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Abstract

One of the most important tasks for Autonomous

Robotics is the ability to manipulate objects in real world

unstructured environments. Traditional path planning for

robotic manipulators requires precise location of the tar-

get object in the environment based on which inverse kine-

matics return the required joint-angles for approaching the

object. This limits their use in real domains with dynamic

relative positions of objects not being readily available. Re-

cent work on deep reinforcement learning for manipulation

appear to be more succesful in adapting to different target

object positions. In this paper, we present a deterministic

policy based actor-critic learning framework to encode the

path planning strategy irrespective of the robot pose and

target object position. This reinforcement learning (RL)

agent solely uses two different views of the environment to

learn about path planning in order to reach a given tar-

get from a random pose, instead of relying on a depth sen-

sor. The state-space for the RL agent is thus defined as

the stereo-view of the environment whereas the action val-

ues are torques applied to the robot’s joints. The reward

function is defined on the relative distance between the end-

effector and target object in pixels. In the episodic learning

framework, the actor-critic network learns the optimal ac-

tions in the continuous space of real numbers for a given

state configuration by trying to increase the expected re-

ward. We demonstrate the validation of this approach in

a simulated environment yielding 100% success rate from

100 different robot poses, with relatively few steps required

on an average to reach the target. We further show that

our learning strategy bests deep Q-learning based methods

which have been used for similar path planning purpose.

This path planning approach does not require conventional

feature matching and triangulation for object localization

which is error prone and inaccurate, and solves inverse

kinematics and depth estimation using only the scene in-

formation.

1. Introduction

Manipulating objects in real world dynamic scenarios is

one of the most challenging problems in Robotics. The dif-

ficulty of the task can be gauged from the fact that even in

highly structured tasks such as picking objects from ware-

house shelves, we have not achieved anywhere near hu-

man level performance as demonstrated by the results of the

2016 Amazon Picking Challenge [1]. However, recent de-

velopments in deep reinforcement learning offer directions

for developing adaptive vision based controllers that can

operate in dynamic environments. Reinforcement learning

(RL) has enjoyed a prominent place in the field of machine

learning and artificial intelligence as a powerful framework

for teaching intelligent actions to an agent in an unknown

or unstructured environment, in order to maximize a notion

of cumulative reward. However, traditional reinforcement

learning necessitates manual identification of suitable fea-

tures to represent the state of the system [19]. With the

progress of deep learning techniques in the recent past, this

problem has become considerably simpler, with deep neu-

ral networks making it possible for the agent to automat-

ically identify high level features encoding the state of a

system from low level data such as raw pixel values. This

has led to a resurgence of RL techniques to solve compli-

cated tasks, which were intractable before its integration

with deep learning. It has widely been surmised that the

deep reinforcement learning (DRL) framework is capable of

learning many human level tasks, having even surpassed hu-

man level performance in tasks like learning to play games

as complicated as Go [17].

In this paper, we propose a vision based deep RL tech-

nique for path planning of a robotic manipulator, with the

end goal of reaching a target object from any arbitrary ini-

tial pose in an unstructured 3D environment. The typical

solution for this problem in real-world applications requires

object localization in a 3D environment, which is used by

the inverse kinematic solver for path planning. The agent

trained to play Atari games using a Deep Q-Network (DQN)

[15] demonstrated that we can apply RL for similar prob-
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lems where action strategy can be learned purely on raw

