
2017 ICCV Challenge: Detecting Symmetry in the Wild

Christopher Funk1,∗ Seungkyu Lee2,∗ Martin R. Oswald3,∗ Stavros Tsogkas4,∗

Wei Shen5 Andrea Cohen3 Sven Dickinson4 Yanxi Liu1

1Pennsylvania State University, University Park, PA. USA
2Kyung Hee University, Seoul, Republic of Korea 3ETH Zürich, Switzerland
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Abstract

Motivated by various new applications of computational

symmetry in computer vision and in an effort to advance

machine perception of symmetry in the wild, we orga-

nize the third international symmetry detection challenge

at ICCV 2017, after the CVPR 2011/2013 symmetry de-

tection competitions. Our goal is to gauge the progress in

computational symmetry with continuous benchmarking of

both new algorithms and datasets, as well as more polished

validation methodology. Different from previous years, this

time we expand our training/testing data sets to include 3D

data, and establish the most comprehensive and largest an-

notated datasets for symmetry detection to date; we also ex-

pand the types of symmetries to include densely-distributed

and medial-axis-like symmetries; furthermore, we establish

a challenge-and-paper dual track mechanism where both

algorithms and articles on symmetry-related research are

solicited. In this report, we provide a detailed summary

of our evaluation methodology for each type of symmetry

detection algorithm validated. We demonstrate and ana-

lyze quantified detection results in terms of precision-recall

curves and F-measures for all algorithms evaluated. We

also offer a short survey of the paper-track submissions ac-

cepted for our 2017 symmetry challenge.

1. Introduction

The real world is full of approximate symmetries ap-

pearing in varied modalities, forms and scales. From in-

sects to mammals, intelligent beings have illustrated effec-

tive recognition skills and smart behaviors in response to

symmetries in the wild [9, 15, 38, 48], while computer vi-

∗Contributed equally, order chosen alphabetically

sion algorithms under the general realm of computational

symmetry [24] are still lagging behind [13, 25].

Our Symmetry Detection in the Wild challenge, affil-

iated with the International Conference in Computer Vi-

sion (ICCV) 2017 in Venice, Italy, is the third in a se-

ries of symmetry detection competitions aimed at sustained

progress quantification in this important subfield of com-

puter vision. The first symmetry detection competition [51],

funded through a US NSF workshop grant, was held in con-

junction with CVPR 2011, and offered the first publicly

available benchmark for symmetry detection algorithms

from images. The second symmetry competition, held dur-

ing CVPR 2013 [22, 52], started to build comprehensive

databases of real world images depicting reflection, rotation

and translation symmetries respectively. In addition, a set

of standardized evaluation metrics and automatic evaluation

algorithms were established, solidifying the computational

foundation for validating symmetry detection algorithms.

A historic overview of symmetry detection methods can

be found in [25, 32]. There has been much recent work

in symmetry detection since the last symmetry competition

in 2013 [22], including new deterministic methods [2, 46,

49], deep-learning methods [14, 42], and other learning-

based methods [45]. New applications include Symme-

try reCAPTCHA [13], 3D reconstruction [8, 12, 43], im-

age segmentation [4, 19], and rectification and photo edit-

ing [27, 37]. Many of these algorithms are featured in our

challenges as baseline algorithms. Levinshtein et al. [18]

detected straight, ribbon-like local symmetries from real

images in a multiscale framework, while Lee et al. [17]

extended the framework to detect curved and tapered lo-

cal symmetries. Pritts et al. [37] detect reflection, rota-

tion and translation symmetry using SIFT and MSER fea-

tures. The symmetries are found through non-linear opti-

mization and RANSAC. Wang et al. [49] use local affine in-
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variant edge correspondences to make their algorithm more

resilient to perspective distortion contours. Teo et al. [45]

detect curved-reflection symmetry using structured random

forests and segment the region around the curved reflection.

Sawada and Pizlo [39] exploit mirror symmetry in a 2-D

camera image for 3-D shape recovery.

