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Abstract

Scene labeling can be seen as a sequence-sequence pre-

diction task (pixels-labels), and it is quite important to

leverage relevant context to enhance the performance of

pixel classification. In this paper, we introduce an episodic

attention-based memory network to achieve the goal. We

present a unified framework that mainly consists of a Con-

volutional Neural Network (CNN), specifically, Fully Con-

volutional Network (FCN) and an attention-based memory

module with feedback connections to perform context se-

lection and refinement. The full model produces context-

aware representation for each target patch by aggregating

the activated context and its original local representation

produced by the convolution layers. We evaluate our model

on PASCAL Context, SIFT Flow and PASCAL VOC 2011

datasets and achieve competitive results to other state-of-

the-art methods in scene labeling.

1. Introduction

This paper deals with the problem of scene labeling (or

semantic segmentation), which typically aims to relate a

unique semantic class label to each pixel in an image. It

is a challenging task in computer vision, as different scenes

may be full of complex and occluded objects, and the im-

ages can be captured under various lighting conditions and

viewpoints. Also, objects in an image may appear at any

location and scale. In order to classify each pixel in a typi-

cal scene labeling pipeline, a feature vector is first extracted

from a patch of adequate size containing that pixel. The

patch contains the surrounding context to locally discrimi-

nate the pixel during labeling. But these local feature rep-

resentations can be ambiguous, e.g. a sofa patch can be

visually indistinguishable from a bed patch. As a natural

solution, many papers utilize context to distinguish locally

ambiguous patches [27,50,53]. However in their works, the

long-range context is not effectively leveraged. Besides, the

surrounding contextual information is incorporated without

selection. We believe that different contextual information

is not always equally important or useful to one local region.

For example, when recognizing a local region belonging to

computer monitor, it is more helpful to leverage contextual

information from desk rather than from other regions such

as window. Hence, special attention should be paid to cer-

tain context conditioned on the target region.

In this paper we propose a unified framework that in-

cludes FCN and episodic attention-based memory network

layers to address the problem. In details, it consists of three

major components: (1) a basic FCN to generate local convo-

lutional patch-level feature representations; (2) a Contextual

Attention-based Network (CAN) that adaptively selects the

relevant contextual patches for each referenced patch; (3)

an ‘episodic’ recurrent memory module that accumulates

and records the selected context over multiple episodes,

where its recurrent feedback connections allow the CAN

module to refine the activated/selected context over multi-

ple iterations. CAN alongside the recurrent memory net-

work (CAMN) appears to be an effective contextual model-

ing method that can easily activate useful long-range con-

text. However, CAMN may falsely activate irrelevant con-

text and wrongly inhibit the relevant context in one shot;

therefore we propose to refine the selected context in an it-

erative framework with the recurrent feedback mechanism.

We instantiate the episodic memory as the hidden repre-

sentation of a recurrent neural network [19], which is able

to efficiently memorize local information over a short time

(several iterations). Then, we add the feedback connections

from the episodic memory to CAN, so that the CAN mod-

ule can refine the context selection in the next iteration. The

episodic memory converges over only few early iterations.

We describe our method as ‘episodic’ because it accumu-

lates and refines the selected context over a series of con-

secutive iterations. Either all of the generated context of

these episodes or only the last episode can be utilized.
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Figure 1. An illustrative overview of our unified framework. The

model consists of FCN convolution layers, our episodic contextual

attention-based memory network, and the upsampling alongside

the FC (classification) layers. Given an input image, our model

generates a pixelwise label map.

An overview of the framework is shown in Figure 1. The

full network is end-to-end trainable. Even without post-

processing, we achieve state-of-the-art labeling results on

several challenging scene labeling benchmarks. The main

contributions of this paper are summarized as follows:

• We propose the contextual attention-based memory

network model that is able to adaptively select rele-

vant context for each target patch. Importantly, it is a

novel contextual modeling method that can effectively

engage long-range context.

• We introduce an episodic memory module to accumu-

late contextual selections and aid the CAMN to refine

the previous context selections through recurrent feed-

back connections over multiple iterations (‘episodes’).

• We achieve very competitive results on three public

scene labeling benchmarks.