scene images. This obviates the need for solving the per-

ception and planning problem individually. Instead we can

directly learn the control strategy for the agent based on raw

images, where the learning objective is to minimize the tem-

poral difference error. Based on this approach, DQN has

also been applied successfully to robotic control tasks such

as path planning. However, despite the success of DQN in

learning actions from high dimensional observation spaces,

its performance while dealing with high dimensional ac-

tion spaces remained sub-optimal. Also many physical con-

trol tasks have a continuous action space; coarse discretiza-

tion such action spaces for the purpose of applying DQN

severely limits the dexterity in performance of tasks which

require finer control. On the contrary, a finer discretiza-

tion of the action space leads to an exponential increase in

the dimensionality of the action space, which is often una-

menable to deep Q learning. Consequently, training a DQN

to perform a task with an inherent continuous action space

required enormous amount of data in order to ensure suf-

ficient coverage of the continuouss action space after dis-

cretization failing which the agent could not learn viable

actions. Thus, the need for a RL agent which can work with

a continuous action space instead of discrete one was immi-

nent in order to mitigate the tradeoff of dexterity and action

space dimensionality. This has been elegantly achieved by

[14] by leveraging the success of deep Q-learning for con-

tinuous control tasks using a deterministic policy gradient

based actor-critic algorithm.

We adopt the approach of [14] in our work to a actor-

critic algorithm using deterministic policy gradient to learn

the action value at each state of the environment. The only

information about the state of a system that is provided to

the network is in the form of a stereo image pair taken from

static RGB cameras. The action space comprises contin-

uous and real valued torques, applied to each joint of the

robot. The rewards which guide the training are computed

from a relative change in distance between the end effector

of the manipulator and the target object computed on the

image plane. Further, to establish the advantage of using

a continuous action space, we also apply a similar train-

ing strategy with a discrete action space to train a deep Q

network and compare its performance to the deterministic

policy gradient (DPG) based method.

The primary contributions made in this paper are: 1) A

stereo vision based technique for robotic path planning in

a 3D environment using a continuous action space and 2)

An implicit depth estimation from a pair of grayscale stereo

images using a deep actor-critic network. The trained agent

is able to develop an implicit perception of depth of the tar-

get from the stereo images that it is trained upon, and is

thus able to consistently guide the manipulator to approach

the target object. Our experiments reveal that the DDPG

based actor-critic agent trained on a continuous action space

agent outperforms a learned DQN agent trained on a quan-

tized discrete action space in terms of the number of steps

required to reach the target as well as training episodes re-

quired.

The rest of the paper is organized as follows: Section

2 provides a brief overview of related works in this area;

Section 3 elaborates the problem formulation; Section 4

describes the proposed technique; experimental results are

presented in Section 5. Finally conclusions and avenues for

future work are discussed in Section 6.

2. Related Works

RL based techniques have proven useful for tasks such

as Simultaneous Localization and Mapping (SLAM), which

involve efficient path planning and trajectory optimization

to maximize the accuracy of the map constructed by a robot

from sensor data in an unknown environment [9]. Subse-

quently, reinforcement learning found application in a wide

array of robotic control tasks including target reaching [20]

and grasping [2]. Reinforcement learning was shown to

be effective in generalizing a set of parameterized motor

primitives to perform different tasks such as throwing darts,

and striking a ball in table tennis [8]. It was also em-

ployed to perform the visual servoing task using Neural-

Fitted Q iteration (NFQ) [11]. The promise shown by deep

learning in extracting visual features suitable for classifica-

tion and segmentation tasks made it only natural to train

a CNN for grasping, by assigning a score class to each

gripper pose, with a supervised learning framework using

ground truth scores [7]. However, despite the phenome-

nal success of deep reinforcement learning for developing

autonomous agents in artificial intelligence, such as the au-

tonomous atari game player developed in [15] recently, re-

searchers have just began to focus on exploiting the poten-

tial of deep learning when trained in conjunction with RL

strategies for robotics. We believe that DRL is a technique

versatile enough to be applicable to a wide variety of robot

control tasks such as path planning and manipulation.

