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Abstract

Clothing detection is an important step for retrieving

similar clothing items, organizing fashion photos, artifi-

cial intelligence powered shopping assistants and auto-

matic labeling of large catalogues. Training a deep learn-

ing based clothing detector requires pre-defined categories

(dress, pants etc) and a high volume of annotated image

data for each category. However, fashion evolves and new

categories are constantly introduced in the marketplace.

For example, consider the case of jeggings which is a com-

bination of jeans and leggings. Detection of this new cate-

gory will require adding annotated data specific to jegging

class and subsequently relearning the weights for the deep

network. In this paper, we propose a novel object detection

method that can handle newer categories without the need

of obtaining new labeled data and retraining the network.

Our approach learns the visual similarities between various

clothing categories and predicts a tree of categories. The re-

sulting framework significantly improves the generalization

capabilities of the detector to novel clothing products.

1. Introduction

Object detection in images and videos is an important

computer vision research problem. It enables selection of

the relevant region of interest for a specific category paving

the way for a multitude of computer vision tasks includ-

ing similar object search, object tracking, and collision

avoidance for self-driving cars. Object detection perfor-

mance is affected by multiple challenges including imaging

noises (motion blur, lighting variations), scale, object oc-

clusion, self-occlusion and appearance similarity with the

background or other objects. Significant progress has been

made on object detection by moving from the early fea-

ture based algorithms [1] to deep learning based end-to-end

frameworks [9, 6, 10]. The focus has been to improve sep-

aration of objects belonging to a particular category from

all the other objects and localization of the object in the im-

age. However, this paradigm of going straight from images

to object locations and their corresponding category ignores

the correlation between multiple categories. The resulting

methods have a high number of false positives because of

classification errors between similar classes. Furthermore,

addition of a novel object category requires re-training of

the object detector.

We propose an object detection framework that predicts a

hierarchical tree as output instead of a single category. For

example, for a ‘t-shirt’ object, our detector predicts [‘top

innerwear’ 7→ ‘t-shirt’]. The upper level category ‘top in-

nerwear’ includes [‘blouses shirts’, ‘tees’, ‘tanks camis’,

‘tunics’, ‘sweater’]. The hierarchical tree is estimated by

analyzing the errors of an object detector which does not

model any correlation between the object cateogries. We

propose three major research contributions;

1. We propose the first hierarchical detection framework

for the clothing domain.

2. We propose a method to estimate the hierarchi-

cal/semantic tree by directly analyzing the detection

errors.

2. Related Work

Object detection computes bounding boxes and the cor-

responding categories for all the relevant objects using vi-

sual data. The category prediction often assumes that only

one of the K total object categories is associated with each

bounding boxes. The 1-of-K classification is often achieved

by a ‘Softmax’ layer which encourages each object cate-

gory to be as far away as possible from all the other object

categories. However, this paradigm does not explicitly ex-

ploit the correlation information present in the object cat-

egories. For example, a ‘jeans’ is closer to ‘pants’ com-

pared to ‘coat’. We propose to exploit this correlation by

first predicting ‘lower body‘ and choosing one element from

the ‘lower body’ category which is a set of ‘jeans’, ‘pants’,

‘leggings’ via hierarchical tree prediction.

There has been limited work on using the correlation be-

tween categories for improving detector performance. Red-

mon et. al [9] use a hierarchy based on WordNet [7] to com-

bine multiple datasets. However, WordNet hierarchy and re-

lationships are predefined by conceptual-semantic and lexi-
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Figure 1: Generic Object Detector and Hierarchical Detec-

tor. The hierarchical detector predicts a tree of categories

as output compared to the generic detector that outputs a

single category for each bounding box.

cal relationship. Wordnet hierarchy was also used by Deng

et. al [2] to predict a visual categories at various level with

a pre-specified accuracy. However, these predefined hier-

archies do not take the visual similarity into account. For

example, ‘dress’ and ‘rompers’ are not hyponyms of each

other even though they are visually similar.

