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Abstract

Porting state of the art deep learning algorithms to re-

source constrained compute platforms (e.g. VR, AR, wear-

ables) is extremely challenging. We propose a fast, com-

pact, and accurate model for convolutional neural networks

that enables efficient learning and inference. We introduce

LCNN, a lookup-based convolutional neural network that

encodes convolutions by few lookups to a dictionary that is

trained to cover the space of weights in CNNs. Training

LCNN involves jointly learning a dictionary and a small set

of linear combinations. The size of the dictionary naturally

traces a spectrum of trade-offs between efficiency and ac-

curacy. Our experimental results on ImageNet challenge

show that LCNN can offer 3.2× speedup while achieving

55.1% top-1 accuracy using AlexNet architecture. Our

fastest LCNN offers 37.6× speed up over AlexNet while

maintaining 44.3% top-1 accuracy. LCNN not only offers

dramatic speed ups at inference, but it also enables efficient

training. In this paper, we show the benefits of LCNN in

few-shot learning and few-iteration learning, two crucial

aspects of on-device training of deep learning models.

1. Introduction

In recent years convolutional neural networks (CNN)

have played major roles in improving the state of the art

across a wide range of problems in computer vision, in-

cluding image classification [25, 37, 39, 18], object detec-

tion [11, 10, 36], segmentation [34, 32], etc. These mod-

els are very expensive in terms of computation and mem-

ory. For example, AlexNet[25] has 61M parameters and

performs 1.5B high precision operations to classify a single

image. These numbers are even higher for deeper networks,

e.g.,VGG [37]. The computational burden of learning and

inference for these models is significantly higher than what

most compute platforms can afford.

Recent advancements in virtual reality (VR by Oculus)

[33], augmented reality (AR by HoloLens) [14], and smart

wearable devices increase the demand for getting our state

of the art deep learning algorithm on these portable compute

platforms. Porting deep learning methods to these platforms

is challenging mainly due to the gap between what these

platforms can offer and what our deep learning methods re-

quire. More efficient approaches to deep neural networks is

the key to this challenge.

Recent work on efficient deep learning have focused on

model compression and reducing the computational preci-

sion of operations in neural networks [3, 15, 35]. CNNs suf-

fer from over-parametrization [7] and often encode highly

correlated parameters [22], resulting in inefficient compu-

tation and memory usage[7]. Our key insight is to lever-

age the correlation between the parameters and represent

the space of parameters by a compact set of weight vec-

tors, called dictionary. In this paper, we introduce LCNN,

a lookup-based convolutional neural network that encodes

convolutions by few lookups to a dictionary that is trained

to cover the space of weights in CNNs. Training LCNN

involves jointly learning a dictionary and a small set of

linear combinations. The size of the dictionary naturally

traces a spectrum of trade-offs between efficiency and accu-

racy. Our experimental results using AlexNet on ImageNet

challenge show that LCNN can offer 3.2× speedup while

achieving 55.1% top-1 accuracy. Our fastest LCNN offers

37.6× speed up over CNN while maintaining 44.3% top-1

accuracy. In the ResNet-18, the most accurate LCNN offers

5× speedup with 62.2% accuracy and the fastest LCNN of-

fers 29.2× speedup with 51.8% accuracy

In addition, LCNN enables efficient training; almost all

the work in efficient deep learning have focused on efficient

inference on resource constrained platforms [35]. Train-

ing on these platforms is even more challenging and re-

quires addressing two major problems: i. few-shot learn-

ing: the settings of on-device training dictates that there

won’t be enough training examples for new categories. In

fact, most training needs to be done with very few train-

ing examples; ii. few-iteration learning: the constraints in

computation and power require the training to be light and

quick. This imposes hard constraints on the number of it-

erations in training.LCNN offers solutions for both of these

problems in deep on-device training.
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Few-shot learning, the problem of learning novel cate-

gories from few examples (sometimes even one example),

have been extensively studies in machine learning and com-

puter vision[9]. The topic is, however, relatively new for

deep learning[17], where the main challenge is to avoid

overfitting. The number of parameters are significantly

higher than what can be learned from few examples. LCNN,

by virtue of having fewer parameters to learn (only around

7% of parameters of typical networks), offers a simple solu-

tion to this challenge. Our dictionary can be learned offline

from training data where enough training examples per cat-

egory exists. When facing new categories, all we need to

learn is the set of sparse reconstruction weights. Our exper-

imental evaluations show significant gain in few-shot learn-

ing; 6.3% in one training example per category.

