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Abstract

Unsupervised learning of visual similarities is of

paramount importance to computer vision, particularly due

to lacking training data for fine-grained similarities. Deep

learning of similarities is often based on relationships be-

tween pairs or triplets of samples. Many of these rela-

tions are unreliable and mutually contradicting, implying

inconsistencies when trained without supervision informa-

tion that relates different tuples or triplets to each other. To

overcome this problem, we use local estimates of reliable

(dis-)similarities to initially group samples into compact

surrogate classes and use local partial orders of samples

to classes to link classes to each other. Similarity learning

is then formulated as a partial ordering task with soft cor-

respondences of all samples to classes. Adopting a strategy

of self-supervision, a CNN is trained to optimally represent

samples in a mutually consistent manner while updating the

classes. The similarity learning and grouping procedure

are integrated in a single model and optimized jointly. The

proposed unsupervised approach shows competitive perfor-

mance on detailed pose estimation and object classification.

1. Introduction

Visual similarities lie at the heart of a large number of

computer vision tasks ranging from low-level image pro-

cessing to high-level understanding of human poses or ob-

ject classification. Of the numerous techniques for similar-

ity learning, supervised methods have been a popular tech-

nique, leading to formulations in which similarity learning

was casted as a ranking [36], regression [8], and classifica-

tion [23] task. In recent years, with the advent of Convo-

lutional Neural Networks (CNN), formulations based on a

ranking (i.e. ordering) of pairs or triplets of samples accord-

ing to their similarity have shown impressive results [33].

However, to achieve this performance boost, these CNN ar-

chitectures require millions of samples of supervised train-
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Figure 1. Visualization of the interaction between surrogate classes

and partially ordered sets (posets). Our approach starts with a set

of unlabeled samples, building small surrogate classes and gener-

ating posets to unlabeled samples to learn fine-grained similarities.

ing data or at least the fine-tuning [5] on large datasets such

as PASCAL VOC.

Although the amount of accessible image data is growing

at an ever increasing rate, supervised labeling of similarities

is very costly. In addition, not only similarities between

images are important, but especially between objects and

their parts. Annotating the fine-grained similarities between

all these entities is a futile undertaking, in particular for the

large-scale datasets typically used for training CNNs. Deep

unsupervised learning of similarities is, therefore, of great

interest to the vision community, since it does not require

any labels for pre-training or fine-tuning. In this way we

can utilize large image datasets without being limited by

the need for costly manual annotations.

To utilize the vast amounts of available unlabeled train-

ing data, there is a quest to leverage context information in-

trinsic to images/video for self-supervision. However, this

context is typically highly local (i.e position of patches in

the same image [5], object tracks through short number of

frames [33] or image impainting [22]), establishing rela-

tions between tuples [5] or triplets [20, 38, 33] of images.

Hence, these approaches utilize loss functions that order a

positive Ip and a negative In image with respect to an an-

chor image Ia so that, d(Ia, Ip) < d(Ia, In). During train-
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ing, these methods rely on the CNN to indirectly learn com-

parisons between samples that were processed in indepen-

dent training batches, and generalize to unseen data.

Instead of relying on the CNN to indirectly balance and

learn sample comparisons unseen during training, a more

natural approach is to explicitly encode richer relationships

between samples as supervision. In this sense, an effec-

tive approach to tackle unsupervised similarity learning is

to frame it as a series of surrogate (i.e. artificially created)

classification tasks [6, 3]. Therefore, mutually similar sam-

ples are assigned the same class label, otherwise a differ-

ent label. To obtain surrogate classification tasks, compact

groups of mutually similar samples are computed by clus-

tering [3] over a weak initial representation (e.g standard

features such as HOG). Then, each group receives a mutu-

ally exclusive label and a CNN is trained to solve the asso-

ciated classification problem, thereby learning a representa-

tion that encodes similarity in the intermediate layers. How-

ever, given the unreliability of initial similarities, a large

number of training samples are neither mutually similar nor

dissimilar and are, thus, not assigned to any of the compact

surrogate classes. Consequentially they are ignored during

training, hence overlooking important information. Also,

classification can yield fairly coarse similarities, consider-

ing the discrete nature of the classes. Furthermore, the sim-

ilarities learnt by the different classification tasks are not

optimized jointly, which can lead to mutually contradicting

relationships, since transitivity is not captured.