Motivated by various new applications of computational

symmetry in computer vision, our third challenge expands

our training/testing data sets to include 3D data, establish-

ing the most comprehensive and largest annotated datasets

for symmetry detection to date. We expand the types of

symmetries to cover reflection, rotation, translation [25] and

medial-axis-like symmetries in 2D and 3D synthetic and

real image data, respectively. We also distinguish symme-

try annotations between discrete, binary pixel labels and

densely-distributed, continuous firing fields reflecting a gra-

dation in degrees of symmetry perception. We have further

refined our evaluation method to include F-measures in all

standardized precision-recall curves for comparison.

In terms of the symmetry challenge organization, we

have established a challenge-and-paper dual track mech-

anism where both algorithms and articles on symmetry-

related research are solicited. For the challenge track, we

have quantitatively evaluated 11 challenge-track submis-

sions against 13 baseline algorithms. In paper track, we

have accepted five paper-track submissions after an exten-

sive review process. Detailed information, datasets and re-

sults of this symmetry challenge can be found on the work-

shop website1.

2. Symmetry Challenge Track

We have divided our evaluation of the datasets

in the symmetry challenge track into sparse versus

dense/continuous labels, as well as 2D versus 3D symme-

tries.

2.1. General Evaluation Methods

For all challenge track evaluations, we use the standard

precision-recall and F-score evaluation metrics [14, 22, 29,

47]. Precision measures the number of true positives: this

is the number of detected medial points that are actually

labeled as positives in the ground-truth:

P =
true positives

true positives + false positives
. (1)

Recall measures the number of ground-truth positives that

are successfully recovered by the algorithm:

R =
true positives

true positives + false negatives
. (2)

Intuitively, precision is a measure of the accuracy of each

detection, while recall measures detection completeness.

1https://sites.google.com/view/symcomp17/

These two measures give us a quantitative means of eval-

uating each algorithm. To gain further insight into the dif-

ferences between the algorithms, we can evaluate precision

and recall by altering threshold values in the evaluation or

prediction confidences to create a plot of a PR-curve that

illustrates the trade-off between precision and recall.

One can summarize the performance of an algorithm

(and select the optimal threshold) using the harmonic mean

of precision and recall, which is called the F-measure or

F-score:

F =
2 · P ·R

P +R
. (3)

F-measure offers a convenient and justified single-value

score for system performance comparison.

2.2. 2D Symmetry ­ Sparse Evaluation

The 2D sparse evaluated symmetry competition includes

challenges on the detection of reflection and translation

symmetry. The total number of images and symmetries for

each task is shown in Table 1.

2D Challenge

Sparse
Type # Images # Symmetries

Reflection single 100/100 100/100

multiple 100/100 384/371

Translation frieze 50/49 79/85

Table 1. The total number of images and symmetries within each

2D challenge in the training/testing sets.

2.2.1 Reflection and Translation Datasets

We have expanded and added new data sets beyond pre-

vious symmetry competitions [22]. The images are col-

lected from the Internet and are annotated by symmetry re-

searchers. For reflection symmetry, we divide the analysis

into images containing either a single symmetry or multiple

reflection symmetries. For translation, we tested the state-

of-the-art algorithm(s) for 1D translation (frieze) symmetry.

The reflection symmetry annotations are line segments

defined by two endpoints (Figure 1). Each translation sym-

metry annotation is a grid of points connected to create a

lattice of quadrilaterals (Figure 2). For baselines, reflection

uses Loy and Eklundh [26] and Atadjanov and Lee [3], and

translation uses Wu et al. [54]. The evaluation metrics for

each of these are similar to the previous symmetry compe-

tition [22].

Reflection Evaluation Metrics For the evaluation of re-

flection axis detection, we measure the angle difference be-

tween the detected and ground-truth axes and the distance

from the center to the ground truth line segment. We use

the same threshold values t1 (angle difference) and t2 (dis-

tance) used in [22]. Multiple detections for one ground truth
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Figure 1. Example annotations of the 2D Reflection dataset. Blue

lines are reflection symmetry axes.

