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Abstract

We present new methods for simultaneously estimating cam-

era geometry and time shift from video sequences from mul-

tiple unsynchronized cameras. Algorithms for simultane-

ous computation of a fundamental matrix or a homography

with unknown time shift between images are developed. Our

methods use minimal correspondence sets (eight for fun-

damental matrix and four and a half for homography) and

therefore are suitable for robust estimation using RANSAC.

Furthermore, we present an iterative algorithm that extends

the applicability on sequences which are significantly un-

synchronized, finding the correct time shift up to several

seconds. We evaluated the methods on synthetic and wide

range of real world datasets and the results show a broad

applicability to the problem of camera synchronization.

1. Introduction

Many computer vision applications, e.g., human body mod-

elling [30, 5], person tracking [8, 36], pose estimation [11],

robot navigation [1, 12], and 3D object scanning [26],

benefit from using multiple-camera systems. In tightly-

controlled laboratory setups, it is possible to have all cam-

eras temporally synchronized. However, applicability of

multi-camera systems could be greatly enlarged when cam-

eras might run without synchronization [15]. Synchroniza-

tion is sometimes not possible, e.g. in automotive indus-

try, but even if it was possible, using asynchronous cam-

eras may produce other benefits, e.g., reducing bandwidth

requirements and improving temporal resolution of event

detection and motion recovery [6].

In this paper, we (1) introduce practical solvers that

simultaneously compute either a fundamental matrix or

a homography and time shift between image sequences,

and (2) we propose a fast iterative algorithm that uses

RANSAC [10] with our solvers in the inner loop to syn-
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Figure 1. Two cameras capture a moving point at different times,

the projection rays of the two cameras meet nowhere.

chronize large time offsets. Our approach can accurately

calibrate large time shifts, which was not possible before.

1.1. Related work

Many video and/or image sequence synchronization meth-

ods are based on image content analysis [23, 2, 35, 4, 3, 7,

22, 24, 32], or on synchronizing video by audio tracks [29]

and therefore their applicability is limited. Other ap-

proaches employed compressed video bitrate profiles [25]

and still camera flashes [28].The methods differ in temporal

transformation models. Often, time shift [23, 32, 35, 3], or

time shift combined with variable frame rate [7, 22, 2], are

used.

Many methods share a similar basis. A set of trajectories

is detected in every video sequence using an interest point

detector and an association rule or a 2D tracker. The tra-

jectories are matched across sequences. A RANSAC based

algorithm is often used to estimate jointly or in an itera-

tive manner the parameters of temporal and spatial transfor-
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mations [7, 22, 2]. In [7], RANSAC is used to search for

matching trajectory pairs in filtered set of all combinations

of trajectories in a sequence pair. The epipolar geometry has

to be provided. The method [22] enables joint synchroniza-

tion of N sequences by fitting a single N -dimensional line

called timeline in a RANSAC framework. The algorithm

[2] estimates temporal and spatial transformation based on

tentative trajectory matches.

Methods using exhaustive search to find the homogra-

phy [32] and either fundamental matrix or homography [33]

along with the time offset were presented. These are search-

ing over the entire space of possible time shifts.

The two most closely related works to ours are [21, 20]

that jointly estimate two-view geometry together with time

shift from approximated image point trajectories. In [21] es-

timated epipolar geometry or homography along with time

shift using non-linear least squares, approximating the im-

age trajectory by a straight line. The algorithm is initialized

by the 7pt algorithm [14] and a zero time shift. Work [20]

extended this approach by estimating difference in frame

rate and using splines instead of lines. Both the above works

achieve good results only when given a good initialization,

e.g., on sequences less than 0.5 seconds time shift and with

no gross matching errors.

1.2. Contribution

In this paper we present two new contributions.

First, we present a new method for simultaneous com-

putation of two-view camera geometry and temporal off-

set parameters from minimal sets of point correspondences.

We solve for fundamental matrix or homography together

with temporal offset of image sequences. Our methods need

only moving image point trajectories, which are easy to

track. Unlike in [21, 20], we use a small (minimal) numbers

of correspondences and we therefore are robust to outliers

when combined with RANSAC robust estimation.

Secondly, we present an iterative scheme using the min-

imal solvers to efficiently estimate large time offsets. Our

approach is based on RANSAC loop running our minimal

solvers. This approach efficiently searches in the space of

possible time offsets, which is much more efficient than ex-

haustive search methods [32, 33] developed before.

