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Abstract

Background subtraction is the primary task of the major-

ity of video inspection systems. The most important part of

the background subtraction which is common among differ-

ent algorithms is background modeling. In this regard, our

paper addresses the problem of background modeling in a

computationally efficient way, which is important for cur-

rent eruption of ”big data” processing coming from high

resolution multi-channel videos. Our model is based on

the assumption that background in natural images lies on

a low-dimensional subspace. We formulated and solved

this problem in a low-rank matrix completion framework.

In modeling the background, we benefited from the in-face

extended Frank-Wolfe algorithm for solving a defined con-

vex optimization problem. We evaluated our fast robust ma-

trix completion (fRMC) method on both background models

challenge (BMC) and Stuttgart artificial background sub-

traction (SABS) datasets. The results were compared with

the robust principle component analysis (RPCA) and low-

rank robust matrix completion (RMC) methods, both solved

by inexact augmented Lagrangian multiplier (IALM). The

results showed faster computation, at least twice as when

IALM solver is used, while having a comparable accuracy

even better in some challenges, in subtracting the back-

grounds in order to detect moving objects in the scene.

1. Introduction

Background subtraction or foreground detection is the

principle task of almost every video inspection algorithm

before operating further processing designed for a particu-

lar computer vision application. In essence, a robust back-

ground subtraction is achieved by creating a model of the

background, as depicted in Fig. 1. The performance of

the background subtraction algorithm depends on how well

the background model can adapt to the slight and sudden

changes of the background scenes. Recently, a huge body

of work in this area has focused on modeling the back-

Figure 1: Standard structure common in the majority of the robust back-

ground subtraction methods.

ground as a low-dimensional subspace in the high dimen-

sional space of video frames.

Following the modeling of the background as a low-

dimensional subspace, there are various ways to formu-

late the task of background subtraction as an optimiza-

tion problem, which has been employed in different works

[7, 12, 15, 36]. Although these methods perform well in

background/foreground separation, they are designed based

on a quadratic optimization problem with heavy structural

properties in their iterations. Therefore, the issue of low

speed and high memory usage of these methods makes them

impractical for online video inspection and prevents them

from scaling to big data domain.

1.1. Prior Works in Background Modeling

The most common modeling of the background is based

on the probabilistic modeling, which is first proposed in

Stauffer and Grimson [29] and then modified by Hayman

and Eklundh [14]. In this method, which is called Gaussian

mixture model (GMM), distribution of the pixel colors is es-

timated by sum of different Gaussian distributions and the

parameters of each distribution are learned through an on-

line expectation maximization (EM) algorithm. Although

GMM can manage the slight changes in the background il-

lumination, immediate variations of the background often

appear in the foreground. Moreover, if the initial video

frames used for the parameter learning are noisy, the trained

model will substantially suffer from the noise. In order to
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improve the performance of the GMM approach, there are

various works trying to make this algorithm more robust to

noise by proposing different learning methods or modifying

the adaptation of the algorithm [9, 30, 37]. Beside GMM,

fuzzy and neuro-fuzzy background subtraction methods are

also classified as probabilistic background modeling. Au-

thors in [28] provided a comprehensive review of these

methods and their performance evaluation.

Another class of algorithms for modeling the back-

ground is based on the implicit or explicit decomposition

of an observation matrix into a low-rank matrix and an ad-

ditive part. Robust principle component analysis (RPCA)

was the first problem formulation for this matrix decompo-

sition, which decomposes a matrix into a superposition of a

low-rank and a sparse matrix [7]. Inspired by RPCA, var-

ious problem formulations for decomposing a matrix into

a low-rank matrix and an additive matrix were proposed

such as non-negative matrix factorization (NMF), robust

subspace tracking (RST), robust matrix completion (RMC),

and robust low-rank minimization (RLRM) [12, 15, 21, 36].

