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Abstract

We present a commonsense, qualitative model for the se-

mantic grounding of embodied visuo-spatial and locomo-

tive interactions. The key contribution is an integrative

methodology combining low-level visual processing with

high-level, human-centred representations of space and mo-

tion rooted in artificial intelligence. We demonstrate prac-

tical applicability with examples involving object interac-

tions, and indoor movement.

1. Introduction

Practical robotic technologies and autonomous systems in

real-world settings are confronted with a range of situ-

ational and context-dependent challenges from the view-

points of perception & sensemaking, high-level planning

& decision-making, human-machine interaction etc. Very

many research communities and sub-fields thereof address-

ing the range of challenges from different perpecsectives

have flourished in the recent years: computer vision, artifi-

cial intelligence, cognitive systems, human-machine inter-

action, cognitive science, multi-agent systems, control &

systems engineering to name a few. Driven by the need to

achieve contextualised practical deployability in real-world

non-mundane everyday situations involving living beings,

there is now a clearly recognised need for integrative re-

search that combines state of the art methods from these

respective research areas. Towards this, the research pre-

sented in this paper addresses commonsense visuo-spatial

scene interpretation in indoor robotics settings at the inter-

face of vision, AI, and spatial cognition. The focus of this

research is on activities of everyday living involving people,

robots, movement, and human-machine interaction.

Interpreting Embodied Interaction:

On Grounded Visuo-Locomotive Perception

Visuo-locomotive perception denotes the capability to de-

velop a conceptual mental model (e.g., consisting of

abstract, commonsense representations) emanating from

multi-sensory perceptions during embodied interactions

and movement in a real world populated by static and dy-

namic entities and artefacts (e.g., moving objects, furni-

ture). Visuo-locomotive perception in the context of cogni-

tive robotics technologies and machine perception & inter-

action systems involves a complex interplay of high-level

cognitive processes. These could, for instance, encom-

pass capabilities such as explainable reasoning, learning,

concept formation, sensory-motor control; from a techni-

cal standpoint of AI technologies, this requires the media-

tion of commonsense formalisms for reasoning about space,

events, actions, change, and interaction [5].

◮ With visuo-locomotive cognition as the context, con-

sider the task of semantic interpretation of multi-modal per-

ceptual data (e.g., about human behaviour, the environment

and its affordances), with objectives ranging from knowl-

edge acquisition and data analyses to hypothesis formation,

structured relational learning, learning by demonstration

etc. Our research focusses on the processing and semantic

interpretation of dynamic visuo-spatial imagery with a par-

ticular emphasis on the ability to abstract, reason, and learn

commonsense knowledge that is semantically founded in

qualitative spatial, temporal, and spatio-temporal relations

and motion patterns. We propose that an ontological char-

acterisation of human-activities — e.g., encompassing (em-

bodied) spatio-temporal relations— serves as a bridge be-

tween high-level conceptual categories (e.g., pertaining to

human-object interactions) on the one-hand, and low-level /

quantitative sensory-motor data on the other.
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“Remove tea-bag from tea-box”

Figure 1: A Sample Activity – “Making a cup of tea” (egocentric view from a head-mounted RGB-D capture device)

Commonsense Scene Semantics:

Integrated Vision and Knowledge Representation

The starting point of the work presented in this paper is

in formal commonsense representation and reasoning tech-

niques developed in the field of Artificial Intelligence. Here,

we address the key question:

How can everyday embodied activities (involving interaction

and movement) be formally represented in terms of spatio-

temporal relations and movement patterns (augmented by

context-dependent knowledge about objects and environ-

ments) such that the representation enables robotic agents

to execute everyday interaction tasks (involving manipulation

and movement) appropriately?

We particularly focus on an ontological and formal char-

acterisation of space and motion from a human-centered,

commonsense formal modeling and computational reason-

ing viewpoint, i.e., space-time, as it is interpreted within the

AI subdisciplines of knowledge representation and reason-

ing, and commonsense reasoning, and within spatial cogni-

tion & computation, and more broadly, within spatial infor-

mation theory [1, 5, 6, 8, 9, 24].