We evaluated our approach on a wide range of scenes

and demonstrated its capability of synchronizing various

kinds of real camera setups, such as driving cars, surveil-

lance cameras, or sports match recordings with no other in-

formation than image data.

We demonstrate that our solvers are able to synchro-

nize small time shifts of fractions of a second as well as

large time shifts of tens of seconds. Our iterative algorithm

is capable of synchronizing medium time shifts (i.e. tens

of frames) with less than 5 RANSAC iterations and large

time offsets (i.e. tens to hundreds of frames) using tens of

RANSAC iterations. Overall, our approach is much more

efficient than other methods utilizing RANSAC [22].

By solving two-camera synchronization problem, we

also solve the multi-camera synchronization problem since

temporal offsets of multiple cameras can be determined

pairwise to serve as the initialization point for a global it-

erative solutions based on bundle adjustment [34].

2. Problem formulation

Let us consider two unsynchronized cameras with a fixed

relative pose [14] producing a stereo video sequence by ob-

serving a dynamic scene. Motions of objects in the video se-

quence are indistinguishable from camera rig motions, and

therefore, we will present the problem for static cameras

and moving objects.

2.1. Geometry of two unsynchronized cameras

The coordinates of a 3D point moving along a smooth tra-

jectory in space can be described by function

X(t) = [X1(t), X2(t), X3(t), 1]
⊤, (1)

where t denotes time, see Figure 1. Projecting X(t) into the

image planes of the two distinct cameras produces two 2D

trajectories x(t) and x
′(t). Now, let’s assume that the first

camera captures frames with frequency f (period p = 1/f)

starting at time t0. This leads to a sequence of samples

si = [ui, vi, 1]
⊤ = x(ti) = π(X(ti)), i = 1, . . . , n. (2)

of the trajectory x(t) at times ti = t0 + ip.

Analogously, assuming a sampling frequency f ′ (period

p′ = 1/f ′), at times t′j = t′0 + jp′, the second camera pro-

duces a sequence of samples

s
′

j = [u′

j , v
′

j , 1]
⊤ = x

′(t′j) = π′(X(t′j)), j = 1, . . . , n′. (3)

In general, there is no correspondence between the si
and s′j samples, i.e., for i = j, si and s′j do not represent

the projections of the same 3D point. There are two main

sources of desynchronization in video streams. The first one

is the different recording starts or camera shutters triggering

independently leading to a constant time shift. The second

source are different frame rates or imprecise clocks leading

to different time scales. Assuming these two sources, we

can map the time t to t′ for frame i using (i) : N→ R as

(i) =
ti−t′

0

p′

=
t0+ip−t′

0

p′

=
t0−t′

0

p′

+
p

p′

i = β + ρi, (4)

where β ∈ R is captures the time shift and ρ ∈ R the time

scaling. Note that (i) is an integer-to-real linear mapping

with an analogous inverse mapping ı(j). Given the model

in (4) and a sequence of image samples s
′

j , j = 1, . . . , n′,

we can interpolate a continuous curve s
′(), for example
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using a spline, so that the 2D point corresponding to si is

approximately given as

si ←→ s
′(β + ρi). (5)

Notice that the interpolated image curve s
′(·) is not equiva-

lent to the true image trajectory x
′(·), but may be expected

to be a good approximation under certain conditions. Even

though it might appear reasonable to assume time shift to be

known within a fraction of a second, it is often the case in

practice that the timestamps are based on CPU clocks which

together with startup delays can lead to time shift β being

in the order of seconds. On the other hand, the time scaling

ρ is more often known or can be calculated accurately.

2.2. Epipolar geometry

At any given time t, the epipolar constraint of the two cam-

eras is determined by the following equation:

x
′(t)⊤Fx(t) = 0. (6)

For a sample si in the first camera, we can rewrite (6) using

the corresponding point x′(ti) in the second camera as

x
′(ti)

⊤
Fsi = 0, (7)

Using the approximation of the trajectory x
′ by s

′, we can

express the approximate epipolar constraint as

s
′(β + ρi)⊤Fsi = 0. (8)

In principle, we can solve for the unknowns β, ρ, and F

given 9 correspondences si, s
′

j . However, such a solution

would be necessarily iterative and too slow to be used as a

RANSAC kernel. In the following, another subsequent ap-

proximation is used to expresses the problem as a system

of polynomials, which can be solved efficiently [18]. In §6
we show an iterative solution built on this kernel, which can

recover offsets of up to hundreds of frames.