Few-iteration learning is the problem of getting high-

est possible accuracy in few iterations that a resource con-

strained platform can offer. In a typical CNN, training often

involves hundreds of thousands of iterations. This number

is even higher for recent deeper architectures. LCNN offers

a solution: dictionaries in LCNN are architecture agnostic

and can be transferred across architectures or layers. This

allows us to train a dictionary using a shallow network and

transfer it to a deeper one. As before, all we need to learn

are the few reconstruction weights; dictionaries don’t need

to be trained again. Our experimental evaluations on Im-

ageNet challenge show that using LCNN we can train an

18-layer ResNet with a pre-trained dictionary from a 10-

layer ResNet and achieve 16.2% higher top-1 accuracy on

10K iterations.

In this paper, we 1) introduce LCNN; 2) show state of

the art efficient inference in CNNs using LCNN; 3) demon-

strate possibilities of training deep CNNs using as few as

one example per category 4) show results for few iteration

learning .

2. Related Work

A wide range of methods have been proposed to address

efficient training and inference in deep neural networks.

Here, we briefly study these methods under the topics that

are related to our approach.

Weight compression: Several attempts have been made

to reduce the number of parameters of deep neural net-

works. Most of such methods [13, 46, 3, 15, 38] are based

on compressing the fully connected layers, which contain

most of the weights. These methods do not achieve much

improvement on speed. In [21], a small DNN architec-

ture is proposed which is fully connected free and has 50x

fewer parameters in compare to AlexNet [26]. However,

their model is slower than AlexNet. Recently [16, 15] re-

duced the number of parameters by pruning. All of these

approaches update a pre-trained CNN, whereas we propose

to train a compact structure that enables faster inference.

Low Rank Assumption: Approximating the weights

of convolutional layers with low-rank tensor expansion has

been explored by [22, 7]. They only demonstrated speedup

in the case of large convolutions. [8] uses SVD for tensor

decomposition to reduce the computation in the lower lay-

ers on a pre-trained CNN. [47] minimizes the reconstruc-

tion error of the nonlinear responses in a CNN, subject to a

low-rank constraint which helps to reduce the complexity of

filters. Notably, all of these methods are a post processing

on the weights of a trained CNN, and none of them train a

lower rank network from scratch.

Low Precision Networks: A fixed-point implementa-

tion of 8-bit integer was compared with 32-bit floating point

activations in [41, 20]. Several network quantization meth-

ods are proposed by [13, 1, 29, 29, 19]. Most recently, bi-

nary networks has shown to achieve relatively strong result

on ImageNet [35]. They have trained a network that com-

putes the output with mostly binary operations, except for

the first and the last layer. [5] uses the real-valued version

of the weights as a key reference for the binarization pro-

cess. [4] is an extension of [5], where both weights and

activations are binarized. [23] retrains a previously trained

neural network with binary weights and binary inputs. Our

approach is orthogonal to this line of work. In fact, any of

these methods can be applied in our model to reduce the

precision.

Sparse convolutions: Recently, several attempts have

been made to sparsify the weights of convolutional layers

[31, 45, 44]. [31] shows how to reduce the redundancy in

parameters of a CNN using a sparse decomposition. [45]

proposed a framework to simultaneously speed up the com-

putation and reduce the storage of CNNs. [44] proposed

a Structured Sparsity Learning (SSL) method to regularize

the structures (i.e., filters, channels, filter shapes, and layer

depth) of CNNs. Only in [44] a sparse CNN is trained from

scratch which makes it more similar to our approach. How-

ever, our method provides a rich set of dictionary that en-

ables implementing convolution with lookup operations.

Few-Shot Learning: The problem of learning novel cat-

egories has been studied in [40, 2, 30]. Learning from few

examples per category explored by [17]. [9, 42, 24] pro-

posed a method to learn from one training example per cat-

egory, known as one-shot learning. Learning without any

training example, zero-shot learning, is studied by [27, 28].

