectangular panorama as spherical convolution. In this way, we can implement

convolution on sphere by using convolution on equirectangular panorama.

We define sample rate on equirectangular panorama as the number of pixels per

rad. So sample rate of panorama is srθ = H/π, srφ = W/2π along θ and φ direction,

respectively. Here H,W is the height and width of panorama. As a special case, for the

kernel with radius equalling rk, when the kernel is centered at north pole, its projection

on equirectangular panorama would be a rectangular, whose size is denoted asWk×Hk,

and the sample rate along θ and φ direction are given by srθk = Hk/rk, sr
φ
k =Wk/2π.

Implement Details For discrete spherical convolution on panorama, we set the kernel

parameters to be learnt as the equirectangular projection of kernel centered at the north

pole (θ ≤ rk). So the kernel projected on equirectangular panorama corresponds to a

rectangular of size Wk × Hk. It is worth noting we can also set the kernels at other

positions rather than north pole, yet sample grid of the kernel will change accordingly.

The discrete spherical convolution on equirectangular panorama includes the following

steps: determine non-zero region of kernel centered at (θi, φi) and obtain the set of

points fallen into the kernel area Dk(θi, φi), rotate those points back to Dk(0, 0), re-

sample the original kernel to find values for each sampling points in Dk(θi, φi).

Determine the points fallen into Dk(θi, φi). For the spherical crown kernel with radius

rk centered at (θi, φi), the points fallen into this kernel area with coordinates (θ, φ)

satisfy the following equation:

sin θi cosφi sin θ cosφ+ sin θi sinφi sin θ sinφ+ cos θi cos θ = cos θk (4)

which can be simplified as

sin(φ+ ψ) = C (5)

where sinψ = a√
a2+b2

, cosψ = b√
a2+b2

, C = d−c√
a2+b2

and a = sin θi cosφi sin θ,

b = sin θi sinφi sin θ, c = cos θi cos θ and d = cos θk.
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Algorithm 1 Obtain the set of grid points on the kernel area

Input: kernel radius rk, kernel location θk, φk.

Output: The set of grid points on the kernel area S
1: S ← ∅
2: Calculate range of Θ:

3: Θ ∈ [max(0, θk − rk),min(θk + rk, π)]
4: Calculate range of Φ for each θ ∈ Θ:

5: for Each θ ∈ Θ do

6: Find the solution of equation Eq. 5

7: if There exists infinitely many solutions then

8: φ ∈ [0, π]
9: else if There exists two solutions φ1 < φ2 then

10: φ ∈ [φ1, φ2]
11: else if There exists no solutions then

12: No grid points (θ, φ) on the kernel area

13: end if

14: Add (θ, φ) to S.

15: end for

Once the kernel area on sphere is determined, we can sample the corresponding

points on panorama to obtain the points needed for convolution. We list the main steps

for such stage in Algorithm 1.

Rotate the set of sampled points back to north pole. Now that we have the sampled

points of current kernel area, we also need to determine the correspondences between

them to those kernel values centered at the north pole. To do this, we rotate these points

back to original kernel region by leveraging matrix multiplication between their carte-

sian coordinate representations and rotation matrix along Y as well as Z axis. Note that

after rotation, the sampled points might lie between original kernel points centered at

the north pole.

Re-sample the original kernel In order to obtain kernel values for sampled points that

lie between original kernel points centered at the north pole, we use grid sampling

technique as used in Spatial Transform Network [27], which is basically a general in-

terpolation method for such re-sampling problem on 2D image. The third row in Fig. 5

shows the sampling grid corresponding to kernel located at θ = 0, π/4, π/2, 3π/4, π
and φ = π.

Finally, the result of spherical convolution is given by sum of element-wise multipli-

cation between re-sampled kernel points and corresponding panorama points, divided

by the total number of re-sampled kernel points.

Properties of spherical convolution The sphere convolution has the following three

properties: sparse interactions, parameter sharing, and equivariant representations.

– Sparse interactions. Standard CNNs usually have sparse interactions, which is

accomplished by making the kernel smaller than the input. Our proposed spherical
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Fig. 5. Parameter sharing. This figure indicates how spherical crown kernel changes on sphere and

projected panorama from north pole to south pole with angle interval equalling π/4. The first raw

is the region of the spherical crown kernel in sphere. The second raw shows the region of spherical

crown kernel in the projected panorama. The third row shows sampling grid corresponding to

each kernel location. Red curve represents θ sampling grid and blue curve represents φ sampling

grid.

CNN also have this important property. Such sparse connection greatly reduces

the number of parameters to be learned. Further, the convolution in higher layers

corresponds to gradually larger local receptive field, which allows the network to

efficiently model the complicated interactions between input and output.

