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Abstract

In footwear, fit is highly dependent on foot shape, which

is not fully captured by shoe size. Scanners can be used to

acquire better sizing information and allow for more per-

sonalized footwear matching, however when scanning an

object, many images are usually needed for reconstruction.

Semantics such as knowing the kind of object in view can

be leveraged to determine the full 3D shape given only one

input view. Deep learning methods have been shown to be

able to reconstruct 3D shape from limited inputs in highly

symmetrical objects such as furniture and vehicles. We ap-

ply a deep learning approach to the domain of foot scan-

ning, and present a method to reconstruct a 3D point cloud

from a single input depth map. Anthropomorphic body parts

can be challenging due to their irregular shapes, difficulty

for parameterizing and limited symmetries. We train a view

synthesis based network and show that our method can pro-

duce foot scans with accuracies of 1.55 mm from a single

input depth map.

1. Introduction

In the footwear market, there are countless brands and

models that come in all shapes and sizes. Similarly, individ-

ual feet vary widely and pairing a person to the best-suited

footwear is not obvious [11]. Finding the optimal footwear

can be of importance to consumers as their fit largely de-

termines performance and comfort. In footwear, typically

the only indicator used to estimate fit is shoe size, which

does not fully characterize the profile of a shoe or a foot

[10]. Foot morphology for describing foot shape can be

complex and include measures for various lengths, widths,

girths and angles [9]. This makes it difficult to determine

how some footwear will fit without trying them on. This

can be especially inconvenient with the rise of online shop-

ping, where items cannot be tried-on before purchase. This

process could be improved if the precise 3D shape of a foot

could be virtually fitted with the 3D volumetric shape of a

shoe cavity.

The first step of this process includes determining the

shape of a persons feet beyond what is captured by a simple

shoe size measurement. 3D scanning presents a great solu-

tion to this problem, as it can provide an accurate model of

a person’s foot. Such systems have already started to hit the

retail space, including the Vorum Yeti1 and the Volumental

scanner2, however they tend to be expensive or cumbersome

to operate.

In developing a cheap and simple 3D scanner, RGBD

cameras are compelling as they are affordable with suf-

ficient accuracy and easy to operate. These cameras use

an infrared projector and camera pair that can measure the

depth of a surface using a structured light or a time of flight

system. 3D scanning using RGBD cameras present a num-

ber of challenges. A RGBD camera can only capture points

from a single viewpoint at a time, and obtaining a full 3D

scan of an object requires either a moving camera or mul-

tiple fixed cameras. When scanning a person, stationary

cameras are a better solution, as they are not as mechani-

cally complex but also faster and leave less opportunity for

a person to move during scanning. When using RGBD cam-

eras however, interference between multiple camera projec-

tor patterns prevents them from being able to capture simul-

taneous images, which can still allow for some movement

by the person [14]. In order to form a 3D scan, the data from

each view point needs to be registered to produce a properly

aligned scan. This process typically works best when there

is significant overlap between views, thus requiring many

views that are close together. When using fixed cameras,

more required views results in more required camera hard-

ware (e.g. 8 cameras are needed to have one at each 45

degree interval around an object).

Many of the described complications in building a 3D

scanner have to do with the need to capture every aspect

1vorum.com/footwear/yeti-3d-foot-scanner
2volumental.com
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of an object in order to reconstruct a model. Humans do

not tend to be limited in this same way. We have the abil-

ity to form a complete mental model of an object from

far less information. This has been shown in experiments

that demonstrate our ability to perform mental rotation on

3D objects [22]. We seem to be able to leverage prior in-

formation and semantics about objects to more efficiently

create models and to fill in missing information. Brain in-

spired neural networks and deep learning approaches have

been shown to perform well in a multitude of vision related

tasks [13] by leveraging abstract representations to implic-

itly learn and classify models from large databases. Deep

learning methods have been shown to be able to model

3D shape from limited inputs through voxel volume rep-

resentations [5, 6, 20, 23, 25, 27] and with view synthesis

[2, 18, 24, 29, 30] in objects such as furniture and vehicles.