2.3. Linearization of s′ for known ρ

Let us assume that the relative framerate ρ is known. In

practice, the image curve s
′ is a complicated object. To

arrive to our polynomial solution we approximate s
′ by the

first order Taylor polynomial at β0 + ρi

s
′(β + ρi) ≈ s

′(β0 + ρi) + (β − β0)v = s
′′(β + ρi) (9)

where v is the tangent vector ṡ′(β0+ρi), and β0 is an initial

time shift estimate. We denote this approximation as s′′.

Further, we choose v to approximate the tangent over

the next d samples. Let j0 = ⌊β0 + ρi⌋ be the approximate

discrete correspondence, and then

v = s
′

j0+d − s
′

j0
. (10)
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Figure 2. Illustration of the proposed trajectory linearization.

(Left) Situation for ρ = 1, β0 and d = 1 (Right) Situation for

ρ = 1/2, β0 = 0 and d = 1.

Note, that now v depends on i. For compactness, we write

ui = s
′(β0 + ρi)− β0vi, and (8) becomes

(ui + βvi)
⊤
Fsi = 0 (11)

In the rest of the paper, we will assume that f = f ′ and

the initial estimate β0 = 0. This situation is illustrated in

Figure 2 (Left). However the key results hold for general

known ρ, Figure 2 (Right), and β0 6= 0.

2.4. Homography

Using the same approach, we can write the equation for

homography between two unsynchronized cameras. In syn-

chronized case, the homography between two cameras can

be expressed as

Hsi = λis
′

i. (12)

Approximating the image motion locally by a straight line

gives for two unsynchronized cameras

Hsi = λi (ui + βvi) . (13)

3. Solving the equations

3.1. Minimal solution to epipolar geometry

The minimal solution to the simultaneous estimation of

the epipolar geometry and the unknown time shift β starts

with the epipolar constraint (11). The fundamental matrix

F = [fij ]
3

i,j=1
is a 3× 3 singular matrix, i.e. it satisfies

det(F) = 0. (14)

Therefore, the minimal number of samples si and s
′

i neces-

sary to solve this problem is eight.

For eight samples in general position in two cameras, the

epipolar constraint (11) can be rewritten as

Mw = 0, (15)

where M is a 8 × 15 coefficient matrix of rank 8 and

w is a vector of monomials w = [f11, f12, f13, f21,
f22, f23, f31, f32, f33, βf11, βf12, βf13, βf21, βf22, βf23].
Since the fundamental matrix is only given up to scale,

the monomial vector w can be parametrized using the

7-dimensional nullspace of the matrix M as

w = n0 +
∑6

i=1
αini, (16)
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where αi, i = 1, . . . , 6 are new unknowns and ni, i =
0, . . . , 6 are the null space vectors of the coefficient matrix

M. The elements of the monomial vector w satisfy

βwj = wk, (17)

where wj is the jth element of the monomial vector w and

j ∈ {1, . . . , 6} and k ∈ {10, . . . , 15}.
The parametrization (16) used in the rank constraint (14)

and in the quadratic constraints (17) results in a quite com-

plicated system of 7 polynomial equations in 7 unknowns

α1, . . . , α6, β. Therefore, we first simplify these equations

by eliminating the unknown time shift β from these equa-

tions using the elimination ideal method presented in [19].

This results in a system of 18 equations in 6 unknowns

α1, . . . , α6. Even though this system contains more equa-

tions than the original system, its structure is less compli-

cated. We solve this system using the automatic genera-

tor of Gröbner basis solvers [18]. The final Gröbner basis

solver performs Gauss-Jordan elimination of a 194 × 210
matrix and the eigenvalue computations of a 16 × 16 ma-

trix, since the problem has 16 solutions. Note that by sim-

ply applying [18] to the original system of 7 equations in

7 unknowns a huge and numerically unstable solver of size

633× 649 is obtained.

3.2. Generalized eigenvalue solution to epipolar ge­
ometry

Using the non-minimal number of nine point correspon-

dences, the epipolar constraint (11) can be rewritten as

(M1 + βM2)f = 0, (18)

where M1 and M2 are 9 × 9 coefficient matrices and f is a

vector containing nine elements of the fundamental matrix F

The formulation (18) is a generalized eigenvalue prob-

lem (GEP) for which efficient numerical algorithms are

readily available. The eigenvalues of (18) give us solutions

to β and the eigenvectors to fundamental matrix F.

