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Abstract

In recent years, discriminative correlation filters based

trackers have shown dominant results for visual object

tracking. Combining the online learning efficiency of the

correlation filters with the discriminative power of CNN

features has aroused great attention. In this paper, we de-

rive a continuous convolution operator based tracker which

fully exploits the discriminative power in the CNN feature

representations. In our work, we normalize each individ-

ual feature extracted from different layers of the deep pre-

trained CNN first, and after that, the weighted convolution

responses from each feature block are summed to produce

the final confidence score. By this weighted sum operation,

the empirical evaluations demonstrate clear improvements

by our proposed tracker based on the Efficient Convolu-

tion Operators Tracker (ECO). On the other hand, we find

the 10-layers design is optimal for continuous scale esti-

mation, which contribute most to the performance. Finally,

our tracker ranks top among the state-of-the-art trackers

on VOT2016 dataset and outperforms the ECO tracker on

VOT2017 dataset.

1. Introduction

Visual object tracking has several applications such

as robotic services, traffic control, surveillance, human-

computer interactions and so on. Even though significant

progress has been made in this research area, tracking is

still a challenging problem due to fast motions, occlusions,

deformations, and illumination variations.

In recent years, the progress in deep learning spreads

to tracking field remarkably. In the meantime, discrimi-

nant correlation filters (DCF) based trackers [8, 14, 17, 18]

achieve the desired effect between accuracy and speed by

solving a ridge regression problem efficiently in Fourier

frequency domain. Combining the correlation filters with

CNN features has been done in several works [11, 16, 27,

23], which have shown that pretrained deep CNNs and

∗contributed equally

adaptive CFs are complementary and achieved state-of-the-

art results on many object tracking benchmarks [28, 20, 21].

Figure 1: Comparison of our tracker (in green) with the state-of-

art trackers , e.g. DeepSRDCF (in yellow), Staple (in blue) and

CCOT (in red). Example frames are shown from the motocross1

(top row) and fernando (bottom row) sequences. Our tracker is

able to handle the scale changes and avoid overfitting in these se-

quences, thereby increasing both the accuracy and robustness of

the tracker.

The recent advancement in DCF based tracking perfor-

mance is driven by the use of color information [14], robust

scale estimation [10], reducing boundary effects [12], non-

linear kernel [18] and multi-dimensional features [13, 7].

Different features would capture different channels of tar-

get information and result in a better performance. Never-

theless, learning deep convolutional features for correlation

filters based trackers is still not completely explored.

The tracker proposed in this paper is built upon a cor-

relation filters based tracker popularly known as the Ef-

ficient Convolution Operators Tracker (ECO) [7], an im-

proved version of the tracker C-COT [13]. C-COT has

achieved impressive results on the visual tracking bench-

mark [28, 20, 19] and ranked first in the VOT 2016 chal-

lenge [19]. On the other hand, ECO has addressed the prob-

lems of computational complexity and over-fitting in the C-

COT framework, with the aim of simultaneously improving
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both speed and performance.

Our main contributions are three folds and summarized

as follows:

• We exploit the great power in the CNN feature rep-

resentations and revise the feature extraction for ECO

tracker, which takes advantages of the multi-resolution

deep feature maps without any hand-crafted features

such as HOG [6] and Color Names [9].

• We propose the sum operation of the weighted con-

volution responses from each feature block. In our

work, we normalize each individual feature extracted

from different layers of the deep pretrained CNN first,

after that, the weighted convolution responses from

each feature block are summed to produce the final

confidence score. Based on the feature normalization

and the weighted sum operation, the Expected Aver-

age Overlap (EAO) [5] would be improved compared

to the original ECO [7] tracker.

• We find the 10-layers design is optimal for continuous

scale estimation, which is developed to determine the

scale of target object and improves the baseline by 2%.

Finally, our tracker achieved a very appealing perfor-

mance both in accuracy and robustness against the state-of-

the-art trackers on VOT2016 dataset [19] and outperforms

the ECO [7] tracker on VOT2017.