3. Our Approach

Overview: In a CNN, each convolutional layer consists of

n cubic weight filters of size m× kw × kh, where m and n

are the number of input and output channels, respectively,

and kw and kh are the width and the height of the filter.

Therefore, the weights in each convolutional layer is com-

posed of nkwkh vectors of length m. These vectors are

shown to have redundant information[7]. To avoid this re-
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Figure 1. This figure demonstrates the procedure for constructing a weight filter in LCNN. A vector in the weight filter (the long colorful

cube in the gray tensor W) is formed by a linear combination of few vectors, which are looked up from the dictionary D. Lookup indices

and their coefficients are stored in tensors I and C.

dundancy, we build a relatively small set of vectors for each

layer, to which we refer as dictionary, and enforce each vec-

tor in the weight filter to be a linear combination of a few

elements from this set. Figure 1 shows an overview of our

model. The gray matrix at the left of the figure is the dictio-

nary. The dashed lines show how we lookup a few vectors

from the dictionary and linearly combine them to build up

a weight filter. Using this structure, we devise a fast infer-

ence algorithm for CNNs. We then show that the dictio-

naries provide a strong prior on the visual data and enables

us to learn from few examples. Finally, we show that the

dictionaries can be transferred across different network ar-

chitectures. This allows us to speedup the training of a deep

network by transferring the dictionaries from a shallower

model.

3.1. LCNN

A convolutional layer in a CNN consists of four parts: 1) the

input tensor X ∈ R
m×w×h; where m, w and h are the num-

ber of input channels, the width and the height, respectively,

2) a set of n weight filters, where each filter is a tensor

W ∈ R
m×kw×kh , where kw and kh are the width and the

height of the filter, 3) a scalar bias term b ∈ R for each fil-

ter, and 4) the output tensor Y ∈ R
n×w′×h′

; where each

channel Y[i,:,:] ∈ R
w′×h′

is computed by W ∗X+ b. Here

∗ denotes the discrete convolution operation1.

For each layer, we define a matrix D ∈ R
k×m as the

shared dictionary of vectors. This is illustrated in figure 1,

on the left side. This matrix contains k row vectors of length

m. The size of the dictionary, k, might vary for different

layers of the network, but it should always be smaller than

nkwkh, the total number of vectors in all weight filters of

a layer. Along with the dictionary D, we have a tensor for

1The (:) notation is borrowed from NumPy for selecting all entries in a

dimension.

lookup indices I ∈ N
s×kw×kh

≤k , and a tensor for lookup co-

efficients C ∈ R
s×kw×kh for each layer. For a pair (r, c),

I[:,r,c] is a vector of length s whose entries are indices of

the rows of the dictionary, which form the linear compo-

nents of W[:,r,c]. The entries of the vector C[:,r,c] specify

the linear coefficients with which the components should

be combined to make W[:,r,c] (illustrated by a long color-

ful cube inside the gray cub in Figure 1-right). We set s,

the number of components in a weight filter vector, to be

a small number. The weight tensor can be constructed as

follows:

W[:,r,c] =
s
∑

t=1
C[t,r,c] ·D[I[t,r,c],:] ∀r, c (1)

This procedure is illustrated in Figure 1. In LCNN, in-

stead of storing the weight tensors W for convolutional lay-

ers, we store D, I and C, the building blocks of the weight

tensors. As a result, we can reduce the number of param-

eters in a convolutional layer by reducing k, the dictionary

size, and s, the number of components in the linear com-

binations. In the next section, we will discuss how LCNN

uses this representation to speedup the inference.