◮ We build on state of the art methods for visual pro-

cessing of RGB-D and point-cloud data for sensing the en-

vironment and the people within. In focus are 3D-SLAM

data for extracting floor-plan structure based on plane de-

tection in point-clouds, and people detection and skeleton

tracking using Microsoft Kinect v2. Furthermore, we combine

robot self-localisation and people tracking to localise ob-

served people interactions in the global space of the envi-

ronmental map.

We emphasise that the ontological and representational

aspects of our research are strongly driven by computa-

tional considerations focussing on: (a). developing gen-

eral methods and tools for commonsense reasoning about

space and motion categorically from the viewpoint of com-

monsense cognitive robotics in general, but human-object

interactions occurring in the context of everyday activities

in particular; (b). founded on the established ontological

model, developing models, algorithms and tools for reason-

ing about space and motion, and making them available as

part of cognitive robotics platforms and architectures such

as ROS. The running examples presented in the paper high-

light the semantic question-answering capabilities that are

directly possible based on our commonsense model directly

in the context of constraint logic programming.

2. Commonsense, Space, Motion

Commonsense spatio-temporal relations and patterns (e.g.

left-of, touching, part-of, during, approaching, collision) offer

a human-centered and cognitively adequate formalism for

logic-based automated reasoning about embodied spatio-

temporal interactions involved in everyday activities such

as flipping a pancake, grasping a cup, or opening a tea box

[8, 26, 27, 30]. Consider Fig. 1, consisting of a sample hu-

man activity —“making a cup of tea”— as captured from

an egocentric viewpoint with a head-mounted RGB-D cap-

ture device. From a commonsense viewpoint, the sequence

of high-level steps typically involved in this activity, e.g.,

opening a tea-box, removing a tea-bag from the box and

putting the tea-bag inside a tea-cup filled with water while

holding the tea-cup, each qualitatively correspond to high-
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SPATIAL DOMAIN (QS) Formalisms Spatial Relations (R) Entities (E)

Mereotopology
RCC-5, RCC-8 [23] disconnected (dc), external contact (ec), partial over-

lap (po), tangential proper part (tpp), non-tangential
proper part (ntpp), proper part (pp), part of (p), dis-
crete (dr), overlap (o), contact (c)

arbitrary rectangles, cir-
cles, polygons, cuboids,
spheres

Rectangle & Block alge-

bra [16]

proceeds, meets, overlaps, starts, during, finishes,
equals

axis-aligned rectangles
and cuboids

Orientation
LR [25] left, right, collinear, front, back, on 2D point, circle, polygon

with 2D line
OPRA [21] facing towards, facing away, same direction, opposite

direction
oriented points, 2D/3D
vectors

Distance, Size
QDC [19] adjacent, near, far, smaller, equi-sized, larger rectangles, circles, poly-

gons, cuboids, spheres

Dynamics, Motion
Space-Time Histories

[17, 18]

moving: towards, away, parallel; growing / shrinking:
vertically, horizontally; passing: in front, behind; split-
ting / merging; rotation: left, right, up, down, clock-
wise, couter-clockwise

rectangles, circles, poly-
gons, cuboids, spheres

Table 1: Commonsense Spatio-Temporal Relations for Abstracting Space and Motion in Everyday Human Interaction

level spatial and temporal relationships between the agent

and other involved objects. For instance, one may most eas-

ily identify relationships of contact and containment that

hold across specific time-intervals. Here, parametrised ma-

nipulation or control actions (Θ1(θ), ...Θn(θ)) effectuate

state transitions, which may be qualitatively modelled as

changes in topological relationships amongst involved do-

main entities.