Vision based perception is routinely used in closed loop

robotic control systems to perform specific manipulation

tasks in a known environment. However, such systems re-

quire significant prior knowledge about the robot poses and

the environment, and is not suitable for trajectory planning

or learning new manipulation skills in an unstructured en-

vironment. Convolutional Neural Networks (CNNs) and

their recent variants have acheived state of the art perfor-

mance in learning feature representations of visual data,

with a tremendous success in image based classification

tasks [10]. Subsequently, RL strategies have been success-

fully exploited for training a CNN regressor for object de-

tection [4]. The versatility of deep reinforcement learn-

ing was demonstrated in [14], which used an actor critic
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algorithm with deep function approximators to learn poli-

cies over a continuous action space to perform a variety of

tasks such as legged locomotion, manipulation and car driv-

ing. The learning is based on the deterministic policy gradi-

ent algorithm [18]. 3D manipulation skills were learned on

simulated as well as physical robots by training a deep Q-

function using a variant of the Normalized Advantage Func-

tion (NAF) algorithm in [16]. A CNN based deep learning

scheme was employed in [12] to learn visuomotor policies

for a set of manipulation tasks by training on RGB cam-

era images, as well as joint encoder readings of a robotic

manipulator; this approach introduced a trajectory centric

RL algorithm to generate guiding distributions meant to su-

pervise the training. However, this does not rely solely on

visual perception and requires joint state information of the

robot. In [13] a CNN is used to learn a continuous visual

servoing task for robotic grasping using only monocular

images. This approach requires large scale data collection

to train the CNN to predict the success of different grasp

attempts and to correct the robot’s motor actions through

continuous servoing. The first attempt towards learning a

trajectory for reaching a specified target relying entirely on

visual data in the form of RGB camera images was made in

[21]. Recently, a similar DRL based scheme was proposed

in [6], for learning the combined task of reaching a target,

and then grasping and lifting it.

To the best of our knowledge, [14], [21] and [6] are the

only works to have focussed on path planning of a robotic

manipulator from an arbitrary initial pose in an unstructured

environment using DRL. However, our approach differs sig-

nificantly from these works; In [14], a ’fixed reacher’ is at-

tempted as one of the several tasks and is learned using low

dimensional feature inputs in the form of robot positions

and joint angles as well as high dimensional information in

the form of pixel values. Our work on the other hand utilizes

only information in the form of pixel values and dispenses

with the need of having robot positions and joint angles to

describe the state. Both [14] and [21] use a 2D simulator

for training, which makes the learned agent completely ag-

nostic to the perception of depth and thus they fail to reach

a target object when implemented on a real robot in a 3D

environment as reported in [21]. Further it uses a simple

reward function which assigns rewards of +1, 0 and -1, in

an approach akin to that of [15]. Although a 3D simula-

tor is used for training in [6], the depth information is not

incorporated in the input to the network, which consists of

a 2D image of the 3D simulator environment. Essentially,

this reduces to training on a 2D image of a 3D scene, which

obscures the depth information available in the 3D simula-

tor. Although this approach has been shown to be successful

while testing both on the simulator, and on a real robot, it

should be pointed out that testing has been done under sim-

plistic scenarios, and such a learning with a single view of

a 3D world is unlikely to be successful in a cluttered envi-

ronment where occlusions would inevitably be a common

occurrence. While we also train and test in a simplistic 3D

environment at present, our conjecture is that the perception

of depth is indispensable to an agent learning to acquire tar-

get reaching and grasping skills.

Thereby, in order to make the agent learn an implicit per-

ception of depth exploiting the visual cues available in a

3D environment, we propose a stereo vision based learning

scheme, in which the agent is trained on pair of RGB cam-

era images, using simulated camera models to capture snap-

shots of the 3D environment. We expect this approach to be

able to better generalize when applied to real world scenar-

ios. The fact that the 3D simulator (Gazebo) we use is well

equipped to simulate the physics of the real world such as

gravity and collision properties is also expected to improve

generalization. Another notable difference of our approach

with the technique of [6] lies in the reward function used;

the distances used in the computation of their inverse expo-

nential reward function are obtained directly using the x, y
and z coordinates obtained from the 3D simulator. We re-

frain from using the 3D coordinates obtained from the sim-

ulator, and instead use 2D camera images to estimate the ac-

tual three dimensional distance between the end effector and

the target. Pretrained networks trained further on real robots

has the potential to vastly improve the performance of tar-

get reaching [3], but 3D coordinates would not be available

while training in the real world. This makes our scheme of

reward assignment much more amenable to be transferred

to exploitive learning in real world scenarios than the tech-

nique of [6]. The use of a continuous action space unlike the

discrete ones employed in [21] and [6] substantially aids the

learning process as discussed further in Section 5.