2. Related Work

For visual object tracking, correlation filters based meth-

ods have shown dominant and impressive results on many

object tracking benchmarks [28, 19, 20, 21]. Discrimina-

tive Correlation Filters (DCF) is one of the CF frameworks

that has achieved state-of-art results in Visual Object Track-

ing Challenge (VOT). Generally, it uses cyclic shifted sam-

ples [18] to train the correlation filters to discriminate be-

tween the target and background appearance.

Bolme et al. [4] proposed the MOSSE tracker, which

used the grey-scale image to extract single channel feature

with high speed. Later, Henriques et al. [18] utilized the

kernelized correlation filter (KCF) by introducing the ker-

nel trick into ridge regression [24]. KCF et al. [18] could

solve for the filter taps very efficiently by utilizing the circu-

lant structure of the underlying kernel matrix. Since then,

using correlation filters for tracking has attracted more at-

tention in visual object tracking. Due to the great power in

the CNN feature representations, Martin et al. [13, 7] uti-

lized deep convolutional features to learn more discrimina-

tive information.

The DCF based tracker C-COT [13] allows an integra-

tion of multi-resolution feature maps and hand-crafted fea-

tures, which is the best tracker in VOT 2016 challenge [19].

Based on the C-COT [13] framework, Martin et al. [13, 7]

proposed the ECO [7] tracker by using PCA to reduce the

dimensionality and introducing efficient generative sample

space model to boost the overall performance. Therefore,

the ECO [7] tracker could achieve better performance with

faster speed than the C-COT [13] tracker.

2.1. Based Framework

A theoretical framework for learning continuous convo-

lution operators is proposed in C-COT [13]. They intro-

duce an implicit interpolation model of the training samples.

Each sample xj contains D feature channels x1
j , x2

j , ..., xD
j ,

extracted from the same image patch. In the formulation, let

Nd denote the number of spatial samples in xd
j , which in-

dexed by the feature channel variable d ∈ {0, 1, 2...}. The

feature channel xd
j ∈ R

Nd is viewed as a function xd
j [n] in-

dexed by the discrete spatial variable n ∈ {0, ..., Nd − 1}.

The spatial support of the feature map is assumed to be the

continuous interval [0, T ) ⊂ R. The interpolation operator

Jd is constructed as:

Jd
{

xd
}

(t) =

Nd−1
∑

n=0

xd [n] bd

(

t−
T

Nd
n

)

, (1)

where bd ∈ L2 (T ), the Hilbert space, represents the inter-

polation function. As discussed, the confidences are defined

on a continuous spatial domain. Therefore, the convolution

operator maps a sample x ∈ χ to s (t) = Sf {x} (t). t ∈
[0, T ) denotes the location in the image. In the continuous

formulation, a set of convolution filters f =
(

f1, ..., fD
)

∈

L2 (T )
D

is estimated to construct the convolution operator.

The convolution operator is given by:

Sf {x} =

D
∑

d−1

fd ∗ Jd
{

xd
}

, x ∈ χ. (2)

Here, ∗ is the circular convolution operation : L2(T ) ×
L2(T ) → L2(T ). The interpolated sample Jd

{

xd
}

(t) is

convolved with its corresponding filter. Then, the convolu-

tion responses from all filters are summed to produce the

final confidence function Sf {x}.

In the continuous learning framework, each training

sample xj ∈ χ is labeled by confidence functions yj ∈
L2 (T ), the desired output of the convolution operator

Sf {xj}. Therefore, the correlation filter cost function is

the proposed formulation:

E(f) =

m
∑

j=1

αj ‖Sf (xj)− yj‖
2
+

D
∑

d=1

∥

∥wfd
∥

∥

2
. (3)

In the above relation, αj represents the importance of each

training sample, and the penalty function w ∈ L2(T ) is

a spatial regularization term. Note that
∥

∥wfd
∥

∥ < ∞ is
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required because w has many non-zero Fourier coefficients

ŵ[k]. By minimizing the function Eq.(3), the procedure is

derived to train the continuous filters f =
(

f1, ..., fD
)

∈

L2 (T )
D

.