Embodied interactions, such as those involved in Fig. 1,

may be grounded using a holistic model for the common-

sense , qualitative representation of space, time, and mo-

tion (Table 1). In general, qualitative, multi-modal, multi-

domain1 representations of spatial, temporal, and spatio-

temporal relations and patterns, and their mutual tran-

sitions can provide a mapping and mediating level be-

tween human-understandable natural language instructions

and formal narrative semantics on the one hand [8, 13],

and symbol grounding, quantitative trajectories, and low-

level primitives for robot motion control on the other. By

spatio-linguistically grounding complex sensory-motor tra-

jectory data (e.g., from human-behaviour studies) to a for-

mal framework of space and motion, generalized (activity-

based) qualitative reasoning about dynamic scenes, spatial

relations, and motion trajectories denoting single and multi-

object path & motion predicates can be supported [14]. For

instance, such predicates can be abstracted within a region

based 4D space-time framework [3, 4, 18], object inter-

actions [10, 11], and spatio-temporal narrative knowledge

[12, 13, 29]. An adequate qualitative spatio-temporal repre-

sentation can therefore connect with low-level constraint-

based movement control systems of robots [2], and also

help grounding symbolic descriptions of actions and objects

to be manipulated (e.g., natural language instructions such

as cooking recipes [28]) in the robots perception.

1Multi-modal in this context refers to more than one aspect of space,

e.g., topology, orientation, direction, distance, shape. Multi-domain de-

notes a mixed domain ontology involving points, line-segments, polygons,

and regions of space, time, and space-time [18]. Refer Table 1.

3. Visuo-Locomotive Interactions:

A Commonsense Characterisation

3.1. Objects and Interactions in SpaceTime

Activities and interactions are described based on visuo-

spatial domain-objects O = {o1, o2, ..., oi} representing

the visual elements in the scene, e.g., people and objects.

The Qualitative Spatio-Temporal Ontology (QS) is

characterised by the basic spatial and temporal entities (E)

that can be used as abstract representations of domain-

objects and the relational spatio-temporal structure (R) that

characterises the qualitative spatio-temporal relationships

amongst the entities in (E). Towards this, domain-objects

(O) are represented by their spatial and temporal properties,

and abstracted using the following basic spatial entities:

– points are triplets of reals x, y, z;

– oriented-points consisting of a point p and a vector v;

– line-segments consisting of two points p1, p2 denoting the

start and the end point of the line-segment;

– poly-line consisting of a list of vertices (points) p1, ..., pn,

such that the line is connecting the vertices is non-self-

intersecting;

– polygon consisting of a list of vertices (points) p1, ..., pn,

(spatially ordered counter-clockwise) such that the bound-

ary is non-self-intersecting;

and the temporal entities:

– time-points are a real t

– time-intervals are a pair of reals t1, t2, denoting the start

and the end point of the interval.

The dynamics of human activities are represented by 4-

dimensional regions in space-time (sth) representing people

and object dynamics by a set of spatial entities in time, i.e.

ST H = (εt1 , εt2 , εt3 , ..., εtn ), where εt1 to εtn denotes the

spatial primitive representing the object o at the time points

t1 to tn.
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person(full_body,

[upper_body, lower_body]).

person(upper_body,

[head, left_arm, right_arm, ...]).

...

body_part(left_upper_arm,

joint(shoulder_left),

joint(elbow_left)).

body_part(left_forearm,

joint(elbow_left),

joint(elbow_left)).

...

joint(spine_base, joint(id(0)).

joint(spine_mid, joint(id(1))).

joint(neck, id(2)).

joint(head, id(3)).

...

joint(thumb_right, id(24)).

Figure 2: Declarative Model of Human-Body Posture

Declarative Model of Visuo-Locomotive Interactions

Based on the qualitative spatio-temporal ontology (QS),

human interactions in the environment are represented us-

ing a declarative model of visuo-locomotive interactions,

encompassing dynamics of humans, objects, and the envi-

ronmental characteristics.