2. Related Work

2.1. Contextual Modeling and Scene Labeling

Contextual cues from other patches are usually impor-

tant for local patch reasoning and prediction. Many re-

cent successful semantic segmentation systems are devel-

oped based on CNNs, specifically, FCNs. Usually, the re-

ceptive fields of the neurons in the convolution layer corre-

spond to local regions of the input image. They implicitly

engage contextual information through cascading multiple

layers. However, it would be ineffective to enlarge the re-

ceptive fields of the neurons to explicitly and directly model

long-range context as it may degrade the local discrimina-

tive features [66]. FCNs try to overcome this limitation by

applying skip connections from earlier layers and ultimately

aggregating the intermediate features for classification [40].

Other earlier works try to learn hierarchical and multi-scale

CNN features to capture the context across a multi-scale

image pyramid [21, 22, 47]. Another line of work revis-

ited convolution operations and applied ‘atros’ and dilated

convolutions to perform contextual modeling [11, 12, 68].

Recently, RNN-like layers, e.g. Long-short Term Memory

(LSTM) and Gated Recurrent Units (GRUs) [14]) are com-

monly inserted after convolution layers to explicitly cap-

ture and encode long-range context into local representa-

tions [5,51,59,66]. Sharma et al. [49,50] exploit the recur-

sive neural network architecture to propagate context. How-

ever, RNN-like models are limited in modeling very long-

range sequences. In contrast, our attention-based model

can effectively encode the long-range contextual informa-

tion between patches.

Conditional Random Fields (CRFs) and Markov Ran-

dom Fields (MRFs) are also used to model the label-level

context [11,12,32,38,69]. They characterize co-occurrence

relationships between labels. Alternatively, we aim to en-

code contextual information into local feature representa-

tion.

2.2. Attentionbased Models

Attention-based models have been successfully applied

on a broad range of Natural Language Processing (NLP)

related tasks, which include machine translation [18] [43],

speech recognition [13], image caption generation [65],

reading comprehension [28], sentence summarization [48],

part-of-speech (POS) tagging [34], question answering [30,

64], etc. Some works benefited from attention models for

image classification tasks [7, 44, 62] and object recogni-

tion [3]. The attention mechanism was first introduced in

neural machine translation [18] to automatically align the

words in the original sentence with the words in the target

sentence using encoder-decoder RNN model. The aligned

(attention-based) model is embedded in the sequence to se-

quence learning framework [55]. Concurrently, in the im-

age caption generation task, Xu et al. [65] use the attention-

based model to roughly localize image regions of interest,

which are deemed as relevant in producing the next word.

Another interesting work [10] use attention to select from

different multi-scale features. Hermann et al. [28] and Rush

et al. [48] employ the attention-based model to discover the

keywords/sentences that are informative to comprehend the

paragraph or sentence. Chorowski et al. [13] also lever-

age the attention-based model to filter noisy frames in a

short window-based audio to interpret the desired phoneme.

Neural Memory Networks [24, 54, 57, 60] became popular

with the aid of attention mechanism where separate mem-

ory structures are involved to stably store information.

To the best of our knowledge, ours is the first work to

approach scene labeling utilizing the differentiable soft at-

tention mechanism alongside recurrent memory networks.

Our model can dynamically and interactively select and re-

fine the relevant and informative contextual patches for each

referenced patch, therefore its local representation is con-

textualized.
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2.3. Recurrent Feedback

Recurrent feedback has been explored in the tasks of

scene labeling and human pose estimation. Auto-context

[70] is the pioneering work that utilizes the output of classi-

fiers as feedback to the next classification model. Mean-

while, Pinheiro et al. [47] add feedback connections be-

tween the output and the input of the convolutional neural

networks (CNNs). Namely, the output of the CNN in the

previous iteration is fed back to the input of the same CNN

in next iteration. This recurrent CNN has been successfully

applied to scene labeling. Besides, Carreira et al. [8] also

add the feedback connection in the CNNs to enable the net-

work to learn from past errors, so that it can predict the

location of human joints more accurately in the next itera-

tion. The idea of our episodic memory feedback is similar

to these works. Engaging the recurrent feedback connec-

tions can be viewed as cascading multiple attention layers

that can form a deep attention model. However, instead of

simply adding the feedback from the output of the previ-

ous iteration, we introduce an episodic memory to record

and accumulate all past information leveraging RNN lay-

ers, and then add its feedback to the attention-based module

such that the selected context is refined over multiple itera-

tions.

