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Abstract

In this paper, we propose a Rich Side-output Residual

Network (RSRN) for medial axis detection for the ICCV

2017 workshop challenge on detecting symmetry in the

wild. RSRN uses the rich features of fully convolutional

network by hierarchically fusing side-outputs in a deep-to-

shallow manner to decrease the residual between the detec-

tion result and the ground-truth, which refines the detection

result hierarchically. Experimental results show that the

proposed RSRN improves the performance compared with

baseline on both SKLARGE and BMAX500 datasets.

1. Introduction

Medial axes are pervasive in visual objects such as na-

ture creatures and artificial objects. Symmetric parts and the

connections between them, or their interconnection, consti-

tute a powerful part-based decomposition of objects shapes,

providing valuable cues for tasks like image segmentation,

foreground extraction, object proposal, and text-line detec-

tion. The problem of medial axis detection has received in-

creased attention in recent years. Liu et al. have held sym-

metry detection competitions in CVPR 2011 [8] and CVPR

2013 [6], promoting the symmetry detection in natural im-

ages. In ICCV 2017, Liu et al. held a new competition, in

which medial axis becomes one task [1].

In this paper, we build a fully convolutional network,

named Rich Side-output Residual Network (RSRN), for

medial axis detection. RSRN is motivated by the success of

image-to-mask deep learning approaches, i.e., Side-output

Residual Network (SRN) [5] for object symmetry detection

and Richer Convolutional Features (RCF) [7] for edge de-

tection. SRN takes a coarse to fine strategy of stage side-

outputs of VGG [10], and RCF takes the rich side-outputs

of VGG, to refine the classification map hierarchically .

Experimental results show that the proposed RSRN re-

spectively achieves 6.08% and 0.67% improvement com-

pared with the baseline RCF and SRN on SKLARGE val-
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idation dataset. With multi-scale combination, we further

obtain 2.35% performance gain.

2. Methodology

To make the paper self-contained, SRN [5] and RCF [7]

are first reviewed. The architecture of Rich Side-output

Residual Network (RSRN) is then described.

2.1. Review of SRN and RCF
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Figure 1. Illustration of (a) SRN and (b) RCF.

Side-outputs of convolutional stages are deeply super-

vised in both SRN [5] and RCF [7]. The difference be-

tween SRN and RCF is the strategy of constructing the side-

output.

SRN: It takes a coarse-to-fine strategy with Residual

Units (RU), Fig. 1(a). For each convolutional stage, the side

convolutional layer is added on the last layer of the stage.

Hierarchical fusing is then utilized to reduce the residual

between the input of RU and the ground-truth. The final

output is the output of the last stacked RU.

RCF: It uses all the convolutional layers in each stage

considering the receptive fields have trivial difference. In-

stead of adding the side convolutional layer directly, RCF

first uses an element-wise summarization of convolutional

layers in one stage, then computes side-outputs. The final

output is the weighted average of the side-outputs, as shown

in Fig. 1(b).
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2.2. Rich sideoutput residual network

To take advantages of SRN and RCF, there are two

modes to integrate them together. The first one integrates

the Residual Unit to the side-output of RCF. The second

uses rich side-outputs of each convolutional layer to con-

struct Rich Side-output Residual Network (RSRN). Lastly,

a multi-scale combination strategy is used.

2.2.1 Base architecture

In the base architecture, Residual Units are stacked on the

side-outputs of RCF, Fig. 2. We denote the side-output as

si and the output of RU as ri. ri is computed as

ri = wr
i ⊗ (ri−1 +c si), (1)

where wr
i is a 1 × 1 convolutional kernel to implement the

weighted-sum function and +c denotes the relative oper-

ation of concatenating. The deeply supervised output di
(dsnout) is computed as

di = Sigmoid(ri). (2)

In this case, pixel-wise feature combination is fulfilled

before the side-output. An element-wise sum layer connects

the two layers, as

si = wi ⊗

∑

j

si,j , (3)

where wi is a 1 × 1 convolutional kernel to be used as a

pixel classifier, and si,j is the pixel-wise feature map of the

j−th convolutional layer of i−th stage in VGG [10].

2.2.2 Architecture of RSRN

Rich side-output contains more information than stage side-

output, as its receptive field size is different for each convo-

lutional layer. It motivates us to fuse the rich side-output

with RU to build the Rich Side-output Residual Network

(RSRN), Fig. 3.

In RSRN, we use the convolutional response map of

VGG as the pixel-based hyper-column feature. Each layer

has an output, as

si,j = wi,j ⊗ ci,j , (4)

where wi,j is a 1 × 1 convolutional kernel to be used as

a pixel classifier and ci,j is the response map of the j−th
convolutional layer of i−th stage in VGG. All 12 RUs are

staked in RSRN, and fused together to get the final output.
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Figure 2. The base architecture integrating RCF and SRN.
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Figure 3. The RSRN architecture.
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Figure 4. Multi-scale combination.
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2.2.3 Multi-scale combination

Multi-scale combination has been successfully used in im-

age segmentation [3] and edge detection [7]. This motivates

us to utilize it in medial axis detection, Fig. 4. Specifically,

we resize input images at three scales to obtain images at

different resolutions. For each scale, RSRN is used to de-

tect the medial axis. And all the outputs are averaged after

rescaling. In Fig. 4, it’s illustrated that the medial axis of the

body is well extracted with high resolution, and the medial

axes of arms are well extracted with low resolution.

3. Experimental results

In this section, we discuss the implementation of RSRN

in detail and compare RSRN with other approaches for me-

dial axis detection. All the experiments are performed with

NVIDIA Tesla K80.