In the object tracking framework, the minimization of

the functional is equivalent to solving the least squares prob-

lem, using the Conjugate Gradient method iteratively.

3. Method

In this section, we first present the integration of CNN

features used in this tracker, which help our tracker becom

lightweight but efficient. Then we discuss weighted sum

operation and model update strategy. Finally, we intruduce

our scale adaptation scheme, which contributes most to the

performance.

3.1. Integration of Convolutional Features

Hand-crafted features such as HOG [6] and CN [9] have

been used to represent the outline information of the ob-

ject and color information, which gain excellent perfor-

mance in visual tracking in the recent years. Due to the

advances of CNN, the quality of image recognition and

object detection has been progressing at a dramatic pace.

CNN features have been proved to be efficient and robust

in visual tracking. Therefore, we use popular VGG-M [26]

network pretrained on the ILSVRC [1] dataset to extract

multi-resolution convolutional features. Our model well in-

corporates both the deep but highly semantic features and

the shallow but high-resolution features of the image. We

ignore the fully-connected layers that contain little spatial

resolution, i.e., 1 × 1, which are not efficient to locate the

target.

Figure 2: The visualization of the grey-scale feature maps ex-

tracted from different convolutional layers of the employed net-

work. The RGB image denotes the input , after being resized with

certain proportion.

We visualize the grey-scale feature maps of the first five

convolutional layers. As shown in Figure 2, the first con-

volutional layer have much information about the outline of

the object, while the last convolutional layer is efficient to

discriminate the targets from the complicated background.

When merging the features extracted from different layers

of CNN, one must be careful to normalize each individ-

ual feature to make the combined features work well. As

the larger features dominate the smaller ones, simply con-

catenating features may lead to poor performance. At this

point, the weighted convolution responses from each layer

are summed to produce the final confidence score. Finally,

we choose the conv1 layer and the conv5 layer as the multi-

resolution deep feature maps without any handcrafted fea-

tures.

3.2. Weighted Sum Operation

As mentioned in Section 3.1, the spatial size of the con-

volutional features extracted from the VGG-M network are

respectively 109× 109, 26× 26, 13× 13, 13× 13, 13× 13,

while the input RGB image is 224 × 224 after the neces-

sary preprocessing steps. The size of conv5 feature map

is 13 × 13, whose area is approximately 0.12 as that of the

conv1 layer. There is supposed to be some imformation loss

when we simply regard the conv5 feature map is as impor-

tant as that of the conv1. Therefore, we assign larger weight

to the feature map of the conv5 layer.

The convolution responses from all filters are summed to

produce the final confidence function,

Sf (x) = W1

Dconv1
∑

a=1

fa∗Ja{x
a}+W2

Dconv5
∑

b=1

f b∗Jb{x
b}, (4)

Here, the feature maps of the conv1 layer and the conv5

layer are first interpolated using Eq. 1, as presented in Sec-

tion 2.1 and then convolved with its corresponding filter.

Note that Dconv1 and Dconv5 represent the dimensionality

of the convolutional features extracted from the employed

network. W1 and W2, the coefficients of each convolu-

tion response, denote the significance of each convolutional

layer.
Based on Eq. 4, the sum of the weighted convolution re-

sponses from each feature block can be obtained to decide
the final location of the target. Similar to the C-COT [13]
method, the final confidence score is defined on a contin-
uous spatial domain and the convolution operator maps a
sample x ∈ χ to s (t) = Sf {x} (t). Here, t ∈ [0, T )
denotes the location in the image. By applying Eq. 1 and
Eq. 4, we obtain

E(f) =

m
∑

j=1

αj

∥

∥

∥

∥

∥

W1

Dconv1
∑

a=1

f
a ∗ Ja

{

x
a
j

}

+W2

Dconv5
∑

b=1

f
b ∗ Jb

{

x
b
j

}

− yj

∥

∥

∥

∥

∥

2

+

D
∑

d=1

∥

∥

∥
wf

d
∥

∥

∥

2

.