3. Framework

Given a scene image S, the task is to map from the pixel-

space to label-space. We divide each image into patches

and train our episodic CAMN model to extract contextually-

aware convolutional features to better represent each local

patch. Suppose patches in a scene image S are represented

in terms of convolutional features as x = [x1,x2, . . . ,xN ],
where N is the number of patches, our goal is to predict

the semantic label of the referenced patch xi. Specifically,

given a referenced raw local patch from S, the data flow in

our model is as follows (cf. Figure 1):

Input feature map: the convolutional layers in the FCN

convert input patches into local feature representations xi.

Output feature map: the episodic CAMN performs

contextual modeling and compute the output which is the

contextually-aware features for the input referenced patch.

It adaptively and progressively selects the relevant contex-

tual patches for the referenced patch. Two major networks

are employed within: (1) the CAN model contains a feed-

forward network to calculate the compatibility/similarity

scores to perform soft attention between the input xi and the

remaining patches in the image x; (2) the feedback mecha-

nism is comprised of a recurrent layer that records and ag-

gregates/accumulates the previous generated context (acti-

vated context) and links it back to the feed-forward layers so

that the CAN can further refine the previous selections over

multiple iterations. This also allows the model to gener-

Figure 2. An illustration of our Episodic CAMN including its con-

textual attention-based network, the episodic recurrent memory

and the feedback. The model consists of two major components:

(1) the CAN adaptively selects the relevant context to contextual-

ize the reference patch representation (xi); (2) the episodic mem-

ory summarizes the activated context in the past. The feedback

from the episodic memory enables the CAN to iteratively refine

the selected context over multiple iterations.

ate deep contextual representations. The recurrent feedback

connections with the CAN module allow it to adapt (refine)

the activated context over multiple iterations. The episodic

CAMN module is run for multiple iterations per training

epoch until the selected context converges.

Response: To calculate the response (label) of the in-

put patch, the last classification layers (FCs) alongside the

upsampling layers and Softmax are engaged to decode the

final contextually-aware dense representations.

3.1. FCN for Local Patch Representation

Fully convolutional networks (FCN) originally adapt

classification networks like the VGG net [52] into fully

convolutional networks and transfer their learned represen-

tations to the segmentation task. FCN architecture com-

bines/fuses semantic information from a deep, coarse layer

with appearance information from a shallow, fine layer to

produce accurate and detailed segmentations. In their work,

they design the basic 32s model that has no intermediate

skip connections from earlier layers, and the 16s version has

skip connections from pool4 layer and finally the 8s version

that has skip connections from both pool4 and pool3 layers.

All FCN models have upsampling layers which upsample

the downsampled label prediction maps (due to the applica-

tion of the the pooling layers) to the original image resolu-

tion. The proposed episodic CAMN model can be inserted

into any location between the last pooling layer and the fi-

nal FC layer. In our work, we placed it between FC6 and

FC7. The input patch representations to episodic CAMN

are generated by the early convolution layers and the output

of episodic CAMN is the contextually-enriched representa-

tions.
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3.2. Contextual Attentionbased Memory Model

Context is of great significance in local prediction. In

this paper, we model context from the perspective of feature

representation. Our attention-based module is introduced to

learn to activate certain contextual features for each local

patch. Concretely, it aggregates selected features from sur-

rounding patches with the referenced patch to produce its

contextualized representation, thus encodes useful contex-

tual information for local classification. However, for a ref-

erenced patch, not all the surrounding patches are equally

useful. For example, in terms of the contextual support to a

pillow patch in a bedroom image, bed patches are more use-

ful than the wall patches. Hence, the attention mechanism is

developed to adaptively select the relevant patches and as-

sign them proper weights. The episodic CAMN model has

feedback connections to operate over multiple iterations,

thus refining the selected context. Our model can naturally

engage long-range contextual dependencies, which makes

it very suitable for scene labeling.