3. RL Formulation

We formulate the problem of target reaching from an ar-

bitrary initial pose of the robot as a Markov Decision Pro-

cess (MDP), whereby the agent learns a policy π which

maps a sequence of images into a sequence of actions in

the form of efforts applied to the robot’s joints. We train a

deep Q-network to learn this task using a simulated version

of a 7 degree of freedom manipulator. We simulate the 3D

environment comprising the robot and the target objects us-

ing the Gazebo simulator. A pair of RGB cameras mounted

at static positions are also simulated in order to capture two

2D snapshots of the 3D scene. Fig. 1 shows the simulated

environment used in our experiments.

3.1. Action Space

The action space for the path planning task comprises

continuous efforts applied at each joint defined as follows:

A ∈ R
N (1)
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Figure 1. Simulation environment

Although the manipulator used in our experiments has

7 degrees of freedom, we make use of only 4 degrees of

freedom for our initial experiments since we observe that

the last 3 joints are chiefly responsible for manoeuvring the

wrist and thus mostly play a redundant role in the task of

reaching a target object. Since we are actuating 4 joints,

N is 4 in our experiments. An action a ∈ A is thus a 4

dimensional vector will real values.

3.2. State Space Representation

The state space S is defined in terms of 320× 240 RGB

images captured by the cameras are resized to 84 × 42,

and converted to the YUV color space. The luminance (Y)

channel of each image is extracted. These steps are nec-

essary for reducing the input dimensionality. The Y chan-

nels from the images of two cameras are concatenated along

their vertical dimension to create a composite image of size

84 × 84. Let us call this composite image I(x, y), which

constitute the raw state input to the network. I(x, y) resized

to a 7056 dimensional vector is the state s of the system.

3.3. Reward Assignment

We have designed a reward function for our task which

facilitates incremental learning by designating all interme-

diate steps which bring the manipulator closer to the target

as favourable steps towards the ultimate goal of reaching

the target. Intuitively, the distance between the end effec-

tor and the target is a good measure in this regard. In our

simulation environments we can readily compute this dis-

tance from the 3D coordinates of the end effector and the

target. However, for a real robot interacting with the phys-

ical world, we would not have access to these 3D coordi-

nates. Thereby, in order to make our framework compliant

with real world constraints, we choose to compute a mea-

sure of this distance from the 2D camera images available

to us.

To compute the distance between the end effector and the

target, we mark them with color markers having red color

for the end effector,and blue color for the target. We detect

these color blobs from the images taken by the two cameras,

and compute the distance between the centroids of these two

blobs in the image plane. To assign the rewards based on

these two distances, we must also take into account the fact

that in some states, the end effector might be occluded in

any one of these two views. Let d1(t) and d2(t) be the

distances of the centroid of the end effector to that of the

target object computed from the two camera images at the

tth step. Then the change in distance of the target from the

end effector with respect to the previous state for the two

cameras is given by:

∆d1 = d1(t− 1)− d1(t)

∆d2 = d2(t− 1)− d2(t)
(2)