Figure 2. Example annotations of the 1D translation (frieze) sym-

metry dataset.

axis are counted as one true positive detection, but none of

them is counted as a false positive. We vary the confidence

of the detections in order to create a precision-recall curve

for each algorithm.

Translation Evaluation Metric We use the same

distance-minimizing cost-function to align the detected and

ground truth lattices as [35]. A detected quadrilateral tile is

correct if it is matched with a ground truth lattice tile and the

ratio of the matched tile areas is between 40% and 200%.

We calculate the tile-success-ratio (TSR) [22] for each de-

tected lattice. Similar to [22], we calculate true positives as

images where a lattice is detected with a TSR > τ , where

τ is a threshold we vary from [0,1]. False positives are im-

ages where the best detected lattice has TSR ≤ τ , and false

negatives are images where there was no lattice detected in

the image.

2.2.2 Sparse Evaluation Results

The results for the reflection symmetry challenge are shown

in Figures 3 and 4. Baseline methods achieve the best re-

sults on both single (Atadjanov and Lee [3] F=0.52) and

multiple (Loy and Eklundh [26] F=0.30) reflection sym-

metry detections with respective highest F-measures. Loy

and Eklundh [26] has shown robust performance on various

datasets, including our previous competition. Atadjanov

and Lee is one of the state-of-the-art methods reported in the

literature. Elawady [11] shows a higher recall rate than oth-

ers on the single symmetry dataset and is the top-performing

Figure 3. PR curve on 2D Single Reflection Symmetry Dataset.

The algorithms are Michaelsen and Arens [30], Elawady et

al. [11], Guerrini et al. [16], Cicconet et al. [7], Loy and Eklundh

[26] (baseline), and Atadjanov and Lee [3] (baseline).

Figure 4. PR curve on 2D Multiple Reflection Symmetry

Dataset. The algorithms are Michaelsen and Arens [30],

Elawady et al. [11], Loy and Eklundh [26] (baseline), and Atad-

janov and Lee [3] (baseline).

method among all challenge submissions on both 2D reflec-

tion symmetry detection datasets.

For 1D translation symmetry, the baseline outperformed

the submission of Michaelsen and Arens [30] (Figure 5).

These results indicate much room for improvement for the

detection of frieze patterns in natural images.

2.3. 2D Symmetry ­ Dense Evaluation

For dense evaluation the annotation is a binary map and

the algorithm output is a confidence map, thresholded at

multiple values to create the PR curve, with both of the

maps have the same size as the input image (Figure 6. The

evaluation is conducted per pixel rather than per reflection
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Figure 5. PR curve on 1D Translation (Frieze) Symmetry

Dataset. The algorithms tested are the challenger, Michaelsen and

Arens [30], and the baseline Wu et al. [54].

Original

Image

GT Map

Overlay
GT Map

Confidence

Map Overlay

Figure 6. Examples of the original image, dense annotations map

(both overlaid and by itself), and an algorithm’s confidence map

overlaid on the image. The ground truth is evaluated by comparing

each pixel from the annotation and each pixel from the algorithm

output. The top row image is from the Sym-COCO dataset and

the algorithm is from Funk and Liu [14]. The bottom row image

is from the BMAX500 dataset and the algorithm is from Tsogkas

and Kokkinos [47].

symmetry or medial axis basis. An example of a dense (per

pixel) labeling is shown in Figure 7 (thickened for visibil-

ity), Figure 8 (with yellow lines), and in Figure 9 right.