(5)

Hence, W1 and W2 are applied to the original loss, as

expressed in Eq. 5. αj represents the importance of each

training sample and the penalty function w ∈ L2(T ) is
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a spatial regularization term. Note that D = Dconv1 +
Dconv5. By minimizing the functional Eq. 5, the model

update procedure is derived to train the continuous filters

f =
(

f1, ..., fD
)

∈ L2 (T )
D

.

3.3. Model Update Strategy

Ns 4 5 6 7

EAO 0.271 0.303 0.275 0.281

Formula PR FR

EAO 0.303 0.283

Table 1: Two different model update strategy experiments on

VOT2017 dataset. The top row demonstrates the effect of train-

ing gap Ns on Expected Average Overlap (EAO), we can dramat-

ically increase EAO with a suitable Ns. Two conjugate iterative

algorithms are Fletcher-Reeves (FR) and Polak-Ribiere (PR) re-

spectively in the bottom row. Obviously, PR formula provide a

better convergence rates.

Most existing tracking approaches [4, 12, 18] are to up-

date their models in each frame, assuming that the model

is always credible. However, this strategy fails when our

tracker meets some complicated situations such as occlu-

sion, illumination variation, abrupt motion and deforma-

tion. Moreover, tracking models suffer from heavy com-

putational load by updating the model in each frame.

A sparser updating scheme should replace the model up-

date strategy that updates the model in a continuous fashion

every frame. In the ECO [7] method, the approach is simply

updating the filter by starting the optimization process in a

fixed number of frames. A moderately infrequent update

of the model generally not only leads to improved tracking

results but also has a substantial effect on the overall com-

putational complexity of the learning. By postponing the

model update a few frames, the loss is updated by adding

a new mini-batch to the training samples, instead of only a

single one which helps to reduce over-fitting to the recent

training samples. We find that this strategy is simple and

brash. Furthermore, it neglects the relationship between

the convergence speed of the optimization and model up-

date frequency. Intuitively, a sparser updating scheme leads

to a low convergence speed. Hence, we should increase

the number of Conjugate Gradient iterations. More than

that, to improve convergence rates , we should also choose

a suitable momentum factor by using Fletcher-Reeves for-

mula [15] or the Polak-Ribiere formula [25].

To find the best training gap strategy, a series of experi-

ments were carried out to increase the updating frame num-

ber from 4 to 7 by a fixed number of CG iterations . Ac-

cording to Table 1, it can be concluded that the number of 5

is the best updating frame number. And it can be informed

from Table 1, Polak-Ribiere formula bring us to achieve a

faster convergence. Table 1 provides us the relationship be-

tween the convergence speed of the optimization and model

update frequency, we can conclude that the most suitable

and are 5 and 5 separately.

3.4. Scale Adaptation Scheme

In the detection step, an ideal scale estimation approach

should be robust to scale changes while being computa-

tionally efficient. We find a new scale adaptation scheme,

significantly improving the performance of correlation fil-

ter based trackers. Similar to the exhaustive scale space

tracking framework [10], we first construct a feature pyra-

mid in a rectangular area around the given target loca-

tion. Let P × R denote the target size in the current

frame and S be the size of the scale dimension. For each

n ∈
{⌊

−S−1
2

⌋

, ...,
⌊

S−1
2

⌋}

, we extract an image patch Jn
of size anP × anR centered around the target. Here, a
denotes the scale factor between feature layers. The scale

layers S is the most important parameter. We evaluate its

effects on the tracking performance when its value varies

as S = 10, with corresponding a = 1.01, 1.02, 1.03 respec-

tively. Different from previous parameter selection, we find

the 10-layers design may be better for model training and

scale change capture, thus promotes the performance. The

special structure of response weights training samples di-

versely and permits our algorithm to estimate the position

and scale simultaneously. Considering the reasonable scale

changes, the min scale factor is given by

δmin = a⌈loga
(5/I)⌉, (6)

where I is the supported size of the input image of our net-

work. a denotes the scale factor between feature layers. The

max scale factor can also be expressed as

δmax = a⌊loga
[min(W,H)/P×R]⌋, (7)

where W and H are the width and height of the original im-

age respectively. The optimal object scale in current frame

δcur would be decided under the restriction of δmin and

δmax.