3.2.1 Contextual Attention-Based Network

In order to attend to patches which produce useful contex-

tual information to xi, our CAN uses a feed-forward net-

work (Attention model) to evaluate the high-level relevance

between referenced patch representation xi and the other

surrounding patches xj . Mathematically, it is expressed:

zij = wT
b tanh(Waxi + Vaxj + b), (1)

where Wa, Va are embedding matrices and wb is a vec-

tor to capture feature similarities; they are jointly learned.

zij reflects the degree of relevance or compatibility (activa-

tion/inhibition) between patch representations xi and xj .

There are alternative methods to generate the relevance

scores, e.g. concatenation: Wa[xi;xj], or cosine similar-

ity: [xi
Txj], or absolute distance: |xi − xj|. However, we

observed that all these functions perform almost the same,

while the feed-forward layers perform the best.

CAMN attends and generates the context vector ci by

soft attention based on ci =
∑

j αijxj , where αij =
softmax(zij), s.t.

∑
j αij = 1. αij is a non-negative

scalar that modulates how much information from the patch

representation xj is exposed to ci. It is obtained by apply-

ing the typical softmax function to generate the relevance

distribution over all locations. Then, the weighted summa-

rization of the activated patch representations gives rise to

the context vector ci, which is calculated through the con-

vex summation of x weighted by αij . Interestingly, as the

context vector is able to include features from distant image

patches, it can capture the long-range contextual informa-

tion easily.

We also experiment with the ReLU function instead of

Softmax. The ReLU operates directly on the unnormal-

ized probabilities produced by the feed-forward layers. We

observe that in some cases the ReLU performs as well as

Softmax. However, Softmax produces a more visualization-

friendly distribution of weights over the patches.

The final ‘context-aware’ representations of the refer-

enced image patches are generated by aggregating the orig-

inal features xi with their specific context vectors ci:

hi = ReLU(Uhxxi + Uhcci + zh), (2)

where Uhx and Uhc are the transformation matrices that

map the input and the context vector respectively to new

hidden representation space, zh is a bias vector, and hi is the

hidden representation forwarded to the classification layers.

All of the parameters in Equation 1 and 2 are jointly learned.

In this scenario, the CAN is trained to maximize the label-

ing performance on the training images by inserting useful

context into the local representations.

To generate the response/class likelihood for each refer-

enced patch, we apply ri = softmax(Vrhi + zr), where

Vr is the classification matrix, zr is a bias vector, and ri is

the class likelihood for xi.

3.2.2 Episodic Recurrent Memory and Feedback

The CAN produces the context-aware vector that summa-

rizes the relevant contextual information, which is selected

based on the attention model. However, if we only forward

the attention model once to calculate the attention weights,

some irrelevant patches may be mis-activated while some

relevant patches may be falsely inhibited. To address this

issue, we propose to refine the attention weights iteratively

such that the CAN model can attend to undiscovered rel-

evant context and remove irrelevant context. Specifically,

we introduce an episodic memory module that is able to

memorize the context selections in the past. We employ the

feedback from the episodic memory to refine the selected

context by CAN. Biologically, it is inspired by discover-

ies in neuroscience that neuron adaptation actually happens

across multiple time-scales through the feedback connec-

tions between the dendrites and the axon [39, 42]; feedback

of ionic currents are flowing back from the dendrites to the

axon to allow refining its adoption of the stimulus [39].

Suppose we generate the corresponding relevance score

vector zti = [zti1, z
t
i2, . . . , z

t
iN ] of a reference patch repre-

sentation xt
i, and a context vector cti during the t-th itera-

tion. The episodic memory is intended to accumulate and

record the relevant context selected by the CAN over mul-

tiple iterations. In this paper, we instantiate the episodic

memory as a recurrent neural network [19] (RNN), consid-

ering that RNNs are well-known for their memory capabil-

ity for short sequences. The activities in the episodic mem-

ory module can be formulated as:

ht
i = ReLU(Uhxxi + Uhcc

t
i + Uhhh

t−1

i + zh), (3)
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where cti is the context vector generated in the t-th itera-

tion, ht
i represents the memory state in the t-th iteration.

ht
i = x as t = 0, Uhh, Uhx and Uhc are hidden-hidden,

input-hidden and context-hidden transformation matrices,

respectively. In each iteration, the episodic memory mod-

ule accumulates the context vector produced from the CAN

module cti into the memory hidden representations.