For this problem the rank of the matrix M2 is only six

and three from nine eigenvalues of (18) are always zero.

Therefore, instead of 9× 9 we can solve only 6× 6 GEP.

This generalized eigenvalue solution is more efficient

than the minimal solution presented in section 3, however

note that the GEP solution uses non-minimal number of

nine point correspondences and the resulting fundamental

matrix does not necessarily satisfy det(F) = 0.

3.3. Minimal solution to homography estimation

The minimal solution to the simultaneous estimation of

the homography and the unknown time shift β starts with

the equations of the form (13).

First, the solver eliminates the scalar values λi from (13).

This is done by multiplying (13) by the skew symmetric

matrix [ui + βvi]×. This leads to the matrix equation

[ui + βvi]× Hsi = 0. (19)

The matrix equation (19) contains three polynomial

equations from which only two are linearly independent, be-

cause the skew symmetric matrix has rank two. This means

that we need at least 4.5 (5) samples in two images to esti-

mate the unknown homography H as well as the time shift β.

Now let us use the equations corresponding to the

first and second row of the matrix equation (19). In

these equations β multiplies only the 3rd row of the

unknown homography matrix. This lead to nine ho-

mogeneous equations in 12 monomials w = [h11, h12,
h13, h21, h22, h23, h31, h32, h33, β h31, β h32, β h33]

⊤ for

4.5 samples in two images (i.e. we use only one equation

from the three equations (19) for the 5th sample).

We can stack these nine equations into a matrix form

Mw = 0, where M is a 9 × 12 coefficient matrix. Assum-

ing that M has full rank equal to nine, i.e., we have non-

degenerate samples, the dimension of null(M) is 3. This

means that the monomial vector w can in general be rewrit-

ten as a linear combination of three null space basis vectors

ni of the matrix M as

w =
∑3

i=1
γi ni, (20)

where γi are new unknowns. Without the loss of general-

ity, we can set γ3 = 1 to fix the scale of the homography

and to bring down the number of unknowns. For 5 or more

samples, instead of null space vectors ni, we use in (20)

three right singular vectors corresponding to three smallest

singular values of M.

The elements of the monomial vector w are not inde-

pendent. We can see that w10 = β w7, w11 = β w8, and

w12 = β w9, where wi is the ith element of the vector w.

These three constraints, together with the parametrization

from equation (20) form a system of three quadratic equa-

tions in three unknowns γ1, γ2, and β and only 6 monomi-

als. This system of three equations has a very simple struc-

ture and can be directly solved by performing G-J elimina-

tion of the 3 × 6 coefficient matrix M1 representing these

tree polynomials, and then by computing eigenvalues of the

3× 3 matrix obtained from this eliminated matrix M1. This

problem results in up to three real solutions.

Note, that the problem of estimating homography and β
can also be formulated as a generalized eigenvalue problem,

similarly as the problem of estimating epipolar geometry

(Section 3.2). However, due to the lack of space and the fact

that the presented minimal solution is extremely efficient,

we do not describe the GEP homography solution here.

4. Using RANSAC

In this section we would like to emphasize the role of

RANSAC for our solvers. RANSAC is generally used for
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robustness since the minimal solvers are sensitive to noise

and outliers. Outliers in the data will usually come from two

sources. One are the mismatches and misdetections and the

other is the non-linearity of the point trajectory. Even with-

out gross outliers due to false detections, there will always

be outliers with respect to the model in places where the tra-

jectory is not straight on the interpolating interval. There-

fore, it is usually beneficial to use RANSAC even if we are

sure the correspondences are precise.

By using RANSAC, we avoid those parts of the trajec-

tory and pick the parts that are approximately straight and

linear in velocity. Basically we only need to sample 8(F)

or 5(H) parts of the trajectory where this assumption holds

to obtain a good model, even if the rest of the trajectory is

highly non-linear.

5. Performance of the solvers on synthetic data

First, we investigated the performance of estimating the

time shift β using the proposed F and H minimal solvers.