3. Methods

The proposed hierarchical prediction framework can be

integrated with any existing object detector as the only

change introduced is within the category prediction. Figure

1 shows the changes between the generic object detector

and our detector. The generic detector can be any differ-

entiable (e.g: any deep learning based detector) mapping

f(I) 7→ bb, c that takes an input image I and produces a list

of bounding boxes bb and a corresponding category c for

each of the bounding box. The hierarchical detector learns

a new differentiable mapping fh(I) 7→ bb,F(c) that pro-

duces a path/flow from the root category to the leaf category

F(c) for each bounding box.

There are two steps involved in going from a generic de-

tector to the hierarchical detector. First, we train a generic

detector and estimate the category hierarchy tree as dis-

cussed in Section 3.2. Finally, using the category hierarchy,

we retrain the deep learning framework with a loss function

designed to predict the hierarchical category as detailed in

Section 3.1.

3.1. Tree Prediction

We use the directed graph underlying the tree for predict-

ing a tree/path from root node to leaf node for categories.

Let T represent the entire tree consisting of all the cate-
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Figure 2: Instance of a category tree representing nodes at

various levels

gories as nodes and the hierarchical relationship as directed

edges from parent node to children nodes. We use n, s(n),
p(n), F(n) to denote the node, sibling set of a node, par-

ent of a node, and path from the root node to a leaf node

respectively. Consider a dummy directed graph as shown in

Figure 2. All the nodes belonging to ‘Level 0’ are denoted

as root nodes since they do not have any parents. Sibling

set s(n) denotes all the nodes that are on the same level and

have a common parent. For example, s(1) = {1, 2, 3} and

s(6) = {4, 5, 6}. The path from the root to a leaf node in-

cludes all the nodes that lie on the way from a ‘Level 0’ node

to a leaf node. For example, F(9) = 1, 6, 9 and F(2) = 2.

The probability of any node (or the category probabil-

ity for a bounding box) given an image I is represented by

P (n|I). Using the underlying graph, this probability can

also be expressed by a series of conditional probability over

the path from the root node to the leaf node.

P (n|I) = P (l0|I)P (l1|l0)....P (n|lq−1) (1)

where q is the total number of nodes along the path and

all the nodes in the conditional probability computation be-

long to the path from the root to the leaf node, F(n) =
(l0, l1, ..., lq−1, n). We use the commonly used ‘Softmax’

layer to estimate the probability of each node [10]. Simi-

lar to the strategy of mixing datasets by Redmon et. al [9],

we represent all the nodes in a single vector and have the

last fully-connected (FC) layer predict scores for all of the

nodes. Next, we use the underlying structure of the cate-

gory tree to obtain probabilities for nodes at each level. For

example, for a zero-th level node, one can write the proba-

bility as

P (l0|I) =
exp c0∑

ci∈s(l0)
exp ci

(2)

where the ‘Softmax’ is only computed with respect to the

sibling nodes. This encourages competition (1-of-K clas-

sification) only amongst siblings. Intuitively, our category

2307



estimator will first try to separate between major categories

such as ‘upper body’, ‘lower body’, ‘footwear’, and subse-

quently estimate finer category for each of those categories,

and so-on.

To adapt a generic detector to hierarchical detector,

we use cross-entropy between the predicted distribution in

Equation 1 and the ground-truth annotation.

L(I) = −
∑

x

q(x|I) logP (x|I) (3)

where x are the individual elements of the vector represent-

ing all the categories, P (I) and q(I) denote the category

probability and annotation vector for image I respectively.

Both of these vectors are of dimension |T |, which is also the

total number of nodes in the category tree T . The generic

detector only has a single active element (a single category)

in the annotation vector but our detector will have multiple

activations to account all the labels from root node to the

leaf-node. Intuitively, the loss function enforces the deep

neural network to learn a representation for the tree path by

encoding hierarchical information.