3.1.1 Fast Convolution using a Shared Dictionary

A forward pass in a convolutional layer consists of n con-

volutions between the input X and each of the weight filters

W. We can write a convolution between an m × kw × kh
weight filter and the input X as a sum of kwkh separate

(1× 1)-convolutions:

X ∗W =
kh,kw
∑

r,c

shiftr,c(X ∗W[:,r,c]) (2)

, where shiftr,c is the matrix shift function along rows and

columns with zero padding relative to the filter size. Now
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Figure 2. S is the output of convolving the dictionary with the input tensor. The left side of this figure illustrates the inference time

forward pass. The convolution between the input and a weight filter is carried out by lookups over the channels of S and a few linear

combinations. Direct learning of tensors I and C reduces to an intractable discrete optimization. The right side of this figure shows an

equivalent computation for training based on sparse convolutions. Parameters P can be trained using SGD. The tiny cubes in P denote the

non-zero entries.

we use the LCNN representation of weights (equation 1) to

rewrite each 1× 1 convolution:

X ∗W =
∑

r,c

shiftr,c(X ∗ (
s
∑

t=1
C[t,r,c] ·D[I[t,r,c],:]))

=
∑

r,c

shiftr,c(
s
∑

t=1
C[t,r,c](X ∗D[I[t,r,c],:]))

(3)

Equation 3 suggests that instead of reconstructing the

weight tensor W and convolving with the input, we can

convolve the input with all of the dictionary vectors, and

then compute the output according to I and C. Since the

dictionary D is shared among all weight filters in a layer,

we can pre-compute the convolution between the input ten-

sor X and all the dictionary vectors. Let S ∈ R
k×w×h be

the output of convolving the input X with all of the dictio-

nary vectors D, i.e.,

S[i,:,:] = X ∗D[i,:] ∀1 ≤ i ≤ k (4)

Once the values of S are computed, we can reconstruct the

output of convolution by lookups over the channels of S

according to I, then scale them by the values in C:

X ∗W =
kh,kw
∑

r,c

shiftr,c(
s
∑

t=1
C[t,r,c]S[I[t,r,c],:,:]) (5)

This is shown in Figure 2 (left). Reducing the size of the

dictionary k lowers the cost of computing S and makes the

forward pass faster. Since S is computed by a dense matrix

multiplication, we are still able to use OpenBlas [43] for

fast matrix multiplication. In addition, by pushing the value

of s to be small, we can reduce the number of lookups and

floating point operations.

3.1.2 Training LCNN

So far we have discussed how LCNN represents a weight

filter by linear combinations of a subset of elements in a

shared dictionary. We have also shown that how LCNN

performs convolutions efficiently in two stages: 1- Small

convolutions: convolving the input with a set of 1 × 1 fil-

ters (equation 4). 2- Lookup and scale: few lookups over

the channels of a tensor followed by a linear combination

(equation 5) . Now, we explain how one can jointly train

the dictionary and the lookup parameters, I and C. Direct

training of the proposed lookup based convolution leads to a

combinatorial optimization problem, where we need to find

the optimal values for the integer tensor I. To get around

this, we reformulate the lookup and scale stage (equation 5)

using a standard convolution with sparsity constraints.

Let T ∈ R
k×kw×kh be a one hot tensor, where T[t,r,c] =

1 and all other entries are zero. It is easy to observe that con-

volving the tensor S with T will result in shiftr,c(S[t,:,:]).
We use this observation to convert the lookup and scale

stage (equation 5) to a standard convolution. Lookups and

scales can be expressed by a convolution between the tensor

S and a sparse tensor P, where P ∈ R
k×w×h, and P[:,r,c] is

a s-sparse vector (i.e. it has only s non-zero entries) for all

spatial positions (r, c). Positions of the non-zero entries in

P are determined by the index tensor I and their values are

determined by the coefficient tensor C. Formally, tensor P

can be expressed by I and C:

Pj,r,c =

{

Ct,r,c, ∃t : It,r,c = j

0, otherwise
(6)

Note that this conversion is reversible, i.e.,we can create

I and C from the position and the values of the non-zero
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entries in P. With this conversion, the lookup and scale

stage (equation 5) becomes:

∑

rc

shift(r,c)(

s
∑

t=1

C[t,r,c]S[I[t,r,c],:,:]) = S ∗P (7)

This is illustrated in Figure 2-right. Now, instead of directly

training I and C, we can train the tensor P with ℓ0-norm

constraints (‖P[:,r,c]‖ℓ0 = s) and then construct I and C

from P. However, ℓ0-norm is a non-continuous function

with zero gradients everywhere. As a workaround, we relax

it to ℓ1-norm. At each iteration of training, to enforce the

sparsity constraint for P[:,r,c], we sort all the entries by their

absolute values and keep the top s entries and zero out the

rest. During training, in addition to the classification loss

L we also minimize
∑

[r,c]