The measures of the relative change in distance between

two consecutive states, ∆d1 or ∆d2 will be undefined if

the end effector is in an occluded state at either the cur-

rent step t or at the previous step t − 1 in the correspond-

ing camera view. ∆d1 and ∆d2 are normalized between

-1 and +1. A state is defined as a goal state or terminal

state when the end effector reaches the vicinity of the tar-

get defined by a threshold ρ applied on the average distance

(d1(t) + d2(t))/2 with respect to the two cameras. The po-

sitions of the target relative to the cameras is chosen such

that the end effector is unoccluded in both the camera views

in the proximity of the target, so that the average distance

computed from the images unambiguosly reflects the actual

distance of the end effector from the target in the 3D envi-

ronment. When the goal state is attained, we set the terminal

flag τ indicating the end of a learning episode, i.e. τ = 1
when (d1(t) + d2(t))/2 ≤ ρ. We then define the reward

function as follows:

rt =































1, if τ = 1,

−1, if ∆d1 = 0 and ∆d2 = 0,

∆d1, if ∆d2 is undefined,

∆d2, if ∆d1 is undefined,

(∆d1 +∆d2)/2 otherwise

(3)

The agent is given a high positive reward of +1 whenever

it takes an action that brings it to the goal state. Sometimes,

a joint may reach the limit of its joint angle when consecu-

tively applied efforts force it to move in any one direction.

In such a state, the robot joint cannot move any further in

that direction even if the effort applied at the next step ac-

tuates it to move in that direction. If all the joints are at

their joint angle limits, and they do not move any further

on application of the next action, then the system would not

change its state. This indicates that the applied action at this

state is a redundant one, and is therefore heavily penalized

with a reward of -1. In all other cases, we assign a reward

proportional to the change in distance from the target on ap-

plication of the action. If the applied action reduces the end

effector’s distance from the target, it gets a positive reward

and vice versa.
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4. Proposed Method

The raw state information available to the agent is a vec-

tor of pixel values, denoted by s. At each training step,

we store the experience tuple et = (st,at, rt, st+1) in the

replay memory D, where st is the present state at is the

current action, rt is the observed reward, and st+1 is the

next state. For the initial P steps of the training, where

P < |D|, random actions are chosen at each step, and the

replay memory is populated with the resulting experience,

without updating the network parameters. After the first P
steps, learning commences, and the network is updated on

minibatches of size M sampled at random from the replay

memory.

We use an actor-critic network trained using the DPG ap-

proach to learn the action policy from the pixel observations

representing the state of the system. As in[14], we employ

a parameterized actor function µ(s|θµ) which deterministi-

cally maps states to actions using the current policy µ. The

current actor policy is updated by the critic Q(s,a) which

itself is learned using the Bellman equation as in Q learning.

4.1. Algorithm

RL based methods seek to maximize the expected future

rewards. The discounted future reward from a state is de-

fined as:

Rt =

T
∑

i=t

γt−irt (4)

Here, γ ∈ [0, 1] is the discount factor for future rewards.

In this RL forumulation, the policy π is learned such that

expected return from the start distribution is maximized,

where the start distribution J = Esi,ai,ri [R1]

Assuming a deterministic target policy µ : S ← A, we

use the Bellman equation for our RL paradigm to get the

optimal action values of the actor as follows:

Qµ(s, a) = Es
′ [r + γmax

a
′

Qµ(s′,a′)|s,a] (5)

where γ is the discount factor for future rewards. Thus,

the optimal action value function is arrived at by choosing

that action which maximizes the expected future rewards.

In this context, the CNN with weights θQ acts as a non-

linear approximator for this action value function. The tar-

get value at the tth step is approximated as follows:

z = rt + γmax
a
′

Q(s′,a′; θQ) (6)

Using these approximate target values, the loss function

at the tth training step is given by:

Lt(θ
Q) = Es,a,r[(Es

′ [z|s,a]−Q(s,a;ωt)
2] (7)

Q-learning is one such RL technique which minimizes

the above loss function to learn the optimal action value

function and thereafter a greedy approach is employed to

select the optimal action. However for a continuous action

space finding such a greedy policy is impractical. The actor-

critic reinforcment learning model based on deterministic

policy gradient proved to be useful in this scenario. In this

learning framework, an actor function µ(s|θµ) determinis-

tically maps states to continuous action values. The critic

Q(s,a|θQ) is updated using the Bellman equation similar

to Q-learning. The actor is updated by applying the chain

rule on the expected return from the start distribution with

respect to the network parameters as follows:

∇θµJ ≈ Est
[∇θµQ(s, a|θQ)|

s=st,a=µ(st|θµ)]

= Est
[∇θµQ(s, a|θQ)|

s=st,a=µ(st)∇θµµ(s|θ
µ)|s=st

]
(8)

Unlike supervised learning, the targets are not fixed, and

depend upon the network parameters. We employ the soft

target update strategy of [14] where a copy of the actor and

critic networks, µ′(s|θµ
′

) and Q′(s,a|θQ
′

) are utilized for

computing the target values. The weights of the target net-

work are then updated as follows:

θ′ ← ζθ + (1− ζ)θ′ where ζ ≪ 1 (9)

The above update strategy lets the weights of the target

network change slowly according to the learned weights,

thereby ensuring the stability of the learning process.

In order to perform exploration efficiently over a con-

tinuous action space, we resort to the Ornstein-Uhlenbeck

process whereby we add a noise sampled from a temporally

correlated noise process N with inertia to the action values

generated by the actor as follows:

µ′(st) = µ(st|θ
µ
t ) +N (10)

The network parameters are updated at each training step

after the first P steps utilized for building the replay mem-

ory. We use Adam to update the network parameters and

the soft target update of Eq. 9 in order to make the target

networks track the parameters of the updated network [14]

4.2. Network Architecture

The input to the network is the composite image of size

84×84 obtained after preprocessing. We use the actor-critic

network architecture employed in [14], where the size of the

final layer is equal to the number of degrees of freedom of

the robotic manipulator used for the task. Our networks

comprise 3 convolutional layers having 32 filters each fol-

lowed by 2 fully connected layers, each of 200 units. All

hidden layers used a rectifier non-linearity activation. Batch
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Algorithm 1 Deep Q-network Training

Input: composite image It and goal state information τ
Initialisation :Replay memory D = {e1, e2, · · · eP };
actor network µ(s|θµ) and critic network Q(s,a|θQ)
with random weights θµ and θQ respectively; target

networks µ′ and Q′ with weights θµ
′

and θQ
′

respec-

tively.

1: for t = 1 to 10,000 do

2: Initialize random process N for exploration.

3: while (τ 6= 1) do

4: Preprocess It and vectorize to represent state st.

5: Select random action at = µ(st|θ
µ) +N

6: Execute at in simulator, and obtain rt, It+1 and τ
7: Preprocess It+1 and vectorize to represent state

st+1.

8: Add the transition (st,at, rt, st+1) in D.

9: if t ≥ P then

10: Sample a random minibatch of size M consist-

ing of transitions (si,ai, ri, si+1) from D.

11: Set zi = ri + γQ′(si+1, µ
′(si+1|θ

µ′

)|θQ
′

)
12: Update critic by minimizing the loss L =

1
M

∑

i(zi − Q(si,a|θ
Q))2 with respect to the

network parameters θQ.

13: Update the actor network using sampled policy

gradient as follows:

∇θµJ ≈ 1
M

∑

i

∇aQ(s,a|
s=si,a=µ(si)∇θµµ(s|θµ)|si

14: Update the target actor and critic networks as

follows:

θQ
′

← ζθQ + (1− ζ)θQ
′

θµ
′

← ζθµ + (1− ζ)θµ
′

15: end if

16: end while

17: end for

normalization is employed at the input and after each hid-

den layer.

For the sake of comparison, we implement a deep Q net-

work for the same path planning task using the network ar-

chitecture employed in [15], but modify the fully connected

output layer to account for the much larger discrete action

space used in our experiments in comparison to that re-

quired. It must be pointed out that size of the fully con-

nected layer at the output is typically much smaller for

the actor-critic network than the Q network due to the dis-

cretization of the action space.