We also need to modify the backward propagation step

to learn parameters of the deep neural network in order to

predict hierarchical categories. The usage of sibling level

‘Softmax’ and the underlying graph structures induces a

multiplier factor for each category. Consider the graph in

Figure 2, and assume that an input image has category 9.

The presence of category 9 also indicates the presence of

categories along the path from leaf to root (6, 1). The loss

represented in Equation 3 will have three different active

labels (1, 6, 9). The loss for this image can be written as

L(I) = −(logP (1|I) + logP (6|I) + logP (9|I))

= −(logP (1|I) + logP (6|1)P (1|I)+

logP (9|6)P (6|1)P (1|I))

= −(3 logP (1|I) + 2 logP (6|1) + logP (9|6)) (4)

Notably, Equation 4 demonstrates that when calculat-

ing gradients during backpropagation, we simply need to

multiply the each node’s ‘Softmax’ gradient by a multiplier

factor. Due to competition amongst siblings, sibling nodes

share same multiplier factor. The above example can be

generalized and we present the algorithm to estimate the

multiplier factor for each node in Algorithm 1. Given the

category tree T and ground truth annotation q(x|I) for an

image I , we can find the corresponding leaf node lq and the

path F(lq) to the root node l0, and subsequently assign the

level-distance from lq as multiplier factor for all the nodes

on path F(lq) and their sibling nodes. The multiplier factor

is zero for all the other nodes.

3.2. Hierarchy Estimation

To estimate the category tree T , one needs to estimate

the visual similarity between various categories. Redmon

Data: q(x|I),T
Result: Multiplier factor m(n) for all nodes

Initialize m(n) = 0 ∀ n ∈ T ;

Find leaf node lq from q(x|I);
// Traverse over all nodes in path from leaf to root

for li = lq to l0 do

m(n) = (q − i+ 1) ∀ n ∈ s(li);
end

Algorithm 1: Multiplier factor estimation for each node

et. al [9] use a pre-defined hierarchy based on WordNet [7].

To the best of our knowledge, there is no prior work that

organizes the visually similar categories for an object de-

tector. Prior work has focussed on using attribute-level an-

notations to generate an annotation tag hierarchy instead of

category-level information. However, such an approach re-

quires large amounts of additional human effort to annotate

each category with information such as, viewpoint, object

part location, rotation, object specific attributes. Ouyang et

al. [8] generate an attribute-based (viewpoint, rotation, part

location etc.) hierarchical clustering for each object cate-

gory to improve detection. In contrast, we only use cate-

gory level information and generate a single hierearchical

tree for all the object categories.

We estimate a category hierarchy by first evaluating the

errors of a generic detector trained without any considera-

tion of distance between categories and subsequently ana-

lyze the cross-errors generated due to visual-similarity be-

tween various categories. In the current work, we train a

Faster-RCNN based detector [10] and evaluate detector er-

rors inspired by the work from Hoiem et al. [4]. Specif-

ically, we look for the false positives generated by the

generic detector (Faster-RCNN detector in the current case)

and compute all the errors that result from visually simi-

lar categories. These errors are computed by measuring

all the false positives with bounding boxes that have an

intersection-over-union (IOU) ratio between 0.1 to 0.5 with

another object category. Intuitively, visually similar classes

such as ‘shoes’ and ‘boots’ will be frequently misclassified

with each-other resulting in higher cross-category false pos-

itive errors.

We compute the cross-category false positive matrix C

(Size(C) = J × (J + 1)), where J denotes the total num-

ber of categories in the dataset. The second dimension is

higher than the first dimension to account for false positives

that only intersect with background. The diagonal entries of

the matrix C reflect the false positives resulting from poor

localization and are ignored in the current analysis. Using

the matrix C and a predefined threshold τ , we estimate the

sets of categories that are similar to each other. This results

in disparate groups of categories. All the sets with greater

than 1 element are given new category names and all the
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elements for that set are assigned as children to the newly

defined category. The above process readily generates a 2-

level tree for categories, which is detailed in algorithm 2.