We leverage the architecture of Tatarchenko et al. [24]

and apply it to infer the full 3D shape of anthropomorphic

body parts using a single input view. We used data from the

MPII Human Shape [19] meshes of the CAESAR database

[21], and focus on how this method can be applied to scan-

ning a persons feet, such that it may be used in determining

a personalized recommendation for the best fitting footwear.

Our network learns to extract the necessary information, in-

cluding knowledge about left vs. right foot, and various foot

structures and their measures from a partial representation.

This information is used to produce a full 3D reconstruction

of the overall foot.

As far as we are aware, we are the first to apply deep

learning to implicitly learn 3D shape of anthropomorphic

body parts. Body parts can be particularly challenging com-

pared with other objects studied in literature (i.e. cars,

chairs, planes, etc...) due to their irregular shapes and lim-

ited symmetries. Secondly, we are the first to apply deep

learning to facilitate more efficient 3D scanning of anthro-

pomorphic body parts; i.e., we learn other 3D viewpoints

from a single viewpoint and thus are subsequently able to

synthesize the entire 3D foot from a single input viewpoint.

2. Previous Works

Due to the abilities of RGBD cameras to quickly deliver

depth maps, while being available at a low cost, they have

become very popular in recent years for many applications,

including 3D scanning. One widely used method is the

Kinect Fusion algorithm [17], which reconstructs a scene

from a moving RGBD cameras video. This system captures

many frames from a scene and is able to produce high qual-

ity scans of objects, however the process can take a long

time to complete as the camera must be moved through all

necessary viewpoints. Multiple RGBD cameras can be used

to provide faster scans [4, 14], however a large camera ap-

paratus is then needed, as well as complex calibration and

registration techniques to produce final scans, making these

systems less ideal for a real world use.

An alternative approach to capturing a complete scan of

an object is to capture only sufficient information to esti-

mate the parameters of the completed object, and to use this

to deform a template object to match these estimates. It has

been shown that the parameters of foot shape can be com-

pacted using statistical models while still containing suf-

ficient information to reconstruct the overall shape from as

few as 4 input measurements [15] or from foot outlines [16].

Similarly, a number of methods have been explored to cre-

ate parameterized models of whole bodies [3, 19, 31], by

fitting a reduced set of vertices to a set of complete body

scans. These parameterized models can be leveraged in

learning methods to produce 3D body models from images,

by determining a mapping from an image or images to a set

of parameters used to deform a template model [7, 8]. The

main drawback to these methods is that they are dependent

on a complete set of predefined parameters to characterize

the object being scanned. Often the measurement of these

parameters requires some skill and patience as well as the

localization of the necessary datum points for the parame-

ters can sometimes be very difficult. In other words these

methods cannot learn shape directly from a set of arbitrary

scans or shape models.

The idea of estimating the completed object shape from

limited inputs has also been considered as a shape comple-

tion problem. In deep learning, the typical approach in-

volves representing a shape using a voxel volume represen-

tation, which can be operated on using 3D convolutional

neural networks. These networks have been explored to

work directly on limited voxel inputs [6, 20, 25], or from

limited input images [5, 20, 23, 27], to form a completed

3D shape voxel representation. These methods have been

shown to perform well in shape completion tasks, however

their usefulness in 3D measurement is far more limited.

Voxel representations are computationally intensive in deep

learning, limiting the output resolutions used in current im-

plementations (usually 32x32x32 voxels or less).

Another approach to acquiring missing object informa-

tion is to treat it as a view synthesis problem. The goal of

view synthesis is to synthesize a novel view of an object

or scene given a single or a set of arbitrary views. Using

this idea, missing views of the object can be synthetically

scanned to complete the object. The benefits of this ap-

proach are that no explicit object parameters are required,

making it more generally applicable, and in deep learning,

images can contain higher resolution information than vox-

els for similar computational complexity. In order to maxi-

mize the visual appearance of a synthesized view, a number

of methods have been explored, including: appearance flow

[18, 30], where the output view samples pixels from the

input view, and adversarial networks [29], where the out-

put view attempts to fool a discriminator network. These
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approaches focus on RGB views however, making it dif-

ficult to utilize these methods to extract 3D object shape.

Tatarchenko et al. [24] demonstrated how view synthe-

sis can be used to create useful 3D object representations.