– Parameter sharing. Similar to the standard convolution for perspective image, the

parameters of spherical crown kernel is the same everywhere on the sphere, which

means the kernel is shared. This would greatly reduce the storage requirements of

the model as well as the number of parameters to be learned. Kernel at different

location is re-sampled as shown in Fig. 5.

– Equivariant representations. In both standard convolutions for perspective image

and spherical convolution, the parameter sharing makes the layers with equivari-

ance to translation property, which means if the input changes, the output changes

in the same way.

4.1 Spherical Mean Squared Error (MSE) Loss

Mean Squared Error (MSE) loss function is widely used in perspective image based

CNN. However, the standard MSE is designed for perspective image. For perspective

image, discretization is performed homogeneously in space, which differs from the case

of panorama. To adopt MSE loss to panorama, we weight the square error for each pixel

on panorama with it’s solid angle on sphere before average them.

We define the solid angle in steradian equals the area of a segment of a unit sphere in

the same way a planar angle in radians equals the length of an arc of a unit circle, which

is the following ratio: Ω = A/r2, where A is the spherical surface area and r is the
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Layer Operation input size input source output size kernel radius kernel size

0 Input - - 3× 150× 300 - -

1 Spherical Conv 3× 150× 300 Layer 0 64× 150× 300 π/32 (8,16)

2 Max pooling 64× 150× 300 Layer 1 64× 75× 150 π/32 (8,16)

3 Spherical conv 64× 75× 150 Layer 2 128× 75× 150 π/16 (4,8)

4 Max pooling 128× 75× 150 Layer 3 128× 38× 75 π/16 (4,8)

5 Spherical conv 128× 38× 75 Layer 4 256× 38× 75 π/4 (4,8)

6 Max pooling 256× 38× 75 Layer 5 256× 19× 38 π/4 (4,8)

7 Spherical conv 256× 19× 38 Layer 6 256× 19× 38 π (8,16)

8 Up-sampling 256× 19× 38 Layer 7 256× 38× 75 π/4 (4,8)

9 Spherical conv (256 + 256)× 38× 75 Layer 8 & 6 128× 38× 75 π/4 (4,8)

10 Up-sampling 128× 38× 75 Layer 9 128× 75× 150 π/16 (4,8)

11 Spherical conv (128 + 128)× 75× 150 Layer 10 & 5 64× 75× 150 π/16 (4,8)

12 Up-sampling 64× 75× 150 Layer 11 64× 150× 300 π/32 (4,8)

13 Spherical conv (64 + 64)× 150× 300 Layer 12 & 3 1× 150× 300 π/32 (4,8)

Table 1. The architecture of the CNN.

radius of the considered sphere. Thus, for a unit sphere, the solid angle of the spherical

crown with radius r and centered at the north pole is given as: Ω = 2π(1 − cos r). It

is desirable that the image patch corresponding to the same solid angle would have the

same weight for sphere MSE, thus we arrive at the following objective function:

L =
1

n

n∑
k=1

Θ,Φ∑
θ=0,φ=0

wθ,φ(S
(k)
θ,φ − Ŝ

(k)
θ,φ)

2 (6)

where Ŝ(k) and S(k) are the ground truth saliency map and predicted saliency map for

the kth image, and wθ,φ is weights for each points which is proportional to its solid

angle and wi,j ∝ Ω(θ, φ). Ω(θ, φ) is solid angle corresponding to the sampled area on

saliency map located at (θ, φ). In our implementation, we just set wθ,φ = Ω(θ, φ)/4π
(4π is the solid angle of the unit ball).

5 Spherical U-Net Based 360◦ Video Saliency Detection

5.1 Problem Formulation

Given a sequence of frames V = {v1, v2, . . . , vT }, our goal is to predict the saliency

map corresponding to this video S = {s2, s2, s3, . . . , sT }. So deep learning based 360◦

video saliency detection aims at learning a mappingG that maps input V to S. However,

different from perspective videos whose saliency merely depends on the video contents,

where a participant look at in 360◦ videos also depends on the starting position of the

participant. We define s0 as the eye fixation map at the starting position, which is the

saliency map corresponding to the starting point, then the video saliency detection can

be formulated as

G∗ = argmin
F

‖S −G(V, s0)‖
2
F (7)

In practice, we can initialize s0 with a Gaussian kernel centered at the staring position.

Further, the participants actually watch the 360◦ video in a frame-by-frame manner, and
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the eye fixation in previous frame helps the prediction of that in next frame. So we can

encode such prior into the objective and arrive at the following objective :

F ∗ = argmin
F

T∑
t=1

‖st − F (vt, st−1)‖
2 (8)

Here F is the prediction function which takes the saliency map of previous frame and

video frame at current moment as input for saliency prediction of current moment.

Inspired by the success of U-Net [9] we propose to adapted it with a Spherical U-Net

as F for the frame-wise saliency detection.