We can iteratively apply this process on current root level

categories to grow the category tree. For our experiments

on the clothing dataset, we found that a 2-level category

tree is enough to characterize the visual-similarity between

various categories.

Data: C,τ

Result: T

Initialize T = ∅;

for i = 1 to J do

for j = 1 to J do

if C[i][j] ≥ τ then

if i ‖ j ∈ n;n ∈ T then

// Add to the existing group;

n = n ∪ {i, j}
else

// Start a new group;

n = {i, j};

T = T ∪ n
end

end

end

end

Algorithm 2: Generating visually similar groups from

cross-category false positive error matrix

3.3. Novel Category Detection

Prior work has focussed on using attribute-level infor-

mation apart from the category specific information to per-

form detection for novel object categories. Farhadi et al. [3]

use attribute level information to detect objects from novel

categories. For example, a new object category ‘horse’ is

recognized as a combination of ‘legs’, ‘mammal’ and ‘an-

imal’ categories. Attribute-based recognition requires one

to learn attribute specific classifiers and also needs attribute

level annotation for each of the object categories. In com-

parison, our method requires neither attribute annotations

nor any attribute specific classifiers. For each new category,

we assign an expected root-level category and subsequently

estimate a bounding box with highest confidence score for

that category.

We perform category specific non-maximal suppression

to select unique bounding boxes for each leaf node cate-

gory. For all the lower level categories, we also suppress the

output by considering bounding boxes from all the children

nodes. This helps us reduce spurious lower level category

boxes.

Composite Original Category

Footwear Shoes, Boots, Sandals

Full Body Dresses, Jumpsuits, Rompers/Overalls

Top Innerwear Blouses/Shirts, Tees, Tanks/Camis, Tu-

nics, Sweater

Top Outerwear Coats/Jackets, Suitings/Blazers

Bags Handbags, Clutches, Tote

Lower Body Jeans, Pants, Leggings

Headgear Cowboy Hat, Beanie/Knit Cap

Table 1: New root-level categories and their children

4. Experiments

Due to the lack of a large standard dataset for cloth-

ing detection, we collect a large dataset of 97, 321 im-

ages from various fashion relevant websites, such as

‘www.modcloth.com’,‘www.renttherunway.com’. For all

the images, we obtain human-annotation for all the fash-

ion relevant items resulting in a total of 404, 891 bounding

boxes across 43 different categories. We ignore all the cat-

egories that have less than 400 bounding boxes for training

the object detector resulting in 26 valid categories. We split

the dataset into training and testing set 80% − 20%. Both

detectors are trained and evaluated using the same train-

ing and testing set. We use the open-source deep learning

framework CAFFE [5] for all of our experiments. During

training, we use the same hyperparameters for both detec-

tors and train them for 250, 000 iterations using RMSprop

[11] optimizer.

4.1. Results

4.1.1 Category Tree Estimation

Following the standard practice for detector [10], we com-

pute average precision for all different categories and sum-

marize the results across categories using the mean-average

precision. Average precision measure the area under the

precision-recall curve for each object category. We use 0.5
pascal ratio as the threshold for true positive. We train

the baseline generic detector on our dataset to compute the

cross-error matrix C. Figure 3 shows the normalized error

matrix.

As expected, from Figure 3, it is clear that the visually

similar categories like ‘shoes’ and ‘boots’ are frequently

misclassified with each other. We use Algorithm 2 to es-

timate the tree T based on detector error matrix C. Our

algorithm finds 7 groups containing more than one element.

Details of all the groups thus generated and their names are

given in Table 1.
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Figure 3: Cross classification matrix with false positives errors between various categories

4.1.2 Accuracy Computation

Table 2 shows the mAP comparison between the generic

and the proposed hierarchical detector. Since the generic

detector does not generate any of the newly generate groups,

we generate AP results for the new categories by averaging

the performance across their children. This is reasonable

since the detection of ‘Dress’ or ‘Jumpsuits’ also indicates

the presence of ‘Full Body’ clothing category. Our results

show that hierarchical detector significantly improves the

mAP over the generic detector on new categories, and it also

improves the mAP of generic classes by 0.8%. Notably,

the improvement in the performance of hierarchical detector

is because of the ability to capture visual information at a

higher level.