‖P[:,r,c]‖ℓ1 = ‖P‖ℓ1 , by adding a

term λ‖P‖ℓ1 to the loss function. The gradient with respect

to the values in P is computed by:

∂(L+ λ ‖P‖ℓ1)

∂P
=

∂L

∂P
+ λ sign(P) (8)

where ∂L
∂P

is the gradient that is computed through a stan-

dard back-propagation. λ is a hyperparameter that adjusts

the trade-off between the CNN loss function and the ℓ1 reg-

ularizer. We can also allow s, the sparsity factor, to be dif-

ferent at each spatial position (r, c), and be determined auto-

matically at training time. This can be achieved by applying

a threshold function,

δ(x) =

{

x, |x| > ǫ

0, otherwise
(9)

over the values in P during training. We also backpropa-

gate through this threshold function to compute the gradi-

ents with respect to P. The derivative of the threshold func-

tion is 1 everywhere except at |x| < ǫ, which is 0. Hence,

if any of the entries of P becomes 0 at some iteration, they

stay 0 forever. Using the threshold function, we let each

vector to be a combination of arbitrary vectors. At the end

of the training, the sparsity parameter s at each spatial posi-

tion (r, c) is determined by the number of non-zero values

in P[:, r, c].
Although the focus of our work is to speedup convo-

lutional layers where most of the computations are, our

lookup based convolution model can also be applied on

fully connected (FC) layers. An FC layer that goes from m

inputs to n outputs can be viewed as a convolutional layer

with input tensor m × 1 × 1 and n weight filters, each of

size m×1×1. We take the same approach to speedup fully

connected layers.

After training, we convert P to the indices and the co-

efficients tensors I and C for each layer. At test time, we

follow equation 5 to efficiently compute the output of each

convolutional layer.

3.2. Few­shot learning

The shared dictionary in LCNN allows a neural network

to learn from very few training examples on novel cate-

gories, which is known as few-shot learning[17]. A good

model for few-shot learning should have two properties:

a) strong priors on the data, and b) few trainable parame-

ters. LCNN has both of these properties. An LCNN trained

on a large dataset of images (e.g. ImageNet [6]) will have a

rich dictionary D at each convolutional layer. This dictio-

nary provides a powerful prior on visual data. At the time of

fine-tuning for a new set of categories with few training ex-

amples, we only update the coefficients in C. This reduces

the number of trainable parameters significantly.

In a standard CNN, to use a pre-trained network to clas-

sify a set of novel categories, we need to reinitialize the

classification layer randomly. This introduces a large num-

ber of parameters, on which we don’t have any prior, and

they should be trained solely by a few examples. LCNN,

in contrast, can use the dictionary of the classification layer

of the pre-trained model, and therefore only needs to learn

I and C from scratch, which form a much smaller set of

parameters. Furthermore, for all other layers, we only fine-

tune the coefficients C, i.e.,only update the non-zero entries

of P. Note that the dictionary D is fixed across all layers

during the training with few examples.

3.3. Few­iteration learning

Training very deep neural networks are computationally

expensive and require hundreds of thousands of iterations.

This is mainly due to the complexity of these models. In or-

der to constrain the complexity, we should limit the number

of learnable parameters in the network. LCNN has a suit-

able setting that allows us to limit the number of learnable

parameters without changing the architecture. This can be

done by transferring the shared dictionaries D from a shal-

lower network to a deeper one.

Not only we can share a dictionary D across layers, but

we can also share it across different network architectures

of different depths. A dictionary D ∈ R
m×k can be used

in any convolutional layer with input channel size m in any

CNN architecture. For example, we can train our dictionar-

ies on a shallow CNN and reuse in a deeper CNN with the

same channel size. On the deeper CNN we only need to

train the indices and coefficients tensors I and C.