• Human Body Pose The human body is represented

using a declarative model of the body-structure (see

Fig. 2), within this model we ground the human body-

pose in 3D-data of skeleton joints and body-parts ob-

tained from RGB-D sensing.

• Semantics of the Environment The semantic structure

of the environment is represented using a topological

map corresponding to the floor-plan of the environ-

ment extracted from 3D point-clouds obtained from

3D-SLAM data.

Using these models, visuo-locomotive interactions, involv-

ing humans, robots, and objects can be declaratively ab-

stracted by the spatio-temporal characteristics of the in-

volved domain-objects, and may be used for high-level in-

terpretation and reasoning about scene dynamics.

3.2. SpatioTemporal Characteristics
of Human Activities

The space-time histories (sth) used to abstract the dynam-

ics of human activities are based on basic spatio-temporal

entities obtained from the sensed data, corresponding to

the declarative model of visuo-locomotive interactions. To

extract these entities, we define functions for the specific

spatio-temporal properties of domain-objects. I.e., the fol-

lowing functions are used for static spatial properties.

– position: O× T → R × R × R, gives the 3D position

(x,y,z) of an object o at a time-point t;

– size: O× T → R, gives the size of an object o at a

time-point t;

– distance: O× O× T → R, gives the distance between

two objects o1 and o2 at a time-point t;

– angle: O× O× T → R, gives the angle between two

objects o1 and o2 at a time-point t;

To account for changes in the spatial properties of domain-

objects we use the following functions for dynamic spatio-

temporal properties.

– movement velocity: O× T × T → R, gives the

amount of movement of an object o between two time-

points t1 and t2;

– movement direction: O× T × T → R, gives the di-

rection of movement of an object o between two time-

points t1 and t2;

– rotation: O× T × T → R, gives the rotation of an ob-

ject o between two time-points t1 and t2;

These functions are used to obtain basic spatial entities, e.g.

points, lines, regions, from the sensor data. Spatio-temporal

relationships (R) between the basic entities in E may be

characterised with respect to arbitrary spatial and spatio-

temporal domains such as mereotopology, orientation, dis-

tance, size, motion, rotation (see Table 1 for a list of con-

sidered spatio-temporal abstractions). E.g, let D1, . . . , Dn

be spatial domains (e.g. the domain of axis-aligned rect-

angles). A spatial relation r of arity n (0 < n) is defined

as:

r ⊆ D1 × · · · ×Dn.

The spatio-temporal dynamics of the scene can then be rep-

resented based on the relations holding between the objects

in the scene, and the changes with in them.
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Figure 3: Commonsense Spatial Reasoning with Space-Time Histories Representing Dynamics in Everyday Human Activities

Interaction (Θ) Description

pick up(P,O) a person P picks up an object O.
put down(P,O) a person P puts down an object O.
reach for(P,O) a person P is reaches for an object O.
pass over(P1, P2, O) a person P1 passes an object O to another

person P2.

Interaction (Θ) Description

moves into(P, FS) a person P enters a floor-plan structure FS.
passes(P, FS) a person P passes through a floor-plan

structure FS.

Table 2: Sample Interactions Involved in Everyday Human

Activities: Human Object Interactions and Peoples Locomo-

tive Behaviour

Spatio-temporal fluents are used to describe proper-

ties of the world, i.e. the predicates holds-at(φ, t) and

holds-in(φ, δ) denote that the fluent φ holds at time point

t, resp. in time interval δ. Fluents are determined by the

data from the depth sensing device and represent qualita-

tive relations between domain-objects, i.e. spatio-temporal

fluents denote, that a relation r ∈ R holds between basic

spatial entities ε of a space-time history at a time-point t.

Dynamics of the domain are represented based on changes

in spatio-temporal fluents (see Fig. 3), e.g., two objects ap-

proaching each other can be defined as follows.

holds-in(approaching(oi, oj), δ) ⊃ during(ti, δ) ∧ during(tj , δ)∧

before(ti, tj) ∧ (distance(oi, oj , ti) > distance(oi, oj , tj)).