5.2 Spherical U-Net

The network architecture of Spherical U-Net is listed in Table 1. The input to the net-

work is projected spherical images vt at time t and project spherical saliency map st−1

at time t − 1. Similar to U-net [9], our spherical U-net also consists of a contracting

path (left side) and an expansive path (right side). In the contracting path, there are

three spherical convolutional layers followed by rectified linear unit (ReLU) and a 2x2

spherical max pooling is adopted to down-sample the data. The expansive path consists

of three spherical convolutional layers followed by ReLU and up-sampling. For the last

three spherical convolutional layer, their inputs are concatenation of the outputs of their

previous layer and the corresponding layer with the same output size from the contract-

ing path. A spherical convolution ins final layer is used to map each feature vector to a

saliency map. In total the network has 7 spherical convolutional layers.

6 Experiments

6.1 Experimental Setup

We implement our spherical U-Net with the PyTorch framework. We train our network

with the following hyper-parameters setting: mini-batch size (32), learning rate (3e-1),

momentum (0.9), weight decay (0.00005), and number of iterations (4000).

Datasets. We evaluate our proposed spherical CNN model on both Salient360! dtaset

and our video saliency dataset. Salient360! [28] is comprised of 98 different 360◦ im-

ages viewed by 63 observers. Our video saliency dataset consists of 104 360◦ videos

viewed by 20 observers. For Salient360, we follow the standard training/testing split

provided in [28]. For the experiments on our dataset, 80 videos are randomly selected

as training data, and the remaining 24 videos are used for testing. All baseline methods

are compared based on the same training/testing split. For image saliency, we regress

the saliency maps directly from the RGB 360◦ images.

Metrics. We create the ground truth saliency maps through a way similar to spherical

convolution using a crown Gaussian kernel with sigma equaling to 3.34◦. Owing to the

distortion during projection, it does not make sense to directly compare two panorama

saliency maps like typical 2D saliency maps. Therefore, we utilize the metrics including

CC, AUC-judd, and NSS introduced in [28] to measure the errors between the predicted

saliency maps and the ground truth.
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LDS [29] Sal-Net [5] SALICON [30] GBVS [31] Wang et al. [32] SaltiNet [33]
Spherical Standard Top-down

Ours
Baseline-one Baseline-infinite

U-Net w.o. sal U-Net cue (face) Human Humans

CC 0.2727 0.2404 0.2171 0.1254 0.2929 0.2582 0.3716 0.2457 0.6250 0.6246 0.7641 0.7035

NSS 1.6589 1.3958 1.3178 0.8003 1.5869 1.4470 2.2050 1.3034 3.5339 3.5340 5.4339 5.6504

AUC-judd 0.8169 0.8266 0.8074 0.7799 0.7906 0.8579 0.8464 0.8300 0.8985 0.8977 0.7585 0.8634

Table 2. The performance comparison of state-of-the-art methods with our spherical U-Net on

our video saliency dataset.

Baselines. We compare our proposed spherical U-Net with the following state-of-the-

art: image saliency detection methods, including LDS [29], Sal-Net [5] and SALICON

[30], video saliency detection methods, including GBVS [31] and a more recent dy-

namic saliency [32] and the 360◦ image saliency models [33]. Of all these methods,

Sal-Net and SALICON are deep learning based methods, and we retrain the models

with panorama images on the datasets used in our paper for performance comparison.

We also design the following baselines to validate the effectiveness of our spherical

model.

– Standard U-Net. Compared with our spherical U-Net method, the CNN and MSE

loss in such baseline is conventional CNN and standard MSE loss.

– Spherical U-Net w.o. sal. Compared with our spherical U-Net method, the only

difference is that the saliency of previous frame is not considered for the saliency

prediction of current frame.

In addition, we measure human performance by following the strategies in [34]:

– Baseline-one human: It measures the difference between the saliency map viewed

by one observer and the average saliency map viewed by the rest observers.

– Baseline-infinite humans: It measures the difference between the average saliency

map viewed by a subset of viewers and the average saliency map viewed by the

remaining observers.

Recent work has employed several top-down cues for saliency detection. Previous work

[35] shows that human face boosts saliency detection. Therefore, we also design a base-

line Top-down cue (face) to use human face as cue, and post-process saliency map fol-

lowing [35].

6.2 Performance Evaluation

We compare our method with all baselines in Table 2. It shows that our method outper-

forms all baseline methods on our video saliency dataset, which validates the effective-

ness of our scheme for 360◦ video saliency detection.

In order to show the rotation equivariant in θ and φ direction, we rotate 60◦, 120◦

along φ direction and 30◦, 60◦ along θ direction on test data, and do data augmentation

by rotating random degree on both direction on training set. The results are shown in

Fig. 7. We can see that compared to rotation in φ direction, that in θ direction slightly

changes because of the change of sample grid when rotating along θ direction.