The main difference between these methods is the opti-

mization problem defined by each method and the solver

that they used to tackle the problem. Practically, in all of

the above methods, background sequence is modeled as the

low-rank/low-dimensional subspace and the moving objects

form the outliers, which are represented by an additive ma-

trix to the low-rank matrix. Although these algorithms work

visually well in modeling the background and its gradual

changes over time, they are based on an optimization prob-

lem that requires to be solved by computationally expensive

iterations. Despite various efforts on reducing their com-

putational complexity, it seems that none of them are able

to address the challenges of large scale datasets in videos

from real-world applications. A survey on background sub-

traction algorithms with low-dimensional subspace learning

framework can be found in [2, 3, 27]. below, a short review

on the state-of-the-art works regarding the above mentioned

methods is provided.

Initial work on RPCA as one of the methods based on de-

composing a matrix into a low rank and a sparse matrix was

developed in parallel by three research groups [7, 8, 33].

They all addressed this problem under minimal assumption

by solving a convex optimization problem called principle

component pursuit (PCP). After the initial effort, many al-

gorithms have been proposed to solve the PCP making an

attempt to reduce the computation and memory cost of the

problem [19, 20, 26, 35]. Inexact augmented Lagrangian

multiplier (IALM) is a successful effort in this regard for

solving the problem of RPCA based on the augmented La-

grangian multiplier (ALM) algorithm without taking the un-

necessary singular value decomposition (SVD) steps [18].

Works categorized in NMF framework are constructed

on decomposing a matrix into a product of two non-negative

matrices. Conventional methods of NMF are designed to

model the Gaussian or Poisson distributions, so they try

to fit one of two mentioned distribution to the background

and foreground. Consequently, they do not perform well

for background/foreground separation, where their distri-

bution has thick tail. Nonetheless, there have been works

improving the performance of NMF algorithms for back-

ground modeling using different distance/loss functions

[12, 16, 17, 32]. RST algorithms try to address track-

ing of non-stationary subspaces or in other words, online

separation of the foreground and background. Associated

subspaces can have low-rank or sparse structures similar

to previously discussed methods. Following the idea of

RST, there are different algorithms, which try to separate

background and foreground iteratively using incremental

gradient descent constrained on Grassmannian manifolds

[15, 34]. Likewise, both RMC and RLRM methods work

based on representing the background as a low-rank matrix.

1.2. Our Contribution

Natural videos with static background as the main region

of the frames due to the high correlation among frames can

be modeled as a low-rank matrix with gross perturbations.

Based on this assumption, we propose a method, named fast

robust matrix completion (fRMC) to model the background

in the framework of matrix completion in order to detect the

foreground without any prior knowledge about the moving

objects. To recover the low-dimensional subspace spanning

the background, we formed a quadratic optimization prob-

lem, as stated in Equation (3). For solving the correspond-

ing convex optimization problem, which results in a low-

dimensional representation of the background, we benefited

from the computationally efficient algorithm of in-face ex-

tended Frank-Wolfe method proposed in [11]. Changing

the problem formulation and using this solver resulted in

more than two times faster computation, while preserving

the performance compared to the RPCA with IALM solver.

In our proposed fRMC, designed based on the in-face

extended Frank-Wolfe solver, iterations start from a rank-1

matrix and SVD gets updated in each iteration based on the

previous SVD. In this procedure rank of the updated ma-

trix increases in each iteration by at most one. In contrast,

IALM which is currently known as the efficient solver for

the RPCA and matrix completion (MC) problems computes

a partial SVD in each iteration. Partial SVD returns the sin-

gular values of a high rank matrix greater than a specific

value. The rank of the updated matrix in IALM monotoni-

cally increases with higher slope in each iteration. Since we

do not need to calculate SVD in each iteration, the fRMC

is considerably faster in high-dimensional data processing.

Furthermore, there is no need to store the whole matrix rep-

resenting the background. Instead, we only have to store the

left and right hand side singular vectors with singular values
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of a low-rank matrix.