We simulated a random movement of a 3D point in front of

two cameras. The simulated 3D trajectory was then sam-

pled at different times in each camera, the difference be-

ing the ground truth time shift βgt. Image noise was added

from a normal distribution with σ = 0.5 px. We tested

the minimal solvers with various interpolation distances d
and compared them also to the standard seven point funda-

mental matrix (7pt-F) and four point homography (4pt-H)

solvers [14]. Each algorithm was tested on 100 randomly

generated scenes for each βgt, resulting in tens of thousands

of experiments.

There are multiple observations we can make from the

results. The main one is that both F and H solvers perform

well in terms of estimating βgt, even for the minimal in-

terpolation distance d = 1. Figure 3 shows that almost all

inliers are correctly classified using d = 1, d = 2, d = 4
up to shift of 5 frames forward. Furthermore, even though

the inlier ratio begins to decrease with larger shifts, time

shift β is still correctly estimated, up till frame shifts of 20.

Overall, for a given d, each algorithm was able to estimate

correct β at least up to d. This is a nice property, suggest-

ing that for larger time shifts we should be able to estimate

them simply by increasing d.

For d = 8, d = 16, d = 32, the situation is slightly

different with respect to inliers. Notice that there are two

peaks in the number of inliers, one at βgt = 0 and the other

at βgt = d. This is expected, because at βgt = d, the inter-

polating vector v passes through the sample s
′

i+βgt
which

is in temporal correspondence with si. When βgt 6= 0 our

solvers are for any d well above the number of inliers pro-

vided by standard F and H algorithms.

Another thing to notice is the non-symmetricity of the re-

sults. Obviously, when βgt < 0 (backward) and we are in-

terpolating with d-th (forward) sample, the peaks in inliers
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Figure 3. Results on randomly generated scene with various time

shift β between cameras and several different interpolation dis-

tances d. Temporal distance of one frame equals to approximately

8 pixels distance in 1000x1000px image. Top two figures are re-

sults for epipolar matrix and bottom two for homography.

are not present, since we will never hit the sample which is

in correspondence. Also, the performance in terms of in-

liers is reduced when interpolating in the wrong direction,

although still above the algorithms not modelling the time

shift. Estimation of β deteriorates significantly sooner for

negative βgt, at around -10 frames. We will show how to

overcome this non-symmetricity by searching over d in both

directions using an iterative algorithm.

6. Iterative algorithm

As we observed in the synthetic experiments, the perfor-

mance of the minimal solvers will depend on the distance

from the optimum, i.e. the distance between the initial es-

timate β0 and the true time shift βgt, and on the distance d
of the samples used for interpolation. The results from syn-

thetic experiments (Figure 3) provide useful hints on how to

construct an iterative algorithm to improve the performance

and applicability of the minimal solvers. In particular, there

are three key observations to consider.

First, the number of inliers obtained from RANSAC

seems to be a reasonable function to optimize. Generally

it will have two strong local maxima, one at ti = t′i and

one at (ti − t′i) = d. At ti = t′i the sequences are synchro-

nized and at (ti − t′i) = d, Fig. 3, we obtain the correct β.

Both situations give us synchronized sequences. Second,

the β computed even far from the optimum, although not

precise, provides often a good indicator of the direction to-

wards ti = t′i. Finally, it can be observed that increasing d
improves the estimates when we are far from the optimum.

Moreover, as seen from the peaks in Fig. 3, selecting larger
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d yields increasingly better estimates of β, which are lower

or equal than the actual (ti− t′i), but never higher. This sug-

gests that we could safely increase d until a better estimate

is found.

The observations mentioned above lead us to algo-

rithm 1. The basic principle of the algorithm is the follow-

ing. In the beginning, assume i = j. At each iteration k,

estimate β and F. If this model gives more inliers than pre-

vious estimate, change j to the nearest integer to j + β and

repeat. If the new estimate gives less inliers than the last

one, extend the search direction by increasing d by powers

of 2 until more inliers are found. If dpmax is reached, p is

reset to 0, so interpolation distances keep circling between

d0 and dpmax . This is essentially a line search over the pa-

rameter d. Algorithm is stopped when the number of inliers

did not increase pmax times. This ensures, that at each t′j ,

all interpolation distances are tested at maximum once. The

resulting estimate of β is then j− i+β, which is the differ-

ence in frames the algorithm traveled plus the last estimate

of time shift at this point (subframe synchronization).