3.1. Implementation

Dataset: The SKLARGE [9] and BMAX500 [11] are

used to evaluate the proposed RSRN.

SKLARGE contains 746 training images, 245 validation

images, and 500 testing images. SKLARGE is focused on

the medial axis of foreground objects. The medial axis is

the skeleton of the instance segmentation mask of object. It

is challenging with a variety of object categories and scale

variance.

BMAX500 is derived from BSDS500 dataset [2], with

200 images for training, 100 images for validating, and 200

images for testing. Each image in BSDS500 is annotated

with several volunteers (usually 5-7 per image). Similar

with SKLARGE, by extracting segment skeletons on all the

annotated segmentation masks of the image, the medial axis

ground-truth is obtained. In BMAX500, both foreground

and background are considered to extract a medial axis.

Protocol: The precision-recall metric with maximum F-

measure is used to evaluate the performance of medial axis

detection [12], as

F =
2PR

P +R
(5)

Given a threshold, the prediction is firstly transferred to a

binary map, with which the F-measure is computed. By ad-

justing the threshold, the maximum F-measure is obtained.

Data augmentation: In [5], Ke et al. discuss the data

augmentation for medial axis training in deep learning ap-

proaches. We follow the data augmentation manner in [5],

by rotating each image every 90 degree and flip it with dif-

ferent axes. The multi-scale augmentation is not used as the

one-pixel width ground-truth suffers from image resizing.

Model parameters: Following the setting of SRN [5],

we train RSRN by fine-tuning the pre-trained 16-layer VGG

net [10]. The hyper-parameters of RSRN include: mini-

batch size (1), learning rate (1e-6 for SKLARGE and 1e-8
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Figure 5. The scatter diagram of precision-recall with the best F-

measure.

methods F-measure (%) Runtime (s)

HED [13] 58.55 0.050

RCF [7] 62.44 0.055

SRN [5] 67.85 0.052

RCFSRN (ours) 65.09 0.059

RSRN (ours) 68.52 0.067

HED M 63.32 0.202

RCF M 66.45 0.233

SRN M 70.01 0.213

RCFSRN M (ours) 67.62 0.283

RSRN M (ours) 70.87 0.297
Table 1. F-measure on SKLARGE validation dataset.

for BMAX500), loss-weight for each RU output (1.0), mo-

mentum (0.9), initialization of the nested filters (0), weight

decay (0.002), and maximum number of training iterations

(20,000, about 2 epochs for SKLARGE and 6 epochs for

BMAX500). In the testing phase, a standard non-maximal

suppression algorithm [4] is applied on the output map to

obtain thinned edges and symmetry.

3.2. Performance on SKLARGE

We compare the medial axis detection performance on

the SKLARGE validation dataset with HED [13], RCF

[7]and SRN [5]. The results are achieved by running the

source codes of the methods on a GPU platform. HED is

the footstone of all the other methods which are constructed

based on HED with additional layers.

The F-measure and the runtime are shown in Table 1

and the Precision-Recall scatter diagram is shown in Fig.

5. HED achieves the F-measure of 58.55%. Base archi-

tucture is just a little better than RCF and is not as good as

SRN. The initialization of RCF, i.e., the deepest side-output,
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Figure 6. Illustration of medial axis detection results on the

SKLARGE validation dataset. First to last rows are image,

ground-truth, the results of HED [13], RCF [7], SRN [5], base,

RSRN, and RSRN M, respectively.

is the rough combination of three convolutional layers with

different receptive fields in stage-5 of VGG. In RSRN, hi-

erarchical fusing of stage-5 is used to produce the initial

results. Our RSRN takes the structure of SRN with the

rich side-outputs, and gets the best performance of 68.52%,

which improves the baseline RCF and SRN by 6.08% and

0.67%. It is demonstrated that all the convolutional layers

contain helpful information, not only the last one in each

stage. HED runs fastest with 0.50s per image and all the

other methods are a little slower than HED.

From Table 1, it is observed that multi-scale is an effi-

cient way to get better medial axis detection result by pair

comparison, at the cost of computational efficiency. The

RSRN M achieves 2.35% performance gain compared with

single scale RSRN, and the runtime is almost four times of

SRN.

The medial axis detection results are shown in Fig. 6

for qualitative comparison which shows that without RU the

HED and RCF produce significant noise.
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Figure 7. Illustration of medial axis detection results on the

BMAX500 validation dataset. First to last rows are image, ground-

truth, the results of SRN [5], and the proposed RSRN, respectively.

methods F-measure (%) Runtime (s)

SRN 51.95 0.100

SRN M 48.99 0.397

RSRN 57.48 0.113

RSRN M 49.66 0.470
Table 2. F-measure on the BMAX500 validation dataset.

3.3. Performance on BMAX500

The medial axis detection results on the BMAX500 vali-

dation dataset are shown in Table 2. We show the results of

RSRN and multi-scale RSRN as it achieves the best per-

formance on SKLARGE. From Table 2, RSRN achieves

the F-measure of 57.48% and multi-scale RSRN gets the F-

measure of 49.66%. In BMAX500, multi-scale is not com-

petitive because BMAX500 considers the medial axis on

both foreground and background with complicated images.

Fig. 7 shows some detection results.

4. Conclusion

In this paper we propose an RSRN approach for medial

axis detection. On one hand, we use rich side-outputs of

VGG rather than stage side-outputs, which are more infor-

mative. On the other hand, we take the advantage of the

output residual, reducing the residual between rich side-

outputs and the ground-truth, which refines the detection

result hierarchically. Experimental results show that RSRN

significantly outperforms the baseline on both SKLARGE

and BMAX500 datasets.
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