To overcome the fundamental limitations of these ap-

proaches we propose to: (i) Cast similarity learning as a sur-

rogate classification task, using compact groups of mutually

related samples as surrogates classes in a self-supervision

spirit. (ii) Combine classification with a partial ordering of

samples. Even samples, which cannot be assigned to any

surrogate class due to unreliable initial similarities are thus

incorporated during training and in contrast to discrete clas-

sification, more fine-grained relationships are obtained due

to the ordering. (iii) Explicitly optimize similarities in a

given representation space, instead of using the representa-

tion space indirectly learnt by intermediate layers of a CNN

trained for classification.(iv) Jointly optimize the surrogate

classification tasks for similarity learning and the underly-

ing grouping in a recurrent framework which is end-to-end

trainable. Fig. 2 shows a conceptual pipeline of the pro-

posed approach.

Experimental evaluation on diverse tasks of pose estima-

tion and object classification shows state-of-the-art perfor-

mance on standard benchmarks, thus underlining the wide

applicability of the proposed approach. In the pose estima-

tion experiments we show that our method learns a general

representation, which can be transferred across datasets and

is even valuable for initialization of supervised methods. In

addition, in the object classification experiments we suc-

cessfully leverage large unlabeled datasets to learn repre-

sentations in the fashion of zero-shot learning.

2. Related Work

Similarity learning has been a problem of major interest

for the vision community from its early beginnings, due to

its broad applications. With the advent of CNNs, several

approaches have been proposed for supervised similarity

learning using either pairs [39], or triplets [32] of images.

Furthermore, recent works by Misra et al. [20], Wang et al.

[33], and Doersh et al. [5] showed that temporal informa-

tion in videos and spatial context information in images can

be utilized as a convenient supervisory signal for learning

feature representation with CNNs in an unsupervised man-

ner. However, either supervised or unsupervised, all these

formulations for learning similarities require that the super-

visory information scales quadratically for pairs of images,

or cubically for triplets. This results in very large training

time. Furthermore, tuple and triplet formulations advocate

on the CNN to indirectly learn to conceal unrelated pairs

of samples (i.e. pairs that were not tied to any anchor) that

are processed in different, independent batches during train-

ing. Another recent approach that has been proposed for

learning similarities in an unsupervised manner is to build a

surrogate (i.e. an artificial) classification task either by uti-

lizing heavy data augmentation [6] or by clustering based

on initial weak estimates of similarities [3, 15]. The advan-

tage of these approaches over tuple or triplet formulations is

that several relationships of similarity (samples in the same

class) and dissimilarity (samples in other classes) between

samples are utilized during training. This results in more ef-

ficient training procedures, avoiding to sample millions of

pairs or triplets of samples and encoding richer relationships

between samples.

In addition, similarity learning has also been studied

from the perspective of metric learning approaches [35,

26, 25]. In the realm of supervised metric learning meth-

ods, Roweis et. al [26] formulated metric learning as a

cross-entropy based classification problem in which all pair-

wise neighbouring samples are pulled together while non-

neighbouring samples are pushed away. However, provided

that clusters of neighbouring points can have an arbitrary

large number of samples, this strategy fails to scale to the

large image collections used for unsupervised learning of

similarities. Further efforts [28, 19] have tried to reduce

the computational cost of performing all pairwise compar-

isons [17]. Recently, [34] leveraged low-density classifiers

to enable the use of large volumes of unlabelled data dur-

ing training. However, [34] cannot be successfully applied

to the unsupervised scenario, since it requires a strongly su-

pervised initialization , e.g. an ImageNet pre-trained model.
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Figure 2. Visual summary of our approach. In the y-steps the clustering procedure computes surrogate classes (shaded in color) based on

the current representation. In the φ-steps we learn a representation using the surrogate classes and partial orders of samples not assigned to

any surrogate class (samples in white), by pulling them closer to their nearest classes and pushing them further from the rest.