4. Experiments

We conduct two experiments to evaluate the efficiency

and accuracy of our proposed tracker. First, we compare

our tracker against state-of-art trackers that participated in

the VOT 2016 challenge [19]. Secondly, we evaluate our

tracker using the VOT 2017 toolkit on a set of 60 challeng-

ing videos.

4.1. Experimental Setup

Our tracker was implemented in MATLAB. The exper-

iments were performed on an Intel(R) Xeon(R) 2.60GHz

CPU and a GeForce GTX 1080 GPU. Our tracker runs at an

average of 4fps on GPU and 1.4fps on CPU.
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4.2. Implementation Details

In our experiment, the search image is cropped centered

at the target object with the size of 4 times larger than

the target in a restricted area [200,250], introduced in Sec-

tion 3.4, after that, it would be resized to 224 × 224 as the

input of the VGG-M network. We have also tried various

input size, e.g., 336 × 336, 168 × 168. The results can be

seen in Table 2. For the sample space model in Section 3.3,

the maximum number of stored training samples is set to

L=100 and the learning rate is set to γ = 0.012. We update

the filter in every Ns = 6 frame with 5 Conjugate Gradient

iterations, whlie the initiate CG iterations is 200 in the first

frame. As discussed in Section 3.1, we use the feature maps

of the first normalization layer (norm1) and the feature maps

of relu layer after the last convolution layer (conv5) as the

features without PCA. Then we use the L2-norm method to

normalize the features to boost the performance.

168× 168 224× 224 336× 336

EAO 0.244 0.303 0.289

Table 2: Analysis of the effect by changing the search image size

on the VOT2017 dataset. We show the performance in Expected

Average Overlap (EAO). It can be concluded that 224×224 is the

best resized image size.

4.3. Features Comparison

conv layer 1 5 1,3 1,5 1,3,5

EAO 0.231 0.212 0.234 0.303 0.281

Table 3: A baseline comparison when using different combina-

tions of convolutional layers in our object tracking framework. We

show the results of expected average overlap (EAO) on VOT2017

dataset. The best results are obtained when combining conv1 and

conv5 in our framework. The results shows the performance will

not always be better when more features are used.

To our knowledge, grayscale intensity, Histogram of Ori-

ented Grandients (HOG) [6] and Color Names (CN) [9]

are useful hand-crafted features in visual tracking. How-

ever, when merging the CNN features with hand-crafted

features, the performance is not so good as we expected.

One reason is that the CNN features are so powerful that

the hand-crafted features may sometimes weaken the rep-

resentation. To exploit the great power in the CNN feature

representations , we evaluate the combination of different

convolutional layers of the VGG-M network without any

handcrafted feature in the feature comparison experiment.

The evaluation is performed on all 60 videos in the

VOT2017 dataset and the results are presented in terms of

Expected Average Overlap (EAO). From Table 3, the per-

formance will not always be better when more CNN fea-

tures are used. As discussed in Section 3.1, the first con-

volutional layer has much information about the outline of

the object, while the last convolutional layer is efficient to

discriminate the targets from the complicated background.

For the tracking problem, better spatial resolution alleviates

the task of accurately locating the target. We conjecture

that the fifth convolutional layer provides a significant per-

formance gain compared to the fourth layer. In summary,

our results suggest that the combination of the initial con-

volutional layer and the fifth convolutional layer provides

the best performance for visual tracking.