Their approach uses a convolutional neural network that

takes an RGB view as input and produces a RGBD view

as output. This network learned to produce the color and

depth values of objects from scratch, which resulted in less

accurate reconstructions than those in [18, 29, 30] but its in-

clusion of the depth component allowed for the reconstruc-

tion of an object from a single image. This concept of using

depth map views to represent object shape has also been

explored in generative models [2].

Our approach is similar to [24], however we focus on

the 3D information in the depth map as input as opposed

to RGB values, and apply it to foot scanning with a sin-

gle depth map camera. We propose a method that uses a

deep neural network to take as input the shape information

from a depth map and synthesizes novel shape information

through an output depth map. This shape to shape approach

should contain more information about the 3D structure of

a foot than the image to image approach seen in other view

synthesis approaches, and thus be more practical in object

scanning. Additionally our model is not told explicitly how

to represent shape, allowing it to be trained directly from a

set of non-parameterized arbitrary scans or shape models.

3. Proposed Method

We frame the problem of extrapolating a limited foot

scan into an entire point cloud as a view synthesis prob-

lem. We leverage the power of deep learning to implicitly

learn foot shape, and relationships between how it can ap-

pear from view to view.

Our depth map view configuration is shown in Figure 1.

A foot is placed at the origin, and depth map images can be

taken from camera poses at various azimuth and elevation

angles, as well as at varying radii. We also allow for vari-

ations that reflect real world imperfect camera mounting,

where its orientation can have additional roll, pitch angle

offset and heading angle offset, rather than always looking

directly at the foot object. In training, input view of the foot

are randomly distributed in azimuth angle, elevation angle

and radius, while also randomly having some degree of roll,

pitch angle offset and heading angle offset. Our method

then estimates any desired depth map view from another

camera pose of the same foot object at an arbitrary azimuth

angle and elevation angle. We train our network to produce

output views that do not contain any imperfect framing from

roll or offset.

3.1. Network Architecture

Our network architecture is shown in Figure 2, and is

similar to [24]. Our network takes in as input an arbitrary

Figure 1. Depth camera pose configuration.

depth map view of an object denoted x, and an encoding

specifying the desired view camera pose denoted θ. From

this input, the network provides an estimate for the depth

map at the desired pose denoted y. We train a convolutional

neural network encoder and decoder, where the encoder en-

codes the input depth map x into a vector representation.

The desired view camera pose θ is encoded by a set of fully

connected layers before being appended to the xs vector

representation. The decoder processes this new vector rep-

resentation, and uses deconvolutions [28] to synthesize an

output depth map of the same size as the input depth map.

Figure 2. Network architecture. Blue: depth map encoder, Red:

desired view camera pose encoder, Green: depth map synthesis

decoder.

3.2. Complete Point Cloud Reconstruction

In order to completely reconstruct the foot object from

a single view, k forward passes through our network are

required. For any input image x, a set of desired view cam-

era poses θ1,2,...,k must be specified that would sufficiently

cover the object being scanned. Our network is then used

to estimate the scans y1,2,...,k, through k forward passes.
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These k depth map estimates are then reprojected and reg-

istered using the intrinsic parameters of the camera used to

create the training data and the camera poses encoded in

θ1,2,...,k, resulting in a complete point cloud.

3.3. Dataset

In order to train our network to predict 3D foot shapes,

we use the meshed models from MPII Human Shape [19].

These models are created by fitting a statistical model of 3D

human shape to full body scans from the CAESAR database

[21]. We use the 4301 mesh body models that were fit us-

ing the posture normalization of Wuhrer et al. [26]. Each

full body model consists of 6449 vertex points, with about

800 vertex points in each foot up to the knee. While the

MPII Human Shape models are technically a parameterized

shape representation, we do not use these parameters any-

where in our method, to allow our network to learn its own

representations for shape.

For each of the meshed body models, we isolate the

points associated to the left and right feet up to the knee. We

then transform each set of foot points such that the origin is

the center of the second toe and the heel, and shrink down

the scale to 0.003 (from mm units). This process results in

8602 meshed foot objects to train our network, samples are

shown in Figure 3. Depth map images of the foot objects

are rendered using Panda3D3 before training, at a size of

128x128. The input and output views of the foot objects are

randomly rendered using the parameter ranges described in

Table 1.