Underlying idea inherited from the original Frank-Wolfe

method for solving a convex quadratic optimization is solv-

ing a linear optimization sub-problem in each iteration to

update the next iteration. In-face extended Frank-Wolf

makes the iterations as low as possible, while keeping the

error in objective function in desired level by proposing the

in-face direction in updating phase. Updating the next it-

eration toward in-face direction without increasing the rank

makes this solver efficient in scaling to huge-size convex

optimization, which has shown increasing interest in the

computer vision field.

We evaluated the computational complexity and func-

tionality of our proposed fRMC compared to RPCA and

RMC both solved with IALM. Evaluation were according

to two publicly available datasets including the background

models challenge (BMC 2012) and the Stuttgart artificial

background subtraction (SABS) datasets.

2. Methodology

Problem Formulation: Given an observation matrix V

consisting of each video frame as its columns, the objective

is to recover the underlying low-rank matrix, B, from the

foreground perturbations F as:

min rank(B) s.t. V = B+F (1)

where the recovered low-rank matrix B works as the back-

ground model for the observed video. In the following, we

first describe the way that we implicitly separate the mov-

ing objects from the background using the framework of

the matrix completion as presented in Section 2.1. This new

formulation allows us to employ a more efficient solver with

lower iterations as well as lower computations in each iter-

ations, which results in our computationally efficient fRMC

method. The details of this solver called in-face extended

Frank-Wolf is given in Section 2.2. In Section 2.3, to pro-

vide a comparison platform, we then give an overview on

the RPCA and how it is used for modeling the background

using explicit decomposition of a matrix into a low-rank

and sparse matrix. RPCA is the most common formulation

for the low-rank representation of the background when it

is solved with PCP [7]. As RPCA has shown promising re-

sults for the background subtraction, we implemented this

method using the IALM solver introduced in [18] and com-

pared results of our proposed problem formulation with this

algorithm. In addition, in order to compare the performance

and speed of our suggested solver with IALM for the same

optimization problem, we used IALM for our problem for-

mulation in Equation (1) in a form of a conventional ro-

bust matrix completion (RMC) algorithm. The performance

evaluation and comparison results are given in Section 3.

2.1. Matrix Completion Framework

One way to think about the background subtraction prob-

lem is to consider the background throughout the video

as a collection of high-dimensional data lying in a low-

dimensional subspace due to the high correlation of the

backgrounds among video frames. So far, most of the opti-

mization problems formulated for modeling the background

as a low-rank matrix have imposed the sparse structure to

the representing matrix of the foreground by l1-norm min-

imization. However, it is not the only way to impose spar-

sity. As it is theoretically and experimentally shown, under

mild conditions, Frobenius norm can be effective in impos-

ing sparsity [23–25]. Considering this theory, we modeled

the background as a low-dimensional subspace and implic-

itly impose sparsity to the foreground by minimizing the

Frobenius norm, which is strictly convex compared to us-

ing l1-norm minimization. In order to form our optimization

problem we used the low-rank matrix completion (LRMC)

concept.

In LRMC, we have a partially observed data matrix

D ∈ R
n1,n2 containing n2 observations, each of dimension

n1, which only a fraction of its entries are available and the

task is to predict unobserved entries of the D matrix. Ma-

trix Z ∈ R
n1,n2 is the estimated matrix of D containing the

prediction of unobserved entries. In general, without any

assumption on the underlying structure of the estimated ma-

trix Z, this problem is ill-posed and the data matrix can be

filled up with any real values. The most common assump-

tion without having any prior knowledge about the data dis-

tribution is to restrict matrix Z to a low-rank matrix [11].

This assumption is accurate in many real applications with

high dimensionality, including background subtraction or

moving object detection. The relaxed optimization problem

of the LRMC is stated as:

min f (z) := 1/2 ∑
(i, j)∈Ω

(zi j−di j)
2 s.t. ||Z||⋆ < δ (2)

where f (·) is the least squares error between the available

observed data entries di j and estimated data entries zi j, and

Ω is the subset containing all indices of observed entries.

|| . ||⋆ indicates the nuclear norm of a matrix, which is de-

fined as sum of its singular values, and δ is the constraining

upper band for the nuclear norm ball of estimated low-rank

matrix Z. It is assumed that the observed entries are con-

taminated by noise with bounded energy and minimizing

the ||Z||⋆ imposes the low-rank constraint on the estimated

matrix.