(1)

Interactions. Interactions Θ = {θ1, θ2, ..., θi} describe

processes that change the spatio-temporal configuration of

objects in the scene, at a specific time; these are de-

fined by the involved spatio-temporal dynamics in terms

of changes in the status of space-time histories caused by

the interaction, i.e. the description consists of (dynamic)

spatio-temporal relations of the involved space-time histo-

ries, before, during and after the interaction (See Table 2

for exemplary interactions). We use occurs-at(θ, t), and

occurs-in(θ, δ) to denote that an interaction θ occurred at

a time point t or in an interval δ, e.g., a person reaching for

an object can be defined as follows.

occurs-in(reach for(oi, oj), δ) ⊃ person(oi)∧

holds-in(approaching(body part(hand, oi), oj), δi)∧

holds-in(touches(body part(hand, oi), oj), δj)∧

meets(δi, δj) ∧ starts(δi, δ) ∧ ends(δj , δ).

(2)

These definitions can be used to represent and reason about

people interactions involving people movement in the en-

vironment, as well as fine-grained activities based on body

pose data.

4. Application:

Grounding Visuo-Locomotive Interactions

We demonstrate the above model for grounding everyday

activities in perceptual data obtained from RGB-D sensing.

The model has been implemented within (Prolog based)

constraint logic programming based on formalisations of

qualitative space in CLP(QS) [7].
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Figure 4: RGB-D data of Human Activities with Corresponding Skeleton Data

Human Activity Data

RGB-D Data (video, depth, body skeleton): We collect

data using Microsoft Kinect v2 which provides RGB and depth

data. The RGB stream has a resolution of 1920x1080 pixel

at 30 Hz and the depth sensor has a resolution of 512x424

pixels at 30 Hz. Skeleton tracking can track up to 6 per-

sons with 25 joints for each person. Further we use the

point-cloud data to detect objects on the table using table-

top object segmentation, based on plane detection to detect

the tabletop and clustering of points above the table. For

the purpose of this paper simple colour measures are used

to distinguish the objects in the scene.

3D SLAM Data (3d maps, point-clouds, floor-plan

structure): We collect 3D-SLAM data using Real-Time

Appearance-Based Mapping (RTAB-Map) [20], which di-

rectly integrates with the Robot Operating System (ROS)

[22] for self localisation and mapping under real-time con-

straints. In particular, for semantic grounding presented in

this paper, we use the point-cloud data of the 3D maps ob-

tained from RTAB-Map to extract floor-plan structures by,

1) detection of vertical planes as candidate wall-segments,

2) pre-processing of the wall-segments using clustering and

line-fitting, and 3) extraction of room structures based on

extracted wall-segments and lines.

Plane Detection. Planes in the point-cloud data are de-

tected using a region-growing approach based on the nor-

mals of points. To extract candidate wall-segments, we se-

lect planes, that are likely to be part of a wall, i.e., horizon-

tal, and sufficiently high or connected to the ceiling. These

planes are then abstracted as geometrical entities, specified

by their position, size, and orientation (given by the nor-

mal), which are used for further analysis.

Clustering and Line-Fitting. The detected wall-segments

are grouped in a two-stage clustering process using density-

based clustering (DBSCAN) [15], in the first step we cluster

wall-segments based on their 2D orientation, in the second

step, we align all wall-segments based on the average orien-

tation of the cluster they are in and cluster the wall-segments

based on the distance between the parallel lines determined

by the wall-segments. We use least square linear regression

to fit lines to the resulting wall clusters, which provide the

structure of the environment.

Extracting Room Structures. Candidate structures for

rectangular rooms and corridors are determined by the in-

tersection points of the lines fitted to the wall clusters by

considering each intersection point as a possible corner of

a room or a corridor. The actual rooms and corridors are

then selected based on the corresponding wall segments,

projected to the lines.