3.4. Implementation Details

Our dataset of 8602 feet was separated by individuals

such that both of a persons feet would be in the same set.

80% of the data was used for training and 20% for testing.

Our network was implemented in Tensorflow [1] on a Linux

machine with an Nvidia K80 GPU. Training was done with

mini batch sizes of 64 using the Adam optimizer [12] and

a learning rate of 5e-5. Our loss function was the mean L1

distance between the output depth map pixels d̂i and ground

truth di, shown in the following equation:

L =

∑

i

‖di − d̂i‖1. (1)

When reconstructing the entire point cloud of each foot ob-

ject we use a set of k = 24 desired viewpoint scans. We

run our network to estimate scans positioned at a radius of

2, every 45 degrees in azimuth angle for elevation angles

of -30, 0 and 30 degrees. We further use 3D cropping and

MATLABs pcdenoise function to remove outliers and clean

our final representation.

Figure 3. Meshed foot objects from MPII Human Shape [19].

Parameter name Input Output

Azimuth 0, 5, . . . , 355 0, 20, . . . , 340

Elevation -30, -25, . . . , 40 -30, -20, . . . , 40

Roll -5, -4, . . . , 5 0

Radius 1.9, 1.95, . . . , 2.1 2

Pitch offset -2, -1.5, . . . , 2 0

Heading offset -2, -1.5, . . . , 2 0

Table 1. Rendering camera pose parameter ranges for the network

input and output (angles are in degrees).

4. Results

Our test set consists of 1720 random foot objects not

used during training. The accuracy of our outputs is eval-

uated in two ways. First, we evaluate the networks ability

to generate novel depth map views given an arbitrary input

depth map view. Second, we evaluate our methods abil-

ity to fully reconstruct a foot point cloud given a single in-

put depth map view. In both cases we compare our method

with the performance of the mean model supplied as part

of the dataset [19]. The mean model was made using the

mean of all parameters in the statistical human shape model,

across all scanned bodies in the dataset. With this mean foot

method, given an input depth map view and a desired view

camera pose, we simply return a depth map of the mean

foot from the inputted desired view camera pose. We return

a scan of either the left or right mean foot based on what

object is given as input. We make this comparison to ensure

our network is not learning the local minimum solution of

only learning the mean foot shape, rather than individual

shapes.

3panda3d.org
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Figure 4. Depth map estimates (best viewed in color). First col-

umn: input depth map, Second column: ground truth, Third col-

umn: output depth map estimate, Fourth column: output depth

map error.

Metric Name Ours Mean Foot

Depthmap Error 0.0072 0.0192

Point Cloud Error (mm) 1.5455 5.9193

Point Cloud Error Std. (mm) 0.4077 2.2442

Table 2. Error across the test sets. Abbreviations used: Standard

Deviation (Std).

4.1. Depth Map Results

In order to evaluate our networks ability to generate

novel depth map views, we use 64 random input-output

pairs for each foot in the test set. Our error measure is the

mean L1 output depth map pixel difference with the ground

truth. Our results are shown in Table 2. Samples of the

depth maps from the network are shown in Figure 4, as well

as the distribution of the error across the depth maps. It can

be seen that the majority of the error comes from the pixels

around the outline of the foot. It appears that in these re-

gions the network is uncertain whether these pixels should

Figure 5. Estimated point clouds generated from a single input

depth map using our method. First column: ground truth point

cloud, Second column: estimated point cloud.

belong to the foot or the background. These high error out-

line pixels do not pose much of a problem when forming

the foot point cloud however, as they are easily filtered out

in our post processing step.

4.2. Point Cloud Results

In order to evaluate our networks ability to reconstruct

the complete foot point cloud, we used a single input depth

map, and generate a point cloud from 24 estimated depth

maps, as described previously. We test using 24 different

camera poses as the single input viewpoint, to explore what

camera placement works best for foot scanning. Our point

cloud error is calculated by comparing the estimated point

cloud against the point cloud formed by the ground truths

for the same 24 depth maps. Additionally, we compare our

error results with that of the mean foot point cloud, formed

using the same 24 depth maps.