Hierarchical detector can reduce missing detections from

the generic detector for ambiguous examples. For example,

it is hard to clearly identify the type of ‘top innerwear’ oc-

cluded by a ‘coat’ or ‘jacket’. But the hierarchical detector

can still detect that the clothing item hidden underneath is

an instance of ‘top innerwear’ because of the hierarchical

information representation. Figure 4 shows some examples

of ambiguous instances that are identified by the hierarchi-

cal detector. Hierarchical detector also suppresses sibling

output in constrast to generic detector as shown in Figure 5.

4.1.3 Novel Category Detection

The hierarchical nature of our detection output allows us

to represent information at various scales. For example,

‘Top Innerwear’ category captures the commonalities be-

tween all the children categories. We use this aspect of

our framework to perform detection on novel categories that

the generic detector has not been directly trained on. Each

novel category is assign as a root-level category and we

compute the maximum confidence detection for both the

children and root-level category. We collect a small test-

set where the generic detector fails because these are novel
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Category Generic Hierarchical

Shoes 0.8835 0.8880

Jeans 0.8898 0.8996

Boots 0.7765 0.7847

Tanks/Camis 0.4932 0.4922

Rompers/Overalls 0.3722 0.4239

Tunics 0.2281 0.2140

Scarves/Wraps 0.4140 0.3644

Coats/Jackets 0.8035 0.8143

Handbags 0.8066 0.8115

Sweater 0.6763 0.6776

Dresses 0.9712 0.9729

Pants 0.6038 0.6070

Clutches 0.6505 0.6574

Shorts 0.8447 0.8485

Leggings 0.1721 0.1933

Sandals 0.6320 0.6496

Tees 0.4836 0.4982

Beanie/Knit cap 0.7192 0.7745

Tote 0.2162 0.2393

Belts 0.2383 0.2296

Cowboy hat 0.9175 0.9239

Blouses/Shirts 0.6842 0.6993

Glasses 0.7696 0.7773

Suitings/Blazers 0.1865 0.1810

Skirts 0.7061 0.7052

Jumpsuits 0.6966 0.7190

mAP 0.6091 0.6172

Footwear 0.7640 0.8955

Headgear 0.8184 0.8883

Top Innerwear 0.5131 0.7702

Top Outerwear 0.4950 0.7379

Full Body 0.6800 0.9368

Lower Body 0.5552 0.9261

Bags 0.5578 0.7576

mAP 0.6127 0.6654

Table 2: Average Precision for Generic (Faster-RCNN) and

its Hierarchical version for each category

categories. The results of this set are demonstrated in Table

3. It shows the hierarchical detector can fix the failures of

the generic detector by detection of root categories.

5. Conclusion

We proposed a novel framework for predicting hierar-

chical categories for a detector. The hierarchy between cat-

egories is only based on visual similarity. Our hierarchi-

cal detector demonstrates the ability to capture information

at various scales and generalizes the detector to novel cate-

gories that our detector has not been directly trained on. The

(a) Generic Detector

(b) Hierarchical Detector

Figure 4: Hierearchical detector can correct missing detec-

tions from generic detector.

(a) Generic Detector (b) Hierarchical Detector

Figure 5: Generic detector predicts two different bounding

boxes for two sibling categories which is suppressed by the

hierearchical detector.

Category Root

Category

Total

Images

True

Positive

False

Positive

Polos Top In-

nerwear

165 157 8

Hoodies Top In-

nerwear

239 215 14

Briefcase Bags 132 132 0

Table 3: Detection Performance on Novel Categories

proposed detector improves detection performance over the

state-of-the-art detector on a clothing dataset.
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