4. Experiments

We evaluate the accuracy and the efficiency of LCNN

under different settings. We first evaluate the accuracy and

speedup of our model for the task of object classification,

evaluated on the standard image classification challenge of

ImageNet, ILSRVC2012 [6]. We then evaluate the accu-

racy of our model under few-shot setting. We show that
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AlexNet

Model speedup top-1 top-5

CNN 1.0× 56.6 80.2

Wen et al. [44] 3.1×2
55.4 N/A

XNOR-Net[35] 8.0×3
44.2 69.2

LCNN-fast 37.6× 44.3 68.7

LCNN-accurate 3.2× 55.1 78.1

Table 1. Comparison of different efficient methods on AlexNet.

The accuracies are classification accuracy on the validation set of

ILSVRC2012.

given a set of novel categories with as small as 1 training

example per category, our model is able to learn a classifier

that is both faster and more accurate than the CNN base-

line. Finally we show that the dictionaries trained in LCNN

are generalizable and can be transferred to other networks.

This leads to a higher accuracy in small number of iterations

compared to standard CNN.

4.1. Implementation Details

We follow the common way of initializing the convolu-

tional layers by Gaussian distributions introduced in [12],

including for the sparse tensor P. We set the threshold in

equation 9 for each layer in such a way that we maintain

the same initial sparsity across all the layers. That is, we

set the threshold of each layer to be ǫ = c · σ, where c

is constant across layers and σ is the standard deviation of

Gaussian initializer for that layer. We use c = 0.01 for

AlexNet and c = 0.001 for ResNet. Similarly, to maintain

the same level of sparsity across layers we need a λ (equa-

tion 8) that is proportional to the standard deviation of the

Gaussian initializers. We use λ = λ′ǫ, where λ′ is constant

across layers and ǫ is the threshold value for that layer. We

try λ′ ∈ {0.1, 0.2, 0.3} for both AlexNet and ResNet to get

different sparsities in P.

The dictionary size k, the regularizer coefficient λ, and

threshold value ǫ are the three important hyperparameters

for gaining speedup. The larger the dictionary is, the more

accurate (but slower) the model becomes. The size of the

the dictionary for the first layer does not need to be very

large as it’s representing a 3-dimensional space. We ob-

served that for the first layer, a dictionary size as small as 3
vectors is sufficient for both AlexNet and ResNet. In con-

trast, fully connected layers of AlexNet are of higher dimen-

sionality and a relatively large dictionary is needed to cover

the input space. We found dictionary sizes 512 and 1024
to be proper for fully connected layers. In AlexNet we use

the same dictionary size across other layers, which we vary

2They have not reported the overall speedup on AlexNet, but only per

layer speedup. 3.1× is the weighted average of their per layer speedups.
3XNOR-Net gets 32× layer-wise speedup on a 32 bit machine. How-

ever, since they haven’t binarized the first and the last layer (which has

9.64% of the computation), their overall speedup is 8.0×.

ResNet-18

Model speedup top-1 top-5

CNN 1.0× 69.3 90.0

XNOR-Net[35] 10.6× 51.2 73.2

LCNN-fast 29.2× 51.8 76.8

LCNN-accurate 5× 62.2 84.6

Table 2. Comparison of LCNN and XNOR-Net on ResNet-18.

The accuracies are classification accuracy on the validation set of

ILSVRC2012.

from 100 to 500 for different experiments. In ResNet, aside

from the very first layer, all the other convolutional layers

are grouped into 4 types of ResNet blocks. The dimension-

ality of input is equal between same ResNet block types,

and is doubled for consecutive different block types. In a

similar way we set the dictionary size for different ResNet

blocks: equal between the same block types, and doubles

for different consecutive block types. We vary the dictio-

nary size of the first block from 16 to 128 in different ex-

periments.

4.2. Image Classification

In this section we evaluate the efficiency and the accu-

racy of LCNN for the task of image classification. Our

proposed lookup based convolution is general and can be

applied on any CNN architecture. We use AlexNet [25] and

ResNet [18] architectures in our experiments. We use Ima-

geNet challenge ILSVRC2012 [6] to evaluate the accuracy

of our model. We report standard top-1 and top-5 classifica-

tion accuracy on 1K categories of objects in natural scenes.