4.4. Weights in Convolution Responses

When the weights are assigned to the convolution re-

sponses produced by different convolutional layers, the spa-

tial size and dimensionality of the convolutional features ex-

tracted from the VGG-M network must be considered. Let

σ = W2/W1 denotes the relative weight. Here, W1 and

W2 are the coefficients of the convolution response of the

conv1 layer and the conv5 layer, represent its correspond-

ing significance. Figure 3 shows that the performance then

degrades if the relative weight σ is not selected properly,

such as 4, 3 and 1.5. As we have supposed, the Expected

Average Overlap (EAO) on VOT2017 dataset could be im-

proved if the significance of different convolutional layers

considered. The final convolutional layer of VGG-M net-

work (conv5), which has recently been successfully applied

in image classification, provides a large amount of invari-

ance while still discriminative. Therefore, we conjecture

that the feature map extracted from the conv5 layer accounts

for larger proportion. This is likely due to the high level fea-

tures encoded by the deepest layers in the network.

Figure 3: Comparison of the Expected Average Overlap (EAO)

on VOT2017 with different weight proportion (conv5/conv1) in

convolution responses.
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4.5. Scale Parameter Analysis

Figure 4: Analysis of the effect on Expected Average Overlap

(EAO) on VOT2017 dataset by changing the number of scale lay-

ers (SL) and the scale step (SS) respectively.

We use our CNN based tracker with the 7-layers scale

design as a baseline. The scale layers (SL) is the most

important parameter. We evaluate its effects on the track-

ing performance when its value varies as SL = 7, 8, 9, 10

with corresponding scale step SS= 1.00, 1.01, 1.02, 1.03,

1.04. The ECO [7] tracker uses the 7-layers design, which

is thought enough for continuous scale estimation. Fig-

ure 4 shows the 10-layers design with corresponding a =

1.03 has improved the baseline by 2% in EAO on VOT2017

dataset. Meanwhile, the 11-layers design may be too metic-

ulous for scale change capture during the model training,

thus degrades the performance. Based on these analysis, we

therefore choose SL = 10 and SS = 1.03 in all the following

experiments.

4.6. State-of-the-art Comparison on VOT2016

Tracker EAO Acc. Raw Fail. Raw

Ours 0.3905 0.58 0.81

ECO 0.3742 0.55 0.87

CCOT 0.3310 0.54 0.89

SSAT 0.3292 0.56 0.77

TCNN 0.3266 0.53 0.90

Staple 0.2952 0.54 0.96

DeepSRDCF 0.2763 0.54 1.42

MDNet N 0.2610 0.52 1.23

Table 4: VOT2016 performance results.

Figure 5: Ranking plots for the baseline experiments in the

VOT2016 dataset. The order and EAO are plotted along the verti-

cal and horizontal axis respectively. Our approach (denoted by the

red circle) achieves superior results in the baseline experiments.

Figure 6: Expected overlap curves for baseline (size change).

The Visual Object Tracking (VOT) Challenge is a com-

petition among short-term, model-free visual object track-

ing algorithms. For clarity, the proposed algorithm is com-

pared with the 6 state-of-art trackers including CCOT [12],

TCNN [22], Staple [2], DeepSRDCF [11], SSAT [3] and

ECO [7]. It is clear from Table 4 that our tracker outper-

forms all the trackers in VOT2016 challenge with an ex-

pected average overlap (EAO) of 39.05%, which achieves

a relative gain of 17.98% compared to C-COT [13], the

top-ranked tracker with an expected average overlap(EAO)

of 33.1%. Moreover, as shown by Figure 6, the proposed

tracker performs greatly in expected overlap curves when

the scale size changes.
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Figure 7: Failures on VOT2017 dataset for 60 videos, comparing our proposed method and ECO.

Figure 8: Accuracy results on VOT2017 dataset for 60 videos, comparing our proposed method and ECO.

4.7. Experiment on VOT2017

Finally, we compare our tracker with the ECO [7] tracker

on the most recent visual tracking benchmark, VOT2017.