5. Experimental Results

We use a 7 degree of freedom Barrett Wide Arm Ma-

nipulator simulated in Gazebo using ROS Indigo as the in-

terface between our algorithm and the simulated robot. We

choose Torch7 with Cuda7.5 as the deep learning library

to construct and train the deep Q-network. All the exper-

iments are performed on an ubuntu 14.04 system with 16

GB RAM, Intel Core-i7-4810MQ processor and NVIDIA

Quadro K2100M GPU.

We use four degrees of freedom of the manipulator for

the reaching task. So, the size of the action space NA is 4

in our experiments. The value of the threshold ρ is set to 10.

The performance of our path planning algorithm is critically

dependent on the choice of several hyperparameters. We

summarize the values used for these hyperparameters along

with their definitions for DDPG and DQN trainings in tables

1 and 2

For the actor network, we use a L2 weight decay of 10−2.

The weights of the final layers of both the actor and critic

networks are initialized from a uniform distribution [−3 ×
10−4, 3× 10−4] whereas the weights of all other layers are

initialized from a uniform distribution of [− 1√
f
, 1√

f
] where

f is the fan-in of the layer. For the deep Q-network, all

layers were initialized using the Xavier initialization.

In the following sections, we analyze various aspects of

the performance of our deep reinforcement learning based

path planning framework.

5.1. Training Statistics

Although the combined task of reaching the target,

grasping and finally lifting it as attempted in [6] is much

more complicated than the task of reaching a target which

we are attempting presently, reaching may be often be suffi-

cient if a suction based actuator is used for lifting an object,

which was often the case with several team in the Ama-

zon Picking Challenge (see Figure 2). Interestingly, the

agent in our approach learns to reach much faster; whereas

the authors in [6] report that the agent learned to complete

the entire task successfully in 1800 episodes (in their case

each episode ends after 1000 iterations or completion of a

task), when starting from the same initial pose, our agent

learns the reaching task within just 1500 iterations. This

is just 500 training steps after building the replay mem-

ory. This tremendous improvement in learning speed can

be attributed to the much smaller size of the output layer

in case of the policy gradient based actor-critic learning

framework, which results in fewer network parameters to

be learnt. Even for the method of [21], the agent used for

path planning from random initial poses was trained for

5.225 million training steps, which is far greater than the

number of training steps required for the agent to learn in

our approach. We surmise that the larger action space used

in our experiments combined with the reward assignment

strategy used for incremental learning is responsible for this

improvement.
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Table 1. Hyperparameters used for DDPG training

Parameter Definition Value

P No. of initial steps 1000

M Minibatch size 100

ǫ Exploitation probability 1 to 0.1 annealed linearly over 10000 steps

C Target networks’ update frequencey 1

|D| Size of replay memory 10,000

α Learning rate actor - 10−4, critic - 10−3

γ Discount factor 0.99

ν Ornstein-Uhlenbeck process mean 0

σ Ornstein-Uhlenbeck process variance 0.5

η Ornstein-Uhlenbeck process inertia 0.15

ζ Soft target update factor 10−2

Table 2. Hyperparameters used for DQN training

Parameter Definition Value

P No. of initial steps 1000

M Minibatch size 100

ǫ Exploitation probability 1 to 0.1 annealed linearly over 10000 steps

C Target network update frequencey 100

|D| Size of replay memory 10,000

α Learning rate 0.0025

γ Discount factor 0.2

(a) (b) (c) (d)