To evaluate the efficiency, we compare the number of float-

ing point operations as a representation for speedup. The

speed and the accuracy of our model depend on two hy-

perparameters: 1) k, the dictionary size and 2) λ, which

controls the sparsity of P; i.e.,the average number of dic-

tionary components in the linear combination . One can

Figure 3. Accuracy vs. speedup. By tuning the dictionary size,

LCNN achieves a spectrum of speedups.
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Figure 4. Comparison between the performance of LCNN and CNN baseline on few-shot learning, for {1, 2, 4} examples per category. In

(a) all cats (7 categories), sofas (1 category) and bicycles (2 categories) are held out for few-shot learning. In (b), 10 random categories are

held out for few-shot learning. We repeat sampling the 10 random categories 5 times to avoid over-fitting to a specific sampling.

set a trade-off between the accuracy and the efficiency of

LCNN by adjusting these two parameters. We compare our

model with several baselines: 1- XNOR-Net [35], which

reduces the precision of weights and outputs to 1-bit, and

therefore multiplications can be replaced by binary opera-

tions. In XNOR-Net, all the layers are binarized except the

first and the last layer (in AlexNet, they contain 9.64% of

the computation). 2- Wen et al. [44], which speeds up the

convolutions by sparsifying the weight filters.

Table 1 compares the top-1 and top-5 classification ac-

curacy of LCNN with baselines on AlexNet architecture. It

shows that with small enough dictionaries and sparse linear

combinations, LCNN offers 37.6× speedup with the accu-

racy of XNOR-Net. On the other hand, if we set the dic-

tionaries to be large enough, LCNN can be as accurate as

slower models like Wen et al. In LCNN-fast, the dictionary

size of the mid-layer convolutions is 30 and for the fully

connected layers is 512. In LCNN-accurate, the mid-layer

convolutions have a dictionary of size 500 and the size of

dictionary in fully connected layers is 1024. The regural-

izer constant (Section 4.1) λ′ for LCNN-fast and LCNN-

accurate is 0.3 and 0.1, respectively.

Depending on the dictionary size and λ′, LCNN can

achieve various speedups and accuracies. Figure 3 shows

different accuracies vs. speedups that our model can

achieve. The accuracy is computed by top-1 measure and

the speedup is relative to the original CNN model. It is in-

teresting to see that the trend is nearly linear. The best fitted

line has a slope of −3.08, i.e.,for each one percent accuracy

that we sacrifice in top-1, we gain 3.08 more speedup.

We also evaluate the performance of LCNN on ResNet-

18 architecture. ResNet-18 is a compact architecture, which

has 5× fewer parameters in compare to AlexNet while it

achieves 12.7% higher top-1 accuracy. That makes it a

much more challenging architecture for further compres-

sion. Yet we show that we can gain large speedups with

a few points drop in the accuracy. Table 2 compares

the accuracy of LCNN, XNOR-Net [35], and the original

model (CNN). LCNN-fast is getting the same accuracy as

XNOR-Net while getting a much larger speedup. Moreover,

LCNN-accurate is getting a much higher accuracy yet main-

taining a relatively large speedup. LCNN-fast has dictio-

naries of size 16, 32, 64, and 128 for different block types.

LCNN-accuracte has larger dictionaries: 128, 256, 512 and

1024 for different block types.

4.3. Few­shot Learning

In this section we evaluate the performance of LCNN on

the task of few-shot learning. To evaluate the performance

of LCNN on this task, we split the categories of ImageNet

challenge ILSVRC2012 into two sets: i) base categories,

a set of 990 categories which we use for pre-training, and

ii) novel categories, a set of 10 categories that we use for

few-shot learning.We do experiments under 1, 2, and 4 sam-

ples per category. We take two strategies for splitting the

categories. One is random splitting, where we randomly

split the dataset into 990 and 10 categories. We repeat the

random splitting 5 times and report the average over all. The

other strategy is to hold out all cats (7 categories), bicycles

(2 categories) and sofa (1 category) for few-shot learning,

and use the other 990 categories for pre-training. With this

strategy we make sure that base and novel categories do not

share similar objects, like different breeds of cats. For each

split, we repeat the random sampling of 1, 2, and 4 train-

ing images per category 20 times, and get the average over

all. Repeating the random sampling of the few examples is

crucial for any few-shot learning experiment, since a model

can easily overfit to a specific sampling of images.
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We compare the performance of CNN and LCNN on

few-shot learning in Figure 4. We first train an original

AlexNet and an LCNN AlexNet on all training images of

base categories (990 categories, 1000 images per category).