2.3.1 Sym-COCO

The Sym-COCO task challenges algorithms to detect hu-

man perceived symmetries in images from the MS-COCO

dataset [20] and the ground truths are collected via Ama-

zon Mechanical Turk. The details on the collection and

the creation of the ground truth labels are described in

Funk & Liu [13, 14]. The dataset contains 250 train-

ing and 240/211 testing images for reflection/rotation (the

same testing set as [14]) detained in Table 2. The cur-

rent state-of-the-art baseline algorithm is the deep convo-

lutional neural network from Funk & Liu [14] (Sym-VGG

and Sym-Res). We also compare against Loy and Ek-

Figure 7. Example annotations of reflection (lines) and rotation

(circles) from the Sym-COCO dataset.

lundh’s algorithm [26] (LE), Tsogkas and Kokkinos’s algo-

rithm [47] (MIL), the Structured Random Forest method of

Teo et al. [45] (SRF), the Deep Skeleton method of Shen et

al. [41, 42] (LMSDS,FSDS), and the challenge submission

from Michaelsen and Arens [30].

This challenge and dataset are unique because they are

based on human perception rather than the 2D symmetry

contained within the image data. This goes beyond the

mathematical definition of symmetry because the human

perception of symmetry is invariant to out-of-plane rotation

and incomplete symmetries. Some example images with la-

bels are shown in Figure 7.

2.3.2 Medial Axis Detection

For the task of medial axis detection we use two datasets

recently introduced in the community. Since manually an-

notating medial axis/skeleton annotations in natural im-

ages with high precision can be cumbersome and time-

consuming, we followed a practical approach that has been

adopted in previous works [40, 41, 42, 47]. Specifically,

we apply a standard binary skeletonization technique [44]

on the available segmentation masks to extract ground-truth

medial axes that will be used for training and evaluation. In

this way, we obtain high-quality annotations for both loca-

tion and scale of each medial point.

Below we list dataset statistics in more detail and high-

light their differences.

SK-LARGE was introduced in [41], which consists of

1491 cropped images from MS-COCO [20] (746 train, 245

validation, 500 testing). The objects in SK-LARGE be-

long to a variety of categories, including humans, animals

(e.g., birds, dogs and giraffes), and man-made objects (e.g.,

planes and hydrants).

BMAX500 is the second dataset used for the Medial Axis

Detection challenge. It was introduced in [46] and is built

on the popular BSDS500 dataset [1, 28]. BMAX500 con-

tains 500 images that are split into 200 images for training,

100 images for validation, and 200 images for testing.

The original set of BSDS500 annotations contains seg-

mentations collected by 5-7 human annotators per image,

without any object class labels. As a result, there is no way
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Figure 8. Images and ground-truth annotations (in yellow) from

the SKLARGE dataset. Only skeletons of foreground objects are

annotated.

Figure 9. Image (left), ground-truth segmentation (middle) and

ground-truth medial axis (right) from the BMAX500 dataset. In

BMAX500, we do not distinguish between foreground and back-

ground.

Dataset
# Images

train/valid./test

fg/bg

distinction

# Symmetries

train/test
Sym-COCO [14] 250/–/240 – 1535/1469

BMAX500 [46] 200/100/200 no –

SKLARGE [41] 746/245/500 yes –

Table 2. The total number of images in the dense evaluation

dataset, if the datasets have foreground (fg) or background (bg)

distinction in the segmentations, and the number of symmetries.

to distinguish between foreground and background, which

makes BMAX500 an appropriate benchmark for evaluating

a more general, class-agnostic medial axis detection frame-

work. This is an important difference with respect to the

SK-LARGE dataset, which is particularly focused on ob-

ject skeletons.

2.3.3 Dense Evaluation Metrics

The algorithms examined in this part of the challenge out-

put a real-valued map of probabilities or “symmetry/medial

point strength” at each location in the image, rather than bi-

nary yes/no decisions. We turn this soft confidence map into

a binary result of detected reflection symmetry/medial axis,

by thresholding it at different values and plot the precision-

recall curves as described in Section 2.1.