With the availability of the episodic memory, we add the

feedback connections between the memory module and the

attention module. In this case, the episodic memory feed-

back allows the CAN to refine the selected context in the

subsequent iteration. Concretely, the equation that calcu-

lates the relevance score is adapted to the following form:

ztij = wT
b tanh(Waxi + Vaxj + Uah

t−1

i + b), (4)

where ztij is the relevance score between patch representa-

tions xi, xj and ht−1

i in the t-th iteration. The memory state

(ht−1

i ) encodes the context selections over previous itera-

tions. Thus, when they are fed back, the context selection

is expected to be refined by allowing xi and xj to interact

with all previous context summarization ht−1

i .

Feeding back the memory vector that contains a sum-

marization of the previous contextual selections allows

context-context interactions, therefore new indirect relevant

contextual patches can be activated. However, we observe

that a few iterations are enough to discover new related con-

text as the selection saturates quickly. We call these forward

passes episodes. Specifically, after T forward passes by the

CAN, context-aware representations generated by the final

episode or all the episode states are forwarded to the clas-

sification layers. We call our model Episodic CAMN (see

Figure 2).

3.3. Model Optimization

Given an image S, we derive the class likelihood for each

constituent patch in S. Next, we calculate the cross en-

tropy loss to train the full model (including the parameters

in episodic CAMN). The error signal of an image is aver-

aged across all valid (i.e. semantically labeled) constituent

patches S = {x1, . . . ,xN}:

L = −
1

N

N∑

i=1

B∑

b=1

δ(yi = b) log ri(b), (5)

where δ(·) is the indicator function, B is the number of se-

mantic classes, yi is the ground truth label for the patch

representation xi. ri is the class likelihood for the patch

representation xi, which is a B-dimensional vector. We ig-

nore the contribution of unlabeled (invalid) patches in the

loss calculation. The whole model is differentiable, thus it

is end-to-end trainable by using the back-propagation algo-

rithm. The weights in recurrent layer (episodic memory) are

shared, and they are updated via back-propagation through

time (iteration) after unfolding the episodic memory net-

work in time (iteration).

4. Experiments

In this section we describe our experimental evaluation

and we provide an ablation study of our proposed architec-

ture. We apply our framework to the task of scene labeling,

and we show competitive performance to other state-of-the-

art works on PASCAL-Context, SIFT Flow and PASCAL

VOC 2011. We also perform a diagnostic evaluation of

our convolutional episodic CAMN and other hyperparam-

eters/design choices.

4.1. Datasets

PASCAL-Context [46] comprises 4998 training images

and 5105 testing images. Originally, the images are sam-

pled from PASCAL VOC 2010 dataset and re-labeled at

pixel-level for the segmentation task, where there are in

total 540 classes. Each image has a resolution of about

375× 500 pixels. In our experiments, we only consider the

task of labeling the 59 most frequent classes for evaluation.

SIFT Flow [35] consists of 2688 images. We follow the

training/testing split protocol (2488/200) provided by [35]

in our experiments. The images are captured from 8 typical

outdoor scenes with a resolution of 256 × 256 pixels. The

segmentation task in this dataset is to assign each pixel to

one of the 33 semantic classes. Statistically, this dataset has

an imbalanced class distribution. We found that applying

class balancing helps similar to [51, 67].

PASCAL VOC 2011 [20] involves 21 categories, in-

cluding 20 foreground object classes and one background

class. There are 736 images as non-intersecting validation

set and 1111 testing images provided by their server. In our

experiments, we only train our final model from the training

set and did not include any images from the validation set.

Following recent literature, we report three performance

evaluation scores: Pixel Accuracy (PA) (percentage of all

correctly classified pixels), Per-class Accuracy (CA) and

the Intersection-Over-Union (IU).