In terms of scale variation, the proposed method performs

better than the ECO [7] tracker on some challenging se-

quences. To validate better robustness of our proposed

tracker, we analyse the results of challenging sequences

in different conditions, such as, camera motion, motion

change, illumination change, occlusion and so on. Accord-

ing to Figure 7, compared with the ECO [7] tracker, our

tracker performs better when both significant scale and ro-

tation occur (birds1, book) due to the optimal scale estima-

tion. Our trained detector effectively re-detects target ob-

jects in the case of tracking failure, e.g., with the heavy oc-

clusion or out-of-view conditions(book, tiger). Besides, our

approach follows the target undergoing significant deforma-

tion and fast motion (soccer1, soccer2) well. The ECO [7]

tracker has 9 tracking failures in sequence zebrafish1 while

our tracker only has 3 tracking failures, which demostrates

that our tracker effectively alleviates the scale drifting prob-

lem.

In addition, Figure 8 demonstrates a detailed per-video

comparison, we show the accuracy of our method and the

ECO [7] tracker on all the 60 videos contained in VOT2017.

It is obvious that our tracker outperforms ECO [7] in the

majority of videos.

5. Conclusions

In this paper, we eliminate the hand-crafted features and

investigate the impact of multi-resolution deep features for

visual tracking. We propose to use convolutional features

in the C-COT [13] based framework for visual tracking. We

reformulate the final confidence score function by adding

the weighted sum operation. When the weights are as-
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signed to the convolution responses produced by different

feature block, the spatial size and dimensionality of the fea-

ture maps extracted from the VGG-M network must be con-

sidered. Our results suggest that the combination of the ini-

tial convolutional layer and the fifth convolutional layer pro-

vides the best performance for visual tracking. Moreover,

we use a similar model update strategy approach as in previ-

ous methods [7, 13], but we find the 10-layers design is op-

timal for continuous scale estimation. This subtle difference

makes the tracker more robust to gradual scale changes.

To validate our proposed tracker, we perform comprehen-

sive experiments on two public benchmarks: VOT2016 and

VOT2017. Our experimental results show that our tracker

ranks top among the state-of-the-art trackers on VOT2016

and outperforms the ECO [7] tracker on VOT2017.
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alan lukežic, and gustavo fernandez. the visual object track-

ing vot2016 challenge results. In Proceedings of European

Conference on Computer Vision Workshops, pages 777–823,

2016. 1, 2, 4

[20] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Ce-

hovin, G. Fernández, T. Vojir, G. Hager, G. Nebehay, and

R. Pflugfelder. The visual object tracking vot2015 challenge

results. In Proceedings of the IEEE international conference

on computer vision workshops, pages 1–23, 2015. 1, 2

[21] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, L. Ce-

hovin, G. Nebehay,T. Vojir. The visual object tracking

vot2014 challenge results. 1, 2

[22] H. Nam, M. Baek, and B. Han. Modeling and propagating

cnns in a tree structure for visual tracking. arXiv preprint

arXiv:1608.07242, 2016. 6

[23] J. Ren, Z. Yu, J. Liu, R. Zhang, W. Sun, J. Pang, X. Chen,

and Q. Yan. Robust tracking using region proposal networks.

arXiv preprint arXiv:1705.10447, 2017. 1

[24] R. Rifkin, G. Yeo, T. Poggio, et al. Regularized least-squares

classification. Nato Science Series Sub Series III Computer

and Systems Sciences, 190:131–154, 2003. 2

[25] J. R. Shewchuk et al. An introduction to the conjugate gra-

dient method without the agonizing pain, 1994. 4

[26] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

1999



[27] Q. Wang, J. Gao, J. Xing, M. Zhang, and W. Hu. Dcfnet:

Discriminant correlation filters network for visual tracking.

arXiv preprint arXiv:1704.04057, 2017. 1

[28] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking:

A benchmark. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2411–2418,

2013. 1, 2

2000