Although in the background subtraction context we do

not have any missing data, instead we want to recover the

background from observations corrupted by foreground (as

noise). Considering the fact that background is lying on a

low-dimensional subspace compared to the space domain

of the video frames, task of the background subtraction can
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be restated in the LRMC framework. If data matrix V is

formed by arranging the video frames in each column of it,

in order to recover the background from video frames, we

estimate the low-rank matrix B out of the uncontaminated

entries of the observed video V. On the other hand, fore-

ground is the difference of the estimated background video

and the original video, which in the LRMC is the sparse

bounded energy perturbation of the background. Low-rank

background model in the context of the LRMC is restated

in solving the following optimization problem:

min ||B−V||2F s.t. ||B||⋆ < δ (3)

where || . ||F indicates the Frobenius norm of a matrix de-

fined as root sum squared of matrix entries, and (B−V) is

related to the foreground perturbations in videos.

2.2. Extended FrankWolfe Method for LRMC

Basically, LRMC optimization formulation is a specific

case of RPCA objective function, therefore this problem

can be solved using the IALM method. However, IALM

has scaling problem to massive datasets, which arise in im-

age/video processing. Multi-channel videos usually have

millions of dimensions, hence implementation of IALM,

considering that it requires taking an SVD in each itera-

tion, is not a feasible solution. One of the algorithms de-

signed for convex problems with better scalability is Frank-

Wolfe method and its extensions featuring linear conver-

gence [11, 13, 22]. In order to recover the substantial low-

rank matrix B, which represents the background throughout

video frames, we have used in-face extended Frank-Wolfe

algorithm proposed in [11].

In fact, Equation (2) is an example of a more gen-

eral problem as below, which is addressed by Frank-Wolf

method:

f ⋆ := min f (x)
x∈S

(4)

where S is a closed and bounded convex set, and f (·) is a

differentiable convex function defined on subset S. Original

Frank-Wolfe method finds the sub-optimal solution for this

problem based on the procedure described in Algorithm. 1.

Ci is the optional lower bound for the optimal objective

function f ⋆ and is updated in steps 3 and 4 of each iteration.

This lower bound is effective in conditioning the number of

iterations. ᾱi is the updating step size, which can be selected

by line-search or simple rule of ᾱi := 2
i+1

. There are strong

mathematical verification for the computational guarantee

of Frank-Wolf method [10]. The main computational load

of the Frank-Wolf algorithm is solving the linear optimiza-

tion problem in step 2 of Algorithm. 1.

In this work, we used in-face extended Frank-Wolfe

method to solve the problem of foreground detection intro-

duced in Equation (3). This method computes and works

Algorithm 1: Original Frank-Wolfe method for the op-

timization problem in Equation (4).

Result: x⋆

initialization: x0, lower bound: C−1, i← 0 ;

while not converged do

1. compute ∇ f (x);

2. x̃i← argmin{ f (xi)+∇ f (xi)
T (x− xi)} ;

3. Cω
i ← f (xi)+∇ f (xi)

T (x̃− xi);
// updating the best bound

4. Ci←max{Ci−1,C
ω
i };

// updating x

5. xi+1← xi + ᾱi(x̃i− xi), ᾱi ∈ [0,1];

end

with points that have specific structure of low-rank in the

case when x is a data matrix. The main advantage of this

algorithm toward optimizing the objective function f (x) is

iterating in low-dimensional faces of S. Such low-rank iter-

ation not only make the output solution low-rank, but also

result in an essential reduction in computation cost. This

method adopted for the specific problem of foreground de-

tection in Equation (3) is presented in Algorithm. 2. In this

algorithm, Bi = UDVT denotes the SVD of the current it-

eration, and ui and vi are the left and right singular vec-

tors corresponding to the largest singular values of the ma-

trix ∇ f (Bi). At step 2 of each iteration, algorithm works

for the ”in-face” direction qi which preserves the next es-

timated point in the minimal face FC(B
i). In step 4, algo-

rithm chooses between three possible next steps: Bi
b that

lies in the relative boundary of the current minimal face,

Bi
a that may not lie in the relative boundary of the current

minimal face, and a regular Frank-Wolf update in step 4(c).