4.2. Implementation Details

We adopt the stochastic gradient descent (SGD) with

momentum. The learning rate starts at 10−5 and decays

exponentially with the rate of 10% after 10 epochs. The

momentum is fixed as 0.9. The internal dimension of the

RNN network (episodic memory ht
i) is set to the same as

that of the input feature vector (dimension = 4096). The re-

ported results are based on the model trained for 50 epochs.

The feedforward, FC layers and RNN model parameters are

initialized either randomly or with zeros. For fair compar-

ison, we select the strongest FCN models (best perform-

ing among 8s, 16s and 32s versions) as our baselines in all
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Algorithm PASCAL-Context SIFT Flow PASCAL VOC 2011

PA(%) CA(%) IU(%) PA(%) CA(%) IU(%) PA(%) CA(%) IU(%)

Baseline-FCN 65.90 46.53 35.11 85.19 54.68 41.45 90.30 75.90 62.70

FCN+CRF 69.19 47.36 38.37 85.70 52.44 43.12 90.98 76.30 64.01

FCN+CAMN 71.27 52.91 39.64 85.90 57.10 43.88 91.41 76.99 66.91

FCN+Episodic-CAMN 72.11 54.28 41.18 86.20 58.69 45.22 92.26 78.59 68.18

Table 1. Results on the PASCAL-Context [46], SIFT Flow [35] and PASCAL VOC 2011 (validation set) [20]. All models are trained

jointly with FCN models (best performing ones).

datasets. We follow [40] to train the fully convolution net-

work layers. We initialize all our convolutional models with

the ImageNet-pretrained model [17]. We didn’t engage any

additional training data (such as Microsoft Common Ob-

jects in Context ‘COCO’ dataset [33]). We used the publicly

available MatConvNet MATLAB implementations [58].

We jointly train FCN and CAMN as one unified model.

We introduce the following baselines to prove the effective-

ness of our proposal.

Baseline-FCN performs full training of the FCN model

[40] for scene labeling. In this baseline, we examine and

report the best model among 8s, 16s and 32s models for

each dataset.

FCN+CRF performs post-processing on the strongest

trained FCN model using the Fully-connected Conditional

Random Fields (CRF) implementations [29]. We choose

to engage fully-connected CRF because it is one of the

strongest contextual modeling methods in scene labeling.

FCN+CAMN performs joint training of our model;

FCN with one-episode CAMN. Here, only one iteration of

CAMN is engaged.

FCN+Episodic-CAMN is our final overall proposed

framework with episodic memory (T = 3).

4.3. Evaluation Results

Comparison with FCN: The quantitative labeling re-

sults on the PASCAL-Context, SIFT Flow and PASCAL

VOC 2011 datasets are summarized in Table 1. Our

FCN+CAMN outperforms FCN on the three datasets by

4.53%, 2.43% and 4.21%, respectively (IU). The results

show that the discovered context is indeed informative to-

wards understanding the semantic classes of the referenced

patches and strengthen the discriminative power of the lo-

cal representations. For Baseline-FCN, we perform class

weighting while evaluating on SIFT Flow dataset. The orig-

inal results in [40] are lower than ours on this dataset.

Recurrent Feedback: The introduction of the feedback

from the episodic memory module is to steer the CAMN to

iteratively refine the selected contextual memories and pro-

duce more powerful deep contextual vectors. The perfor-

mance of our overall model FCN+Episodic-CAMN is better

than that of FCN+CAMN. In Table 1, the IU accuracy is in-

creased around 1.54%, 1.34% and 1.27% over one-episode

Figure 3. Examples of qualitative labeling results (best viewed in

color). Each row shows the original test image, its ground truth

label map, and three label prediction maps of our convolutional

episodic attention-based contextual memory network with differ-

ent iterations. The test images are from the PASCAL-Context [46].

The quality of the label prediction maps is remarkably improved

as CAN is engaged (iteration 1), and is gradually refined after ad-

ditional iterations.

CAMN in all the datasets respectively. The most significant

performance jump originates from the CAN alone, which

indicates that the attention model is able to select very use-

ful contextual patches just in one-shot. Moreover, as we

introduce the episodic memory feedback to iteratively re-

fine the context selections, the recognition performance for

some classes can be further improved. As shown in Figure

6, the context vector usually saturates after around 2-3 iter-

ations; the performance starts to degrade slightly after many

iterations (T > 5). This may be due to the effect of over-

contextualizing the local features as after several contex-

tual aggregations, some local discriminative features may

be overwhelmed by the global contextual features.