Our error measure is similar to that used by Luximon et

al. [15], who used a statistical model to parameterize a foot

point cloud based on 4 measures. We use a two directional

nearest neighbor euclidean distance metric to measure simi-
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Figure 6. The 24 input depth map views explored and their corresponding estimated point cloud error on the test set.

larity between point clouds. For each point pest,i in the esti-

mated point cloud, we calculate its euclidean distance to the

nearest point in the ground truth point cloud, and for each

point pgt,j in the ground truth point cloud, we calculate its

euclidean distance to the nearest point in the estimated point

cloud using the following equations:

eest,i = minj‖pest,i − pgt,j‖2, (2)

egt,j = mini‖pgt,j − pest,i‖2, (3)

where eest,i is the error for point pest,i in the estimated

point cloud to the ground truth, and egt,j is the error for

point pgt,j in the ground truth point cloud to the estimate.

We average the distance measures by the number of points

in each cloud, then average the two measures to form our

overall error of our point cloud estimate using the following

equation:

etotal =

1

N

∑
i eest,i +

1

M

∑
j egt,j

2
, (4)

where N and M are the number of points in the estimated

and ground truth point clouds respectively, and etotal is the

total error reported for an estimate point cloud. We report

our error measurements in mm units.

Our point cloud accuracy results are shown in Table 2,

and sample point clouds are shown in Figure 5. A break-

down of the point cloud error for estimates generated from

each of the 24 input views explored is shown in Figure 6.

Our model performs with average errors of less than 1.55

mm from the best input view.

Looking more closely at Figure 6, it can be seen that

point clouds generated when given an input view of the bot-

tom of the foot were generally more accurate than when

given a view of the top of the foot. This suggests that the

most important information about foot shape is contained

on the bottom surface of the foot rather than the top. Inter-

estingly however, the most accurate point clouds are formed

when given a profile view of the foot, with 0 elevation an-

gle. This result suggests that when building a scanner with a

single camera, the camera should be mounted at this profile

view position. This finding is also inline with those from

Luximon et. al. [16], who found that having information

from the foot profile was important for overall shape recon-

structions.

5. Discussions and Conclusions

We have presented a method for leveraging deep learn-

ing to allow for more efficient 3D object scanning from a

single input view in the application of foot scanning. Our

network successfully learned the 3D shape an anthropomor-

phic body part from incomplete information and was shown

to be capable of accurately generating a complete point

cloud representation of a foot from a single depth map. Our

method was able to reconstruct full point clouds with an

accuracy of 1.55±0.41 mm, which is significantly smaller

than the English and American shoe sizing half size incre-

ment of 4.23 mm [9].

This method has a number of benefits over more tradi-

tional methods of RGBD scanning. Our method requires

only a single input viewpoint, which allows the scanner to

be significantly cheaper and simpler to operate, and allows

us to avoid complications associated with multi-camera se-

tups. Without the need for multiple cameras, the scanning

process can be near instantaneous without giving a person

any opportunity to move during a scan. This also has po-
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tential applications for capturing the foot loading and dy-

namics in a 3D video. This method of scanning also does

not require any special calibration or registration between

views due to how our network implicitly accounts for input

camera pose.

Despite our promising results, our method has some lim-

itations over more traditional RGBD scanning methods.

The point cloud produced by this method is not as accu-

rate as a scan using multiple viewpoints, which would con-

tain the true information about the object’s shape from all

views. Our method is also limited to only scanning new in-

stances of objects that are mostly similar to those seen dur-

ing training. This method will fail if for example someone

for whatever reason has a particularly unique foot shape, or

if there is any sort of abnormality on a part of the foot not

seen by the cameras single viewpoint. For these reasons,

our method may not be practical to completely replace more

traditional scanning methods, however in our application,

for most feet it is sufficient to capture an accurate represen-

tation.

Our future works are aligned with tackling the limita-

tions of our method. We plan to investigate changes in net-

work architecture to improve the accuracies of the produced

scans, as well as methods of preprocessing and postprocess-

ing the data. We also plan to investigate the use of color

cameras in single view scanning, which can have resolu-

tions much higher than typical RGBD depthmaps.
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