Each of these steps are chosen based on the decrease in the

optimality bound gap criterion:

1

f (Bi
b/a

)−Ci

≥ 1

f (Bi)−Ci

+
γ1/2

2L̄D̄2
(5)

where Bi
a and Bi

b are the two in-face candidates for the next

update of the Bi. L̄ is the Lipschitz constant of the gradient

of f (.) on nuclear norm ball, and D̄ is the diameter of the

convex bounded set in the optimization problem, which in

our case is the diameter of the nuclear norm ball equal to

2δ . γ1 and γ2 are two constants that control the convergence

properties of the algorithm. When we want the criterion

in Equation (5) be easily satisfied particularly in low-rank

matrix completion, γ1 and γ2 are preferred to be lower than

higher.

Defining the problem of background subtraction as the

convex optimization problem in Equation (3) and benefiting

from high performance in-face extended Frank-Wolf with

verified convergence properties to solve the proposed prob-
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Algorithm 2: In-face extended Frank-Wolfe method

for the optimization problem in Equation (3).

Result: B⋆

Input: V;

Constants: 0≤ γ1 ≤ γ2 ≤ 1, L̄≥ L = 1, D̄≥ D = 2δ ;

Definition: f (Bi) = 1/2||Bi−V||2F ,

∇ f (Bi) = (Bi−V), B•X := tr{BT X} ;

Initialization: B0←−δu0vT
0 , i← 0

lower bound : C−1←max{ f (0)+∇ f (0)};
while not converged do

1. ∇ f (Bi) = (Bi−V), Ci←Ci−1 ;

2. compute direction qi

B̂i← argmax ∇ f (Bi)•B; B ∈ FC(B
i)

qi← Bi− B̂i

case 1: in the case Bi ∈ int(C) and when

Bi ∈ ∂ (C)⇒ FC(B
i) =C

B̂i = δuiv
T
i ;

case 2: in the case

Bi ∈ ∂ (C), rank(Bi) = r⇒ Bi = UDVT

B̂i← UM̂iVT = δUuiu
T
i VT

3. compute step size

α
stop
i ←{α : Bi +αqi ∈ FC(B

i)};
Bi

b := Bi +α
stop
i qi;

Bi
a := Bi + β̄iq

i where β̄i ∈ [0,αstop
i ];

4. choose next iterate:

(a) if 1

f (Bi
b
)−Ci
≥ 1

f (Bi)−Ci
+ γ1

2L̄D̄2 :

Bi+1← Bi
a;

(b) if 1
f (Bi

a)−Ci
≥ 1

f (Bi)−Ci
+ γ2

2L̄D̄2 :

Bi+1← Bi
b;

(c) Else:

do the original Frank-Wolfe step with the

input xi = Bi and update lower bound

described in Algorithm. 1;

end

lem configure our fRMC method.

2.3. An Overview of Robust Principle Component
Analysis

Under two assumptions that the low-rank matrix is not

sparse and sparsity pattern of the sparse component is se-

lected randomly, RPCA can decompose a matrix into a su-

perposition of a low-rank matrix and a sparse matrix. De-

spite the differences between RPCA and matrix completion,

the recovery of the low-rank matrix in the RPCA can be

treated as a low-rank matrix completion. In this case, the

matrix completion deviates from recovering a low-rank ma-

trix from a fraction of its components to recovering a low-

rank matrix by having an unknown fraction of them avail-

able, while the rest of them are grossly corrupted [7]. J.