Detection slack. Both the ground-truth and the detected

medial axes are thinned to single-pixel width in order to

standardize the evaluation procedure. Now, consider two

false positives returned by the tested algorithm, which are

1 pixel and 10 pixels away from a ground-truth positive. It

would be unreasonable to penalize both of these false de-

tections in the same way, since the first one is much closer

to a true reflection symmetry axis/medial point.
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Figure 10. PR curve for the Sym-COCO Reflection dataset for

the 240 images and all GT labels (solid line) and for the subset

of 111 reflection symmetry images with GT labels containing at

least 20 labelers (dashed line), and the maximum F-measure values

(dot on the line). The algorithms are the challenger Michaelsen

and Arens [30] (MA), Funk and Liu [14] (Sym-VGG and Sym-

Res - the baselines), Loy and Eklundh [26] (LE), Tsogkas and

Kokkinos [47] (MIL), Teo et al. [45] (SRF), and Shen et al. [42]

(FSDS).

We “forgive” such wrong yet reasonable detections by

introducing a detection slack: all detected points within d

pixels from a ground-truth positive are considered as true

positives. We typically set d as 1% of the image diago-

nal [29].

2.3.4 Dense Evaluation Results

The Sym-COCO reflection challenge results are shown in

Figure 10. The scores are the mean precision and recall,

calculated among the images. The new challenger algo-

rithm by Michaelsen and Arens [30] did not fair well in the

competition and was surpassed by other algorithms. The

algorithms which incorporate learning using additional im-

ages from outside this training set faired much better (all but

Loy and Eklundh [26] and Michaelsen and Arens [30]) and

the deep learning approaches (Funk & Liu [14] and Shen et

al. [42]) predictably did the best. Funk & Liu [14], the base-

line algorithm, took the top spot in the competition.

The results for medial axis detection are shown in Fig-

ures 11 and 12. The challenger algorithms beat the base-

line algorithms for both datasets. In general, we observe

that recent methods based on supervised deep learning out-

perform other learning-based and unsupervised, bottom-up

approaches [47, 46].

2.4. 3D Symmetry

This part of the symmetry detection challenge only con-

siders reflection symmetries of single 3D objects or within

larger 3D scenes given as polygonal meshes.
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Figure 11. PR curves on the BMAX500 dataset. The algo-

rithms are: MIL-color [47] (baseline), AMAT [46] (baseline), and

RSRN [21]. Human agreement on the dataset (extracted by com-

paring one human annotation to all the others) is also included.

The performance of methods that do not involve threshold selec-

tion is represented as a single dot, which corresponds to the opti-

mal F-score.
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Figure 12. PR curves on the SKLARGE dataset. The algo-

rithms are: MIL-color [47] (baseline), LMSDS [41] (baseline),

and SegSkel [23]. Dots correspond to the optimal F-score.

2.4.1 Datasets and Annotation

The 3D dataset is split according to the following three dif-

ferent properties:

• Synthetic vs. Real Data: The annotation of real data

is costly while large labeled synthetic datasets, which

are often required for learning-based methods, can be

easily obtained. Therefore, it is natural to select a

combination of the two. The synthetic data is a col-

lection of free, publicly available 3D models obtained

from Archive3D [50]. The real datasets are kinect

scans of real world scenes and are taken from the pub-

licly available datasets that accompany two papers by

Choi et al. [5, 6] as well as from the work of Speciale et

al. [43].

• Global vs. Local Symmetries: The difference be-

tween global and local symmetries is that the symme-

try property respectively holds either for the entire do-

main or only for a local region of the domain. In the

literature, local symmetries are sometimes also called

partial symmetries [31, 32].

• Training vs. Test Data: The test and training datasets

have similar properties and data statistics. Correspond-

ing ground truth data is made publicly available for

the training dataset. Furthermore, performance eval-

uations on the test dataset will be performed upon

request and subsequently published on the workshop

website [53].

Figure 13 depicts some example scenes from the 3D dataset.

The total number of scenes and symmetries for each task is

shown in Table 3.