Estimating of β and F is done using RANSAC and in-

terpolating from both the next and previous dth sample,

searching the space of β in both directions. Whichever di-

rection returns more inliers is taken as current estimate. By

changing the values pmin and pmax we have the option to

adjust the range of search. Having an initial guess about

the amount of time shift, e.g. not more than 100 frames,

but definitely more than 10 frames, we could start the algo-

rithm with values pmin = 3 and pmax = 7 so the search in

d would start with d = 8 and not go further than d = 128.

The symbol T represents a geometric relation, in our case

either a fundamental matrix or a homography.

7. Real data experiments

Our real datasets contain two private datasets and three pub-

licly available multi-camera datasets. We aimed at collect-

ing various types of scenes to cover wide range of appli-

cations. The public data were always synchronized and

we manually shifted the frame to frame correspondences

to simulate the ground truth time shift. We experimented

with shift of -50 to 50 frames on each dataset, which pro-

duced time shifts ranging from 2s to 5s based on the camera

framerate.

7.1. Datasets

Dataset Marker was obtained by moving Aruco marker

in front of a two webcams running at 10fps. A digital

clock running was captured for each frame and processed by

OCR to provide ground truth timestamps. Further, we used

three public datasets and one private: UvA [17],KITTI [12],

Hockey and PETS [8]. The UvA dataset consists of video

sequences taken by three static cameras with manual anno-

tations of humans. The KITTI dataset contains stereo video

Algorithm 1 Iterative sync

Input: s0, . . . , sn,s′
0
, . . . , s′

n′ ,kmax,pmax,pmin

Output: β,T

β0 ← 0,i = j,skipped← 0, d← 2pmin ,inliers0 ← 0,p← pmin

while k = 1 < kmax do

T1,β1 and inliers1 ← RANSAC(si, s
′

j , d)

T2,β2 and inliers2 ← RANSAC(si, s
′

j ,−d)

if inliers1 > inliers2 then

inliersk ← inliers1, βk ← β1, Tk ← T1

else

inliersk ← inliers2, βk ← β2, Tk ← T2

end if

if skipped > pmax then

return Tk−1,β ← j − i+ βk−1

else if inliersk < inliersk−1 then

if p < pmax then

p← p+ 1

else

p← 0

end if

d← 2p

skipped← skipped + 1

else

j ← j + ⌈βk⌋
skipped← 0

k ← k + 1

end if

end while

sequences taken from a moving car. In our experiments, we

used raw unsynchronized data provided by the authors. The

Hockey dataset was synchronized by [31] and the trajecto-

ries are manually curated tracks of [16]. The PETS dataset

is a standard multi-target tracking dataset. Trajectories were

detected by [13, 9, 27] and manually joined.

7.2. Algorithms

We compared seven different approaches to simultane-

ously solving two-camera geometry and time shift. De-

pending on the data, either fundamental matrix or homog-

raphy was estimated. We denote both geometric relations

by T , where T means H or F was estimated using standard

4 or 7 point algorithms [14] and Tβ means that H or F was

estimated together with β. The rightmost column of fig-

ure 4 shows which model, i.e. homography or fundamental

matrix, was estimated on a particular data set.

The closest alternatives to our approach are the least-

squares based algorithms presented in [21] and [20]. Both

optimize F or H and β starting from an initial estimate of

β = 0 and T . Method [21] uses linear interpolation from

the next sample, whereas method [20] uses spline interpola-

tion of the image trajectory and we will refer to these meth-

ods as Tβ-lin and Tβ-spl respectively. In our implementa-

tion of those methods, we used Matlab’s lsqnonlin function

with Levenberg-Marquardt algorithm, all stopping criteria

set to epsilon and maximum number of 100 iterations.

We tested the solvers presented in section 3 with d = 1
as algorithm Tβ-new-d1. The proposed iterative algorithm 1
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βgt 0-10 10-20 20-30 30-40 40-50

Tβ-new-iter-pmax0 4.7 4.3 3.5 4.1 3.8

Tβ-new-iter-pmax6 23 22 21.2 21.6 21.2

Tβ-new-iter-pmaxvar 18 19 17.5 16.7 16.5

Table 1. Average number of RANSACs executed before termina-

tion. Evaluated on Marker dataset.

that uses the solvers was tested using several different set-

tings. The user can control the algorithm using parame-

ters pmax and pmin, which determine the distances d that

will be used for interpolation. As we observed in section 5,

there is a good chance of computing a correct β if d > βgt.