Figure 3 show the qualitative labeling results and their
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Figure 4. Comparison with CRF-RNN method [69]. The samples

are from PASCAL VOC 2011 dataset [20].

gradual improvement over iterations. The quality of label

prediction is significantly improved over FCN as CAMN

is engaged for the first time, and it is further improved as

the context refinement evolves. We also visualize in Figure

5 the weighted selections (Heatmaps) for several patches

belonging to building, sky and computer respectively at

episode 1 and 3. In the first row, the heat increases in some

areas (e.g. building, road) and decreases in other areas (e.g.

sky). The second row visualizes heatmaps for a sky patch

belonging to the same scene as in the first row. This shows

that attention model is indeed location/patch sensitive. The

third row presents heatmaps for computer monitor patch,

showing how some patches from table are activated as re-

lated context. Our method models the associations between

features at patch level, i.e. not necessarily the whole ob-

ject is activated as related context. In other words, different

parts of an object/stuff can be activated for different target

object/stuff parts. We also report (train /test) run time on

the validation set of PASCAL VOC 2011 (averaged over 20

trials for an input image of 384× 384 on an NVIDIA Tesla

K40m with a companion CPU Intel Xeon E5-2643 v3 at

3.40GHz); FCN+Episodic-CAMN: (∼ 775ms /∼ 270ms)

and Baseline-FCN: (∼ 546ms /∼ 157ms).

Comparison with State-of-the-art: We compare the

performance of our full model with other state-of-the-art

methods for contextual modeling. The quantitative result

comparison on PASCAL-Context, SIFT Flow and PASCAL

VOC 2011 datasets are listed in Tables 2, 3 and 4 respec-

tively. There are other methods that use different settings

like adopting Residual Networks [26] (e.g. [12, 61]) or en-

gaging extra training data to train their models. In our case,

we only compare with VGG-based networks with similar

settings. Table 4 shows evaluation results on PASCAL VOC

2011 on the test set (provided by their server). Our model

achieve significant improvement over FCN-8s.

Comparison with Fully Connected CRF and other

CRF-based Models: We run the fully-connected CRF

model [29] that is used in other state-of-the-art works

[11, 12] as a post-processing step based on FCN predic-

tion maps. As shown in Table 1, our method outperforms

Algorithm PA(%) CA(%) IU(%)

FCN-8s [40] 65.9 46.5 35.1

FCN-8s [41] 67.5 52.3 39.1

DeepLab [12] - - 37.6

DeepLab-CRF [12] - - 39.6

HO-CRF [2] - - 41.3

CNN-CRF [32] 71.5 53.9 43.3

CRF-RNN [69] - - 39.3

ParseNet [37] 67.5 52.3 39.1

ConvPP-8 [63] - - 41.0

PixelNet [4] - 51.5 41.4

O2P [9] - - 18.1

CFM [16] - - 34.4

BoxSup [15] - - 40.5

FCN+Episodic-CAMN 72.1 54.3 41.2

Table 2. Performance comparison on PASCAL-Context [46].

it consistently. This performance gap illustrates that the

proposed method is more effective than CRF on leverag-

ing relevant context to perform local classification. Plus,

our model is very simple in terms of optimization compared

with graphical-based models. It is purely constructed from

primary feed-forward and recurrent layers so it is fast and

easy to optimize.

As reported in Tables 2 and 3, our method outperforms

other state-of-the-arts that use CRF models such as [32]

and [69] in different evaluation metrics. But in Table 4,

CRF-RNN [69] outperforms ours on PASCAL VOC 2011

by 2.0% while our method outperforms CRF-RNN on PAS-

CAL Context as shown in Table 2 by 1.9%. CRF-based

methods are effective for producing more refined object

boundaries which contributes a lot to boost the IU score,

especially for the object-centric PASCAL VOC (foreground

objects are annotated only). Meanwhile, our method can ex-

plicitly model the contextual dependencies between image

patches from different categories, hence it can better capture

the contextual interactions when images are densely anno-

tated with many different categories (PASCAL Context and

SIFT Flow). Our method and CRFs can be used in different

applications. In Figure 4, we show some qualitative exam-

ples from PASCAL VOC 2011 dataset where CRF-RNN

model performs better (third column).