3D Synthetic Data Annotation. The synthetic data for

global symmetries only contains single objects. Ground

truth symmetries were found by sampling a set of symmetry

planes and rejecting the ones for which the planar reflective

symmetry score [36] is below a threshold. These objects

are originally axis-aligned which may bias learning-based

methods. We therefore provide a dataset of over 1300 axis-

aligned objects and their annotations as well as their ran-

domly rotated counterparts. The synthetic data for local

symmetries is a collection of scenes composed of objects

from the global symmetry dataset. The scenes were gen-

synthetic data real data

g
lo

b
a

l
sy

m
m

et
ry

lo
ca

l
sy

m
m

et
ry

Figure 13. Overview of available scenes in the 3D symmetry

dataset which is split by synthetic vs. real data and local vs. global

symmetries, shown with ground truth symmetry annotations.
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3D Challenge Type # Scenes # Symmetries

Global Reflection Synthetic 1354/441 1611/614

Real 20/20 21/22

Local Reflection Synthetic 200/200 1939/2239

Real 21/21 44/46

Table 3. The total number of scenes and symmetries within each

3D challenge in the training/testing sets.

erated with a script that places a desired number of sym-

metric objects with arbitrary translation, rotation and scale

on top of a table. The script is available on the challenge

website [53] and allows for the generation of an arbitrary

amount of training data. A precomputed training dataset

with 200 scenes is directly available for download.

3D Real Data Annotation. The real world data was an-

notated manually with the help of a 3D editor and model

viewer that directly overlays the semi-transparent geometry

of the reflected scene. In this way, one can instantly assess

the quality of the fit while adjusting the symmetry plane.

2.4.2 Evaluation Metrics

Similar to the 2D case, the 3D planar reflective symmetries

are evaluated according to the position and orientation of

the symmetry plane with respect to the ground truth. A cor-

rect detection (true positive) is credited if both the position

of the symmetry plane center and the orientation are suffi-

ciently close to the ground truth plane.

Let (c, n) denote a symmetry plane given by the center

point c ∈ R
3 on the plane and the plane’s normal vector

n ∈ R
3, and let (cGT, nGT) be the corresponding ground

truth symmetry. The symmetry is rejected if the angular dif-

ference between the symmetry normals is above a threshold

θ, i.e. if arccos(|n · nGT|) > θ. In practice, symmetries

are given by three points x0, x1, x2 ∈ R
3 which span the

symmetry plane and also define a parallelogram that bounds

the symmetry. Center point and normal are then given by

c = 1

2
(x1 + x2), n = (x1 − x0)× (x2 − x0). A symmetry

is also rejected if the distance of the tested center c to the

ground truth plane restricted to the bounding parallelogram

is larger than a threshold: ‖c−ΠGT(c)‖2 > τ .

Precision-recall curves are generated by linearly varying

both thresholds within the intervals θ ∈ [0, 45◦] and τ ∈
[0, 2] ·min{x1 − x0, x1 − x0, x1GT − x0GT, x1GT − x0GT}.

2.4.3 Results

Ecins et al. [10] submitted results for the real and synthetic

test data set for local symmetries, which are shown in Fig-

ure 14 and Figure 15, respectively. The curve in Figure 14

is very short since there are not many variations due to the
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Figure 14. PR curve on the real local symmetry test dataset.

Results for Ecins et al. [10]. The dot corresponds to the optimal

F-score.
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Figure 15. PR curve on the synthetic local symmetry dataset.

Results for Ecins et al. [10]. The dot corresponds to the optimal

F-score.

small size of the test dataset. Generally, the method com-

putes symmetries with high accuracy for the ones it has de-

tected. Figure 16 presents the results by Cicconet et al. [7]

on the synthetic global test dataset.

3. Symmetry Paper Track

In the paper track of the workshop, full-length submis-

sions were each reviewed by two members of the Organiz-

ing and/or Advisory Committees. In all, five papers were

accepted for inclusion in the proceedings and presentation

at the workshop.