First, we ran the algorithm with pmin = 0 and pmax = 6,

which gives maximum d = 64 as algorithm Tβ-new-iter-

pmax6. This version of the algorithm is guaranteed to try

d = 1, 2, 4, 8, 16, 32, 64 at each βk before it stops or it finds

more inliers. This covers the time shifts we tested, but can

lead to unnecessary iterations for smaller shifts. Therefore,

we also tested pmax = 0 as Tβ-new-iter-pmax0 which only

tried d = 1 at each iteration to see the capabilities of the

most efficient version of the algorithm.

The last version of our algorithm, Tβ-new-iter-pmaxvar,

adapted both pmax and pmin to βgt such that 2pmin ≤
βgt < 2pmax . This represents a case when user has a rough

estimate about the expected time shift and sets the algorithm

accordingly. We remind that setting pmin only affects the

initial interpolating distance, after reaching d = 2pmax the

algorithm starts again with d = 20.

Finally, algorithm T -lin [21] also takes the next samples

for interpolation, making it comparable to our Tβ-new-d1.

We used T -lin in the same iterative scheme as Tβ-new-iter-

pmax6 and tested it as T -new-lin-iter, where instead of us-

ing the number of inliers as a criteria for accepting a step,

we used the value of the residual.

7.3. Results and discussion

The results on real datasets demonstrate a wide practical

usefulness of the proposed methods. For most datasets, Tβ-

new-d1 itself performed at least as good as the least squares

algorithms Tβ-lin and Tβ − spl. A single RANSAC was

enough to synchronize time shifts of 2-5 frames across all

datasets. The iterative algorithm Tβ-new-iter-pmax6 build

upon our solvers performed the absolute best across all

datasets, converging successfully from as far as 5s time dif-

ference on Marker and Hockey datasets, 2s difference on

UvA dataset and 2,5 seconds on Kitti dataset as seen in the

success rate column of figure 4.

On the Kitti dataset, Tβ-new-iter-pmax6 was outper-

formed by the Tβ-new-lin-iter, which uses the iterative al-

gorithm proposed by us, but with a solution from [21] in-

side. Tβ-new-lin-iter was able to estimate time differences

larger than 2,5s but only in roughly half of the cases, where

Tβ-new-iter-pmax6 was 100% successful up to 2,5s when

it sharply fell off. We account this to the high non-linearity

of the 2D velocity of the image points, where as the objects

got closer to the car, they moved faster. The tracks of length

25 frames and more were very sparse here and the longer

they were the more non-linear in the velocity.

On the contrary, the hockey dataset posed a big challenge

for the least squares algorithms, which struggled even with

the smallest time offsets. We account this to the poor es-

timate of F by the seven point algorithm which causes the

LM algorithm to get stuck in local minima. We also tested

the homography version of all algorithms on this dataset,

since the trajectories are approximately planar, which re-

sulted in the least squares algorithms performing slightly

better whereas the algorithms with minimal solvers per-

forming slightly worse.

PETS dataset was probably the most challenging, be-

cause of the low framerate (7FPS), coarse detections and

abrupt change of motion. Still, our methods managed to

synchronize the sequences in majority of cases.

Table 1 shows the average number of RANSACs used

before termination of different variants of iterative algo-

rithm 1 for the dataset Marker. We can see that using 8pt-

iter-pmax0 greatly reduces the computations needed, still

allowing this method to reliably estimate time shifts of 0.5s-

2s depending on the scene, rendering it useful if we are

certain that the sequences are off by only a several frames.

Knowing the time shift approximately and setting pmax and

pmin can also reduce the computations as shown by 8pt-iter-

pmaxvar, which provided identical performance to 8pt-iter-

pmax6, sometimes even outperforming it.

8. Conclusion

We have presented solvers for simultaneously estimating

epipolar geometry or homography and time shift between

image sequences from unsynchronized cameras. These are

the first minimal solutions to these problems, making them

suitable for robust estimation using RANSAC. Our methods

need only trajectories of moving points in images, which

are easily provided by state-of-the-art methods, e.g. SIFT

matching, human pose detectors, or pedestrian trackers. We

were able to synchronize wide range of real world datasets

shifted by several frames using a single RANSAC with our

solvers. For larger time shifts, we proposed an iterative

algorithm using these solvers in succession. The iterative

algorithm proved to be reliable enough for synchronizing

real world camera setups ranging from autonomous cars,

surveillance videos, and sport game recordings, which were

de-synchronized by several seconds.
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