In terms of speed, the inference time of our Episodic-

CAMN alone (as a single block) separately is ∼ 0.077s
on the previously mentioned CPU (no GPU is engaged).

Meanwhile the inference time of the dense CRF alone sep-

arately is ∼ 3.010s on the same CPU. Aside from simplic-

ity, our model is much faster and more efficient (∼ 39×
speedup) compared with CRF-based method, yet it per-

forms competitively (although with high feature dimension

4096), which makes our method suitable for applications

that require high speed processing.

Comparison with RNN-like Models: As shown in Ta-
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Figure 5. Some sample images from SIFT Flow [35] and PASCAL

VOC 2011 [20] alongside the visualization of the weighted selec-

tions for specific local patches. From left to right: RGB image,

label map, episode 1 heatmap and the final episode 3 heatmap.

Figure 6. IU performance changes in terms of iterations.

ble 3, our model outperforms many state-of-the-art meth-

ods that use RNN on top of convolutional features, e.g. [51]

and [5]. Additionally, while it is difficult to visualize the

hidden states of an RNN to clearly see whether the network

can capture the underlying associations and dependencies

among the input sequence, attention-based memory net-

works can easily reveal this secret. It can simply and explic-

itly measure the relevance among the patches which eases

the visualization and thus help us understand the underlay-

ing hidden relationships and interactions within a scene im-

age, as shown in Figure 5.

5. Conclusions

In this paper, we deal with the problem of scene label-

ing. In order to effectively leverage the relevant contex-

tual patches to enhance the local classification accuracy,

we propose an episodic attention-based contextual mem-

ory network. This model presents a unified framework

that mainly consists of FCN convolutional layers, attention-

based model, and an RNN to perform context selection and

refinement. The full model produces context-aware repre-

sentation for each target patch by aggregating the activated

context and its original local representation.

Our experiments show that the proposed method signifi-

cantly boosts the labeling performance of the original FCN

Algorithm PA(%) CA(%) IU(%)

Liu et al. [35] 74.8 - -

Liu et al. [36] 76.7 - -

Tighe et al. [56] 75.6 41.1 -

Farabet et al. [22] 72.3 50.8 -

Farabet et al. [22] 78.5 29.6 -

FCN-16s [40] 85.2 51.7 39.5

FCN-8s [41] 85.9 53.9 41.2

CNN-LSTM [5] 70.1 22.6 -

CNN-CRF [32] 88.1 53.4 44.9

DAG-RNN [51] 81.2 45.5 -

Pinheiro et al. [47] 77.7 29.8 -

RCNN [31] 83.5 35.8 -

RCNN [31] 79.3 57.1 -

ClassRare [67] 79.8 48.7 -

Sharma et al. [50] 79.6 33.6 -

Sharma et al. [50] 75.5 48.0 -

ParseNet [37] 86.8 52.0 40.4

JointCalib [6] - 55.6 -

Tighe-MRF [56] 78.6 39.2 -

FCN+Episodic-CAMN 86.2 58.7 45.2

Table 3. Performance comparison on SIFT Flow [35].

Algorithm IU(%)

BerkeleyRC [1] 39.1

SDS [25] 52.6

R-CNN [23] 47.9

FCN-8s [40] 62.7

FCN-8s [41] 67.5

Zoomout [45] 64.4

CRF-RNN [69] 72.4

FCN+Episodic-CAMN 70.4

Table 4. Average performance comparison on the test set from

PASCAL VOC 2011 [20].

by incorporating the selected context. More importantly,

our method achieves competitive performance on the pub-

lic PASCAL-Context, SIFT Flow and PASCAL VOC 2011

scene labeling benchmarks when compared with other state-

of-the-art work. We believe the performance of our model

can be further improved by enhancing some functionalities

such as relevance learning. With more sophisticated opera-

tions, it can potentially capture subtle relationships and in-

teractions between the referenced local patch and its con-

text.
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