Candes in [7] approaches the problem of recovering the in-

complete and corrupted entries as a convex optimization:

min ||B||⋆+λ ||F||1 s.t. V = B+F (6)

where || . ||1 is l1-norm of a matrix defined as the sum of

absolute values of matrix entries, and λ is a positive regu-

larizing coefficient.

Efficient algorithm for this optimization is augmented

Lagrangian multiplier (ALM) introduced in [20, 35]. ALM

algorithm inspired from the theory that first-order iterative

thresholding algorithms can be used efficiently for both l1-

norm and nuclear-norm minimization [1, 5, 6]. The original

ALM is designed for solving the constrained optimization

problem of:

min f (X) s.t. g(X) = 0 (7)

where f : Rn1 → R and g : Rn1 → R
n2 . ALM algorithm

converts constrained problem in Equation (7) to an uncon-

strained problem by adding a penalty term that punishes vi-

olations from the equality constraint:

Lρ(X ,Y ) = f (X)+ 〈Y,g(X)〉+ ρ

2
||g(X)||2F (8)

where Y is a regularizer matrix, 〈Y,g(X)〉 is defined as

trace(YT × g(X)) and ρ is a positive scalar. ALM algo-

rithm formulation for the RPCA problem is identified as:

X = (B,F), f (X) = ||B||⋆+λ ||F||1,
g(X) = V−B−F.

(9)

then:

Lρ(B,F,Y) =

||B||⋆+λ ||F||1 + 〈Y,V−B−F〉+ ρ

2
||V−B−F||2F

(10)

The state-of-the art solver for the unconstrained optimiza-

tion problem in Equation (10) in terms of speed and com-

putational guarantee is the IALM, which its major computa-

tional cost is a partial SVD in each iteration. Considering n

as the max(n1,n2), it is shown that for incoherent B, correct

recovery occurs with high probability when the rank of B is

in the order of n/µ(logn)2, where µ > 1 and the number

of nonzero elements in F is on the order of n2. A choice of

λ = 1/
√

n works with high probability for recovering the

low-rank matrix [19, 20].

As we pointed out earlier, IALM solver can be used for

solving the unconstrained optimization problem related to

the low-rank matrix completion as a special case of the ob-

jective function of RPCA demonstrated as:

Lρ(B,Y ) = ||B||⋆+ 〈Y,V−B〉+ ρ

2
||V−B||2F (11)
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3. Experimental Analysis

3.1. Performance Evaluation on BMC Dataset

In order to validate and compare our proposed fRMC

formulation in terms of computational time and detection

performance, we tested fRMC, RPCA, and RMC on the

BMC 2012 dataset [31]. This dataset contains 9 real videos

included with encrypted ground-truth images of the fore-

ground to test the background models. The software given

by the website (called BMCWizard 1) measures two types

of metrics for performance evaluation: static quality metrics

and application quality metrics. Regarding the static quality

two scores are measured in this application: F-measure and

peak signal-noise ratio (PSNR). These two benchmarks are

introduced to evaluate the raw behavior of each algorithm

for moving object segmentation. Considering F as the set

of n foreground frames processed by the background sub-

traction algorithm, and G as the ground-truth images, these

two metrics are defined as follows:

F =
1

n

n

∑
i=1

2
Preci×Reci

Preci +Reci

where :

Reci(P) =
T Pi

T Pi +FNi

; Preci(P) =
T Pi

T Pi +FPi

;

Reci(N) =
T Ni

T Ni +FPi

; Preci(N) =
T Ni

T Ni +FNi

Reci = 1/2(Reci(P)+Reci(P));

Preci = 1/2(Preci(P)+Preci(P))

(12)

where for given frame i, T Pi and FPi are the true and false

positive detection, and T Ni and FNi are the true and false

negative detection. And,

PSNR =
1

n

n

∑
i=1

10log10

n1

∑
n1
j=1 ||Fi( j)−Gi( j)||2 (13)

where Fi( j) is the jth pixel of the image i (of size n1) in

the frame sequence F. For the application quality met-

rics that consider the problem of background subtraction

in a visual and perceptual way, BMCWizard calculates two

other benchmark: Structural similarity (SSIM) and D-score.