Ex 1. Human-Object Interactions

Sample Activity: “Making a Sandwich”. The activity of

making a sandwich is characterised with respect to the inter-

actions between a human and its environment, i.e. objects

the human uses in the process of preparing the sandwich.

Each of these interactions is defined by its spatio-temporal

characteristics, in terms of changes in the spatial arrange-

ment in the scene (as described in Sec. 3). As an result

we obtain a sequence of interactions performed within the

track of the particular instance of the activity, grounded in
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RGBD SLAM - Input Data

extract 2D wall-segments

Plane Detection

Orientation Clustering Aligned Distance Clustering Line-Fitting

Extracting Room Structure based on Line Intersections and Wall-Segments

Clusters and Average Orientation of Clusters Points in each Cluster

room1

corridor2

connectionconnection

corridor1

connection

room2

corridor3

Figure 5: Extracting Floor-Plan Semantics from 3D SLAM Data

the spatio-temporal dynamics of the scenario. As an exam-

ple consider the sequence depicted in Fig. 4, the interactions

in this sequence can be described as follows:

“Person1 reaches for the bread, picks up a slice of bread,

and moves the hand together with the bread back to the

chopping board.”

The data we obtain from the RGB-D sensor consists of 3D

positions of skeleton joints and tabletop objects for each

time-point.

at(joint(id(0), person(id(1))),

tracking_status(2),

pos_3d(point(0.230083,-0.0138919,2.05633)),

time_point(2168577589)).

at(joint(id(1), person(id(1))),

tracking_status(2),

pos_3d(point(0.228348,0.275798,1.98048)),

time_point(2168577589)).

...

at(object(id(0)), type(bread),

pos_3d(point(0.223528,0.500194,1.92038)),

time_point(2168577589)).

...

Grounded Interaction Sequence Based on the sensed

body-pose data and the detected objects, a sequence of in-

teractions can be queried from the example sequences using

the interactive query answering mode of Prolog.

?- grounded_interaction(

occurs_in(Interaction, Interval), Grounding).

This results in all interactions identified in the example se-

quence and their respective grounding with respect to the

spatio-temporal dynamics constituting the interaction,

Interaction = reach_for(person(id(1)), object(bread)),

Interval = interval(t1, t3),

Grounding =

[holds_in(

approaching(

body_part(right_hand, person(id(1))), object(bread)),

interval(t1,t2)),

holds_in(

touching(

body_part(right_hand, person(id(1))), object(bread)),

interval(t2,t3)];

Interaction = pick_up(person(id(1)), object(bread)),

Interval = interval(t4, t6),

Grounding =

[occurs_at(

grasp(

body_part(right_hand, person(id(1))), object(bread)),

timepoint(t4),

holds_in(

attached(

body_part(right_hand, person(id(1))), object(bread)),

interval(t5,t8)),

holds_in(

move_up(body_part(right_hand, person(id(1)))),

interval(t5,t6))];

...

In particular, the interaction reach for(person(id(1)),
object(bread)) occurring between time-point t1 and

t3 is composed of the spatio-temporal pattern of

approaching, stating that the right hand of person

1 is approaching the bread during time-interval t1
to t2, and the pattern touching, stating that the

right hand of person 1 is touching the bread dur-

ing time-interval t2 to t3. Similarly the interaction

pick up(person(id(1)), object(bread)) is composed of

grasping, attachment and upwards movement, with the

difference, that grasping itself is an interaction, that can

be further grounded in movement dynamics. This kind of

declarative grounding can be used, e.g., for relational learn-

ing by demonstration, etc.