To evaluate the performance of our method on the Salient360! dataset, we have

modified our model to directly predict the saliency map for a static 360◦ image. In Fig.
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Methods CC AUC-judd NSS

LDS [29] 0.3134 0.6186 0.6703

Sal-Net [5] 0.2998 0.6397 0.6792

SALICON [30] 0.3233 0.6511 0.6918

Ours 0.4087 0.6594 0.6989

Baselines CC AUC-judd NSS

Ours w. standard MSE 0.6189 3.1620 0.8685

Ours w. standard conv 0.2877 1.6145 0.8520

Ours w. smaller kernel 0.6023 3.219 0.8593

Spherical pooling 0.6253 3.5333 0.8980

Our Spherical U-Net 0.6246 3.5340 0.8977
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Fig. 6. The First:The performance comparison of state-of-the-art methods with our spherical CN-

N on Salient360[36] dataset. The Second: The performance comparison of different components

on our method on our video saliency dataset. The Third and The Forth: the performance of

saliency map prediction for a longer time based on CC, AUC-judd, and NSS metrics respectively.

6, we can see that our method outperforms all baselines, which validates the effective-

ness of our method for static 360◦ image.

6.3 Evaluation of Different Components in Spherical U-Net

We conduct ablation study by replacing the spherical CNN with standard CNN (Ours

w. standard conv) and replacing spherical MSE with standard MSE (Ours w. standard

MSE), respectively. The performance of these baselines is listed in table in Fig. 6. We

can see that both spherical CNN and Spherical MSE contributes the performance.

We also evaluate spherical U-Net with different spherical kernel sizes and the com-

parison with spherical U-Net with smaller kernel sizes than our spherical U-Net (Ours

w. smaller kernel) is shown in table in Fig. 6. We can see that larger kernel leads to

better performance. One possible reason is that a larger spherical kernel could involve

more parameters, which could increase the capability of our network. Another reason is

that larger kernel increases kernel sample rate, which might improve the accuracy when

re-sample the kernel.

6.4 Spherical pooling.

We do comparison between planner pooling and spherical pooling in the table in Fig. 6.

In this paper, spherical pooling could be regarded as a special spherical convolution,

similar to the relationship between planner ones. The spherical pooling outperform-

s planner pooling, responsible for consistency between receptive field of kernel with

spherical feature maps. To note that, [16] also uses planner (3D) pooling to downsample

feature maps. Since planner pooling achieves similar performance as spherical pooling

and has lower computational cost, following [16], currently we use planner pooling.

6.5 Saliency Prediction for a Longer Time

Middle and right figures in Fig. 6 show the results when our model predicts saliency

maps for a longer time based on CC, NSS, and AUC-judd metric. We can see that the

performance of saliency prediction degenerates for as time elapse. One possible reason

is that as time goes longer, the prediction of previous frame becomes less accurate,

which consequently would affect the saliency detection of current frame.
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Original frames

Original frames

Rotate 

on     direction

60

Rotate 

on     direction

120
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on     direction

30
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on     direction

60

Fig. 7. The rotation equivariant in θ and φ direction: The first and third columns are rotated frames

and the second and forth columns are our predictions.

6.6 Time and Memory Costs

Our model is trained on four NVIDIA Tesla P40 GPUs. We calculate the average run-

ning time for each image batch. The average running time of our model is 5.1 s/iter. The

spherical U-Net listed in Table 1 has about 6.07 M parameters, and it consumes 21× 4
GB of memory when batch size is 32 when training. It takes about 36 hours to train the

model on the our video saliency dataset (the total number of iterations is 4000.).

7 Conclusion and Discussions

Our work attempts to exploit the saliency detection in dynamic 360◦ videos. To this end,

we introduce a new type of spherical CNN where the kernels are shared across all image

patches on the sphere. Considering that the 360◦ videos are stored with panorama, we

extent spherical CNN to the panorama case, and we propose to re-sample kernel based

on its location for spherical convolution on panorama. Then we propose a spherical U-

Net for 360◦ video saliency detection. We also build a large-scale 360◦ video saliency

dataset for performance evaluation. Extensive experiments validate the effectiveness of

our proposed method. It is worth noting our spherical CNN is a general framework, it

can also be applied to other tasks involving 360◦ video/image.

There still exists some space to improve our method for video saliency prediction.

Currently, to simplify the problem, we only consider the saliency map of the previous

frame for the prediction of current frame. Considering the saliency map over a longer

time range may boost the performance, for example, we can also combine our spherical

U-Net with LSTM. The combination of spherical CNN with other types of deep neural

network is beyond the study scope of this paper, and we will leave them for future work.
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