3. Approach

In this section we show how to combine partially ordered

sets (posets) of samples and surrogate classification to learn

fine-grained similarities in an unsupervised manner. Key

steps of the approach include: (i) Compute compact groups

of mutually related samples and use each group as a sur-

rogate class in a classification task. (ii) Learn fine-grained

similarities by modelling partial orderings to also leverage

those samples that cannot be assigned to a surrogate class.

(iii) Due to the interdependence of grouping and similarity

learning we jointly optimize them in a recurrent framework.

Fig. 2 shows a visual example of the main steps of our ap-

proach.

3.1. Grouping

To formulate unsupervised similarity learning as a classi-

fication approach we need to define surrogate classes, since

labels are not available. To compute these surrogate classes

we first gather compact groups of samples using standard

feature distances (LDA whitened HOG [12, 27, 7]). HOG-

LDA is a computationally effective foundation for estimat-

ing similarities between a large number of samples. Let our

training set be defined as X ∈ R
n×p, where n is the to-

tal number of samples and xi is the i−th sample. Then,

the HOG-LDA similarity between a pair of samples xi and

xj is defined as sij = exp(−‖φ(xi) − φ(xj)‖2). Here

φ(xi) ∈ R
1×d is the d−dimensional representation of sam-

ple xi in the HOG-LDA feature space.

Albeit unreliable to relate all samples to another, HOG-

LDA similarities can be used to find the nearest and fur-

thest neighbors, as highly similar and dissimilar samples

to a given anchor sample xi stand out from the similar-

ity distribution. Therefore, to build surrogate classes (i.e.

compact groups of samples) we group each xi with its

immediate neighborhood (samples with similarity within

the top 5%) so that all merged samples are mutually sim-

ilar. These groups are compact, differ in size, and may

be mutually overlapping. To reduce redundancy, highly

overlapping classes are subsequently merged by agglom-

erative clustering, which terminates if intra-class similar-

ity of a surrogate class is less than half of its constituents.

We denote the set of samples assigned to the c-th surro-

gate class as Cc, and the label assigned to each sample as

y ∈ {−1, 0, . . . , C − 1}1×n, where the label assigned to

sample xi is denoted as yi. All samples that are not as-

signed to any surrogate class get label −1.

3.2. Partially Ordered Sets

Provided the unreliability of similarity estimates used for

building surrogate classes, a large number of samples can-

not be assigned to any class, because they are neither similar

nor dissimilar to any sample. This deprives the optimiza-

tion of using all available data during training. As a re-

sult, fine-grained similarities are poorly represented, since

learning to classify surrogate classes does not model rel-

ative similarities of samples that are not assigned to any

class. To overcome this limitation we leverage the infor-

mation encoded in posets of samples relative to a surrogate

class. That is, for each sample not assigned to any surrogate

class (i.e. xi : yi = − 1) we compute a soft assignment

(i.e. a similarity score) to the Z nearest surrogate classes

Cz : z ∈ {1, . . . , Z}. Once all unlabeled points are softly

assigned to their Z nearest classes, we obtain as a result, a

poset Pc for each class. Thus, a poset Pc is a set of sam-

ples which are softly assigned to class Cc. Posets can be of

variable size and partially overlapping. We show a visual

example of a poset in Fig. 3.