Figure 2. Our suction based manipulator that participated in the Amazon Picking Challenge, the arm is required to (a) reach the target

object and pick it up using suction (b) transport the object to the correct location (c) choose the correct box and (d) stow the object. While

this is for a retail application, it is easy to see how this may be useful for autonomous robots that are required to place small items like

medicine bottles etc in their proper location

5.2. Testing Performance

A performance metric based on the average reward

achieved per epidode was adopted in [5], in order to pro-

vide a benchmark for the performance of DRL based algo-

rithms. We adopt a similar approach, but instead choose to

quantify the performance of our algorithm in terms of the

average number of steps required to reach the target, since

unlike the rewards for the tasks in [5], our reward function is

characterized by sharp discontinuities on reaching the goal,

as well as on executing redundant actions. In order to eval-

uate the performance of our path planning algorithm, we

create a test set consisting of 100 random initial poses of

the manipulator. These 100 poses are obtained by setting

the joint angles of the first 4 joints to random values which

lie within the respective joint angle ranges, and keeping the

angles of the last 3 joints (those that are responsible for the

movement of the wrist) fixed at 0 radians. We evaluate the

performance of the trained agent for different values of γ,

and for different levels of training progress in terms of the

percentage of successful attempts to reach the goal state,

and the average number of steps required to reach the goal

starting from each arbitrary initial pose in the test set. With

these experimental setting, the performance of the DDPG

algorithm summarized in 3.

For the DQN algorithm, however, training with γ = 0.99
yields worse performance than for lower values of γ. This

point towards lower contribution of the previously achieved

rewards on the curent action policy which is probably a con-

sequence of the larger output layer size of the DQN. We re-
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Table 3. DDPG testing Performance

γ Value % of Successful Attempts Average No. of Steps

1500 2000 5000 7000 8500 1500 2000 5000 7000 8500

0.99 100% 100% 100% 100% 100% 1.95 2.92 2.42 2.21 1.98

Table 4. DQN testing Performance

γ Value % of Successful Attempts Average No. of Steps

1500 3500 5500 7500 10000 1500 3500 5500 7500 10000

0.2 31% 100% 81% 100% 100% 21.31 2.52 8.86 3.15 2.96

0.5 62% 64% 89% 97% 96% 16.19 12.35 6.11 4.7 6.12

port the performance of the algorithm for two different val-

ues of the discount factor γ for Q learning in Table 3. Over-

all, γ = 0.2 gives us the best performance both in terms of

success rate, and number of steps required to reach the tar-

get on an average. Increasing gamma beyond 0.5 worsens

the performance, with the agent failing to reach the target in

most cases for γ = 0.9. It can be seen that the technique of

DDPG applied for target reaching outperforms DQN by a

considerable margin both in terms of training steps required

and success rate.

6. Conclusions and Future Work

A vital capability for autonomous robots is the ability

to manipulate objects in unstructured environments with-

out prior knowledge about joint angles and object positions.

In this paper, we present a novel approach for robot arm

control in the continuous action space using an actor-critic

based RL framework trained using deterministic policy gra-

dient. Our approach relies on stereo vision and does not

require an intermediate perception module or additional in-

formation about the robot position and joint angles. We

demonstrate this through the path planning of a robotic ma-

nipulator. We also employ a deep Q network to perform the

path planning using the same experimental setup. Our ex-

perimental results demonstrate that the DDPG based learn-

ing technique outperforms the DQN based learning by a

substantial margin both in terms of the number of learning

steps required as well as success rate.

For future work, we seek to investigate the performance

of the agent in a more complex environment; it is our even-

tual objective to establish the robustness of a trained agent

in an environment with a significant amount of background

clutter. With the consequent increase in occlusion, this

might also necessitate adding more cameras to the sim-

ulated environment to capture views of dynamic targets

which might move into and out of occlusion in the clut-

tered environment. Keeping this requirement in mind, we

also plan to modify the network architecture to accept a vol-

ume comprising a set of camera images as input, instead of

employing concatenation as in the current approach. Fur-

ther, we seek to devise a way of locating and reaching dif-

ferent types of target objects, and eventually grasping and

manipulating them. Toward this end, we propose to decou-

ple the reaching and grasping parts by training a separate

network to perform the grasping task once the end effec-

tor has reached the vicinity of the target. Finally, it would

be a worthwhile endeavour to employ a transfer learning

based approach [3] to exploit the knowledge acquired by a

pre-trained network trained in the simulation environment

to learn the same tasks with a real robot.
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