Ex 2. Visuo-Locomotive Interactions

Sample Activity: “Indoor Robot Navigation”. Robots

having to behave and navigate in environments populated

by humans have to understand human activities and inter-

actions and have to behave accordingly. In this context,

high-level abstractions of human everyday activities and the

semantics of the environment can be used to guide robot

decision-making to account for humans moving in the envi-

ronment.
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As an example consider a robot that has to move from

room1 to room2, during this movement the robot has to

pass through the corridor corridor2. The structure of the

environment is represented as follows:

floorplan_structure(id(room1), type(room)).

geom(id(room1), polygon([

point(33.04074928940648, 47.78135448806469),

point(41.95226523762394, 53.36407052934558),

point(44.20648040233633, 49.48777998147939),

point(35.17204967399538, 43.83961776145081)

])).

floorplan_structure(id(corr1), type(corridor)).

geom(id(corr1), polygon([

point(34.17204967399538, 42.83961776145081),

...

])).

floorplan_structure(id(room2), type(room)).

geom(id(room2), polygon([ ... ])).

...

Based on the extracted semantic floor-plan structure and the

detected people in the environment, the robot can make de-

cisions using high-level navigation rules, e.g. defining how

to behave in narrow passages, such as the corridor when

there are people in the corridor. E.g. we can define a rule

that a robot can only enter a corridor (the robot can exe-

cute the control action enter(Floorplan Structure, T )),
if there is no person in the corridor, or the person is pass-

ing the corridor in the same direction as the robot. For this

example we use a simple action language for planing the ac-

tions of the robot, in this context the predicate poss at(θ, t)
defines the spatio-temporal configuration, in which the con-

trol action θ can be executed.

poss_at(

enter(fp_struct(id(FS_ID), type(corridor))),

timepoint(T)) :-

not(holds_at(

inside(person(P_ID), fp_struct(FS_ID)),

timepoint(T))).

poss_at(

enter(fp_struct(id(FS_ID), type(corridor))),

timepoint(T)) :-

holds_at(

inside(person(P_ID), fp_struct(id(FS_ID), _)),

timepoint(T)),

occurs_in(

passing(person(P_ID), fp_struct(id(FS_ID), _), Dir1),

interval(I)),

time(during(T, I)),

trajectory(person(P_ID), P_Path, interval(I)),

planed_trajectory(R_Path),

movement_direction(P_Path, Dir1),

movement_direction(R_Path, Dir2),

same_direction(Dir1, Dir2).

The above rules state that the robot can only ex-

ecute the control action enter(fp struct(id(FS ID),
type(corridor))) if one of the two rules is true. The first

rule simply states that the robot can enter the corridor if

there is no person in the corridor. The second rule states,

that if there is a person inside the corridor, and the person is

passing through the corridor, the robot can enter the corri-

dor, if the trajectory of the person passing through the corri-

dor and the planed path of the robot are passing the corridor

in the same direction.

In this way, high-level semantic behaviour descriptions can

be used for guiding low-level robot controls, such as path

planning, etc.

5. Summary and Outlook

Visuo-locomotive sensemaking for practical cognitive

robotics in contextualised settings with humans, mobility,

and human-machine interaction is a complex endeavour re-

quiring integrative methodologies combining the state of

the art from several research areas such as vision, AI, HCI,

and engineering. Our research emphasis the particular merit

of combining visual processing with semantic knowledge

representation and reasoning techniques rooted in artificial

intelligence, particularly commonsense reasoning. We have

presented a declarative commonsense model for ground-

ing embodied visuo-locomotive interactions; the proposed

model —consisting of a formal characterisation of space,

time, space-time, and motion patterns— is geared towards

knowledge representation and reasoning capabilities such

as commonsense abstraction, learning, reasoning, embod-

ied simulation. With a particular focus on the representation

of space-time histories and motion patterns, the model is il-

lustrated with select RGB-D datasets corresponding to rep-

resentative activities from a larger dataset of everyday ac-

tivities. Immediate next steps involve integration with state

of the art robot control platforms such as ROS; this will

be accomplished via integration into the ExpCog common-

sense cognition robotics platform for experimental / sim-

ulation purposes, and within openEASE as a state of the

art cognition-enabled control of robotic control platform for

real robots.2
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