SSIM is calculated as:

SSIM(F,G) =
1

n

n

∑
i=1

(2µFi
µGi

+ c1)(2covFiGi
+ c2)

(µ2
Fi
+µ2

Gi
+ c1)(σ2

Fi
+σ2

Gi
+ c2)

(14)

where µFi
, µGi

are the means and σFi
, σGi

are the standard

deviations and covFiGi
is the covariance of the Fi and Gi.

c1 and c2 are two constants chosen as 6.5025 and 58.5225,

respectively. Associated to the application quality, D-score

1http://bmc.iut-auvergne.com/?page_id=63

considers localization of errors based on the real object po-

sition. To compute this benchmark, only mistakes in the

background subtraction algorithm is taken into account:

D− score(Fi( j)) = exp((− log2(2DT (Fi( j))−5/2)2)
(15)

where DT (Fi( j)) is given by minimal distance between the

pixel Fi( j) and the nearest reference point (here by Badde-

ley distance). With this metric, local/far errors will produce

a near zero D-score. In contrast, medium range errors pro-

duce high D-score; a good D-score tends to zero.

We tested our algorithm on six videos of the BMC

dataset in comparison with both RPCA and RMC. The per-

formance metrics calculated by BMCWizard are reported

in Table 1. As demonstrated by the results, with almost the

same performance (even better in some metrics) our fRMC

algorithm processes the same video in less than half of

the time required by RPCA. Experiments were executed in

MATLAB installed on a machine with Intel(R) Xeon(R)@

3.60GHz, 6 Cores CPU and 32GB RAM. Some examples

of background and foreground masks resulted from RPCA,

RMC and our fRMC background subtraction methods are

shown in Fig. 2. As you can see, all outcomes are very

comparable in mask detection.

3.2. Performance Evaluation on SABS Dataset

As the second part of our performance evaluation we

tested the functionality of fRMC, RPCA, and RMC algo-

rithms in background/ foreground separation on the SABS

dataset [4]. This dataset contains 9 artificial videos cov-

ering the typical challenges in the background subtraction.

The considered challenges are:

Gradual illumination changes: to measure the robust-

ness of the background models in gradual changes of the

environment (e.g. variation of light intensity in outdoor set-

tings).

Sudden illumination changes: considering the strong

changes in the background appearance, which can cause

false positive detection (e.g. sudden switch off).

Dynamic background: taking into account situations

with some moving components that are relevant to the back-

ground (e.g. traffic lights or trees).

Camouflage: one of the important challenges in back-

ground modeling especially in surveillance applications is

similar appearance of some objects to the background, mak-

ing the precise classification difficult.

Shadows: shadows are irrelevant areas that prevent the

classifier to separate the nearby foreground objects as they

overlap.

Video noise: inevitable issue in recording the video is

the sensor noise or compression artifact that degrades the

signal quality.
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Table 1: Computational time and benchmark metrics for the background subtraction task of our fRMC algorithm compared to RPCA and RMC evaluated

on the BMC dataset.