We then replace the 990-way classification layer with a ran-

domly initialized 10-way linear classifier. In CNN, this pro-

duces 10×4096 randomly initialized weights, on which we

don’t have any prior. These parameters need to be trained

merely from the few examples. In LCNN, however, we

transfer the dictionary trained in the 990-way classification

layer to the new 10-way classifier. This reduces the number

of randomly initialized parameters by at least a factor of 4.

We use AlexNet LCNN-accurate model (same as the one in

Table 1) for few-shot learning. At the time of fine-tuning for

few-shot categories, we keep the dictionaries in all layers

fixed and only fine-tune the sparse P tensor. This reduces

the total number of parameters that need to be fine-tuned by

a factor of 14×. We use different learning rates η and η′ for

the randomly initialized classification layer (which needs to

be fully trained) and the previous pre-trained layers (which

only need to be fine-tuned). We tried η′ = η, η′ = η
10 ,

η′ = η
100 and η′ = 0 for both CNN and LCNN, then picked

the best for each configuration.

Figure 4 shows the top-1 accuracies of our model and the

baseline in the two splitting strategies of our few-shot learn-

ing experiment. In Figure 4 (a) we are holding out all cat,

sofa, and bicycle categories (10 categories in total) for few-

shot learning. LCNN is beating the baseline consistently

in {1, 2, 4} examples per category. Figure 4 (b) shows the

comparison in the random splitting strategy. We repeat ran-

domly splitting the categories into 990 and 10 categories 5
times, and report the average over all. Here LCNN gets a

larger improvement in the top-1 accuracy compared to the

baseline for {1, 2, 4} images per category.

4.4. Few­iteration Learning

In section 3.3 we discussed that the dictionaries in LCNN

can be transferred from a shallower network to a deeper one.

As a result, one can train fewer parameters–only I and C–

in the deeper network with few iterations obtaining a higher

test accuracy compared to a standard CNN. In this experi-

ment we train a ResNet with 1 block of each type, 10 layers

total. We then transfer the dictionaries of each layer to its

corresponding layer of ResNet-18 (with 18 layers). After

transfer, we keep the dictionaries fixed. We show that we

get higher accuracy in small number of iterations compared

to standard CNN. Figure 5 illustrates the learning curves on

top-1 accuracy for both LCNN and standard CNN. The test

accuracy of LCNN is 16.2% higher than CNN at iteration

10K. The solid lines denote the training accuracy and the

dashed lines denote the test accuracy.
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Figure 5. LCNN can obtain higher accuracy on few iterations

by transferring the dictionaries D from a shallower architecture.

This figure illustrates the learning curves on top-1 accuracy for

both LCNN and standard CNN. The accuracy of LCNN is 16.2%

higher than CNN at iteration 10K.

5. Conclusion

With recent advancements in virtual reality, augmented

reality, and smart wearable devices, the need for getting

the state of the art deep learning algorithms onto these re-

source constrained compute platforms increases. Porting

state of the art deep learning algorithms to resource con-

strained compute platforms is extremely challenging. We

introduce LCNN, a lookup-based convolutional neural net-

work that encodes convolutions by few lookups to a dictio-

nary that is trained to cover the space of weights in CNNs.

Training LCNN involves jointly learning a dictionary and a

small set of linear combinations. The size of the dictionary

naturally traces a spectrum of trade-offs between efficiency

and accuracy.

LCCN enables efficient inference; our experimental re-

sults on ImageNet challenge show that LCNN can offer

3.2× speedup while achieving 55.1% top-1 accuracy us-

ing AlexNet architecture. Our fastest LCNN offers 37.6×
speed up over AlexNet while maintaining 44.3% top-1 ac-

curacy. LCNN not only offers dramatic speed ups at infer-

ence, but it also enables efficient training. On-device train-

ing of deep learning methods requires algorithms that can

handle few-shot and few-iteration constrains. LCNN can

simply deal with these problems because our dictionaries

are architecture agnostic and transferable across layers and

architectures, enabling us to only learn few linear combi-

nation weights. Our future work involves exploring low-

precision dictionaries as well as compact data structures for

the dictionaries.
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