In “Wavelet-based Reflection Symmetry Detection via

Textural and Color Histograms” [11], Elawady et al. ad-

dress the problem of detecting global symmetries in an im-

age, in which extracted edge-based features are used to vote

for symmetry axes based on color and texture information

in the vicinity of the extracted edges.

In “SymmSLIC: Symmetry Aware Superpixel Segmen-

tation” [34], Nagar and Raman offer a new twist on the su-
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Figure 16. PR curve on the synthetic global symmetry test

dataset. Showing the results of Cicconet et al. [7]. The dot corre-

sponds to the optimal F-score.

perpixel segmentation problem. If a set of corresponding

pixels can be detected that exhibit approximate reflective

symmetry about an axis, these points can serve as seeds for

a SLIC-inspired superpixel segmentation algorithm where

superpixels that encompass these symmetric seeds are si-

multaneously grown such that they, too, are symmetric.

In “SymmMap: Estimation of 2-D Reflection Symmetry

Map with an Application” [33], Nagar and Raman compute

a symmetry map representation consisting of two compo-

nents: the first specifies, for each pixel, the location of its

symmetric counterpart, while the second provides a confi-

dence score for the mapping.

In “On Mirror Symmetry via Registration and the Op-

timal Symmetric Pairwise Assignment of Curves” [7], Cic-

conet et al. address the problem of detecting the plane of re-

flection symmetry in Rn by registering the points reflected

about an arbitrary symmetry plane, and then inferring the

optimal symmetry plane from the parameters of the trans-

formation mapping the original to the reflected point sets.

In “Hierarchical Grouping Using Gestalt Assessments”

[30], Michaelsen and Arens describe a framework for us-

ing various types of symmetry (e.g., reflection, Frieze rep-

etition, and rotational symmetry) to organize nonaccidental

arrangements (Gestalten) into hierarchies that take into ac-

count image location, scale, and orientation.

4. Conclusions

Our evaluation of 11 different symmetry challenge track

submissions against 13 baseline algorithms gives us a

glimpse of the state-of-the-art of symmetry detection algo-

rithms in computer vision. It is somewhat surprising that

among the six algorithms evaluated, Loy and Eklundh’s

algorithm of ECCV 2006 [26] remains competitive in de-

tecting reflection symmetries on 2D images, in particular

on detecting multiple reflection symmetries (F=0.30), while

for detecting a single reflection symmetry in an image the

baseline algorithm of Atadjanov and Lee [17] is the best

(F=0.52). On frieze pattern detection from images, the F-

scores of both baseline [54] and challenger [30] are rela-

tively low (F=0.19-0.20). Seven algorithms are evaluated

on the Sym-COCO dataset for reflection symmetry detec-

tion, for which the Funk and Liu [14] CNN baseline algo-

rithm trained with human labels stands out (F=0.38-0.41).

Moving on to medial-axis detection on real images, the

good news is that the challengers RSRN [21] (F=0.64) and

SegSkel [23] (F=0.73) beat the baseline algorithms as the

winner on the BMAX500 and SKLARGE datasets respec-

tively, yet they still score worse than humans (F=0.80).

The 3D symmetry detection algorithms [7, 10] evaluated

in this symmetry challenge demonstrated high promise on

synthetic and real data sets respectively. But larger dataset

and more algorithms are needed for a more comprehensive

validation and comparison in the future.

There seems to be a general trend of an ascending or-

der in symmetry detection performance of learning-based

algorithms, deep-learning methods, and human, which sug-

gests that we have much to learn from human perception.

Though progress has been made, detecting symmetry in the

wild has proven to be a real challenge facing the computer

vision community and, more generally, the artificial intelli-

gence community. We anticipate that future advancements

on mid-level machine perception will benefit from the out-

come (algorithms, labeled datasets) of our ICCV 2017 De-

tecting Symmetry in the Wild Challenge.
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