Algorithm Running time (min) F-measure D-score Precision PSNR Ssim

Big trucks

RPCA 18 0.68 0.010 0.80 26.98 0.92

RMC 29.6 0.76 0.0088 0.93 29.0 0.93

fRMC 8.4 0.79 0.0087 0.94 30.07 0.94

Wandering students

RPCA 6.2 0.87 0.0062 0.90 46.03 0.97

RMC 12 0.80 0.0094 0.94 42.93 0.97

fRMC 3.4 0.87 0.0061 0.90 46.11 0.97

Rabbit in the night

RPCA 28 0.60 0.0053 0.61 41.19 0.97

RMC 30.3 0.76 0.0035 0.91 48.04 0.98

fRMC 8.6 0.75 0.0037 0.85 47.42 0.99

Beware of the trains

RPCA 11.46 0.683 0.105 0.778 33.348 0.95

RMC 16 0.64 0.0091 0.83 32.94 0.95

fRMC 4.3 0.71 0.0084 0.89 34.3 0.96

Train in the tunnel

RPCA 14.2 0.63 0.0076 0.81 27.18 0.93

RMC 26.8 0.78 0.0085 0.90 30.59 0.94

fRMC 7.8 0.78 0.0086 0.91 30.59 0.94

(a) (b) (c)

Figure 2: Result of applying the three methods (a) RPCA, (b) RMC, and (c) fRMC on BMC wandering students video demonstrated for two different frames;

first row is the original frame, second row is the binary mask of the foreground by thresholding the detected foreground, and last row is the background

image.

Each video reflects one or more of the above challenges.

We tuned the parameters of the algorithms based on the

”Basic” video in the dataset and use the same parameters for

all the videos. The benchmark metrics and execution time

of each method are reported in Table 2. The metrics consist

of F-measure and precision defined in Equation (12) and

were measured using the evaluation framework provided by

the institute for visualization and interactive systems (VIS)

2. We demonstrated the result of applying the RPCA, RMC,

and fRMC on the SABS light switch video in Fig. 3. This

video covers the challenge of sudden illumination changes

and as you can see from the images, RMC cannot model the

background satisfactorily and the window is shown as part

of the foreground which confirms the low score of RMC in

Table 2 for this video.

2http://www.vis.uni-stuttgart.de/en/research/

information-visualisation-and-visual-analytics/

visual-analytics-of-video-data/sabs.html
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(a) (b) (c)

Figure 3: Result of applying the three methods (a) RPCA, (b) RMC, and (c) fRMC on SABS light switch video demonstrated for two different frames; first

row is the original frame, second row is the binary mask of the foreground by thresholding the detected foreground, and last row is the background image.

As you can see RMC fails in modeling the background in abrupt change of light.

Table 2: Computational time and benchmark metrics for the background

subtraction task of our fRMC algorithm compared to RPCA and RMC

evaluated on the SABS datasets.⋆shows the best result for each experiment

reported by VIS for SABS dataset.

Algorithm Running time (min) Precision F-measure

Basic

RPCA 9.2 0.734 0.775

RMC 45.0 0.732 0.778

fRMC 6.2 0.732 0.779

Best result⋆ - - 0.800

Light switch

RPCA 9.0 0.725 0.506

RMC 44.0 0.100 0.163

fRMC 6.3 0.705 0.495

Best result - - 0.316

Camouflage

RPCA 8.8 0.742 0.747

RMC 45 0.746 0.752

fRMC 5.6 0.746 0.753

Best result - - 0.820

No camouflage

RPCA 9.6 0.752 0.7649

RMC 44.3 0.751 0.769

fRMC 6.0 0.750 0.769

Best result - - 0.829

Noisy night

RPCA 9.0 0.889 0.539

RMC 44.2 0.725 0.527

fRMC 5.1 0.726 0.528

Best result - - 0.321

MPEG4 (40Kbps)

RPCA 9.5 0.662 0.779

RMC 44.6 0.715 0.777

fRMC 5.4 0.714 0.776

Best result - - 0.774

4. Conclusion

In this paper, we proposed our fast robust matrix comple-

tion (fRMC) method to address the problem of time efficient

background subtraction by finding the low-dimensional

subspace which background lies on that. For recovering the

associated subspace, we represented our problem in a ma-

trix completion framework, and benefited from the in-face

extended Frank-Wolfe algorithm to solve corresponding op-

timization problem. We validated our algorithm on the

BMC 2012 and SABS datasets in comparison with RPCA

and RMC algorithms both solved by IALM solver. With

almost the same performance or better in some videos, we

accomplished the task with less than half of the execution

time required for the RPCA and RMC.
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