Formally, given a deep feature representation φθ (e.g

an arbitrary layer in a CNN with parameters θ), and

a surrogate class Cc, a poset of unlabeled samples

Pc = {xj , . . . ,xk} : yj = yk = − 1 ∀ j, k with

respect to Cc is defined as:

∀xi∈Cc
{exp(−‖φθ(xi)− φθ(xj)‖2) >

exp(−‖φθ(xi)− φθ(xk)‖2)} ⇐⇒ j < k∀j, k. (1)

In Eq. (1) a poset is defined by computing the simi-

larity of unlabeled sample xj to all the samples in class

Cc, which during training is costly to optimize. However,

due the compactness of our grouping approach, which only

gathers very similar samples into surrogate Cc, we can ef-

fectively replace the similarities to all points in Cc by the

similarity to a representative sample x̄c in Cc, which is the

class medioid, x̄c = argmin
xi∈Cc

∑

xj∈Cc

‖φθ(xi)− φθ(xj)‖2.
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Figure 3. Visual interpretation of a poset. Samples assigned to a

surrogate class are shaded in a particular color, while samples not

assigned to surrogate classes are represented in white.

Following the definition of a poset in Eq. 1, the widely

adopted tuple and triplet formulations [5, 33, 20, 38] are a

specific case of a poset in which P contains at most 2 sam-

ples, and Cc contains just one. In this sense, deep feature

representations φ (i.e. CNNs) trained using triplet losses

seek to sort two pairs of samples (i.e. anchor-positive and

anchor-negative) according to their similarity. As a result,

triplet formulations rely on the CNN to indirectly learn to

compare and reconcile the vast number of unrelated sam-

pled pairs that were processed on different, independent

mini-batches during training. In contrast, posets, explic-

itly encode an ordering between a large number of sample

pairs (i.e pairs consisting of an unlabeled sample and its

nearest class representative). Therefore, using posets dur-

ing training enforces the CNN to order all unlabeled sam-

ples xi : yi = − 1 according to their similarity to the Z

nearest class representatives rzi : z ∈ {1, . . . , Z}, where

rzi is the z−th nearest x̄c to sample xi, learning fine-grained

interactions between samples. Posets generalize tuple and

triplet formulations by encoding similarity relationships be-

tween unlabeled samples to make a decision whether to

move closer to a surrogate class. This effectively increases

our training set when compared to just using the samples

assigned to surrogate classes, and allows us to model finer

relationships.

3.3. Objective function

In our formulation, we strive for a trade-off model in

which we jointly optimize a surrogate classification task and

a metric loss to capture the fine-grained similarities encoded

in posets. Therefore, we seek an objective function L which

penalizes: (i) misclassifications of samples xi with respect

to their surrogate label yi, and (ii) similarities of samples

xi : yi = −1. with respect to their Z nearest class rep-

resentatives. The objective function should inherit the relia-

bility of framing similarity learning as surrogate classifica-

tion tasks, while using posets to incorporate those training

samples that were previously ignored because they could

not be assigned to any surrogate class. In particular, we

require the CNN to pull samples from posets xi ∈ Pc

closer to their Z nearest class representatives, while pushing

them further from all other class representatives in a training

mini-batch. Furthermore, we require that unreliable simi-

larities (i.e. samples that are far from all surrogate classes),

vanish from the loss, rendering the learning process robust

to outliers. In addition, in order to capture fine-grained simi-

larity relationships, we want to directly optimize the feature

space φ in which similarities are computed.

Therefore, let Rz ∈ R
n×d denote the z-th nearest class

representatives of each unlabeled sample xi : yi = − 1,

where rzi is the z-th nearest class representative of sample

xi, and θ be the parameters of the CNN. Then, our objective

function combines the surrogate classification loss L1 with

our poset loss L2:

L(xi, yi,R; θ) =
1

N

N
∑

i=1

L1(xi, yi) + λL2(xi,R, φ),

(2)

where λ is a scalar and,

L1(xi, yi; θ) = − log
exp(tθi,yi

)
∑C−1

j=0 exp(tθi,j)
✶yi 6=−1, (3)

L2(xi,R; θ) =

= − log

Z
∑

z=1
exp( −1

2σ2 (‖ φ
θ(xi)− φθ(rzi )‖

2
2 − γ))

∑C′

j=1 exp(
−1
2σ2 ‖ φθ(xi)− φθ(rj)‖22)

.

(4)

In Eq. (3), tθi = tθ(xi) are the logits of sample xi for

a CNN with parameters θ. In Eq. (4) C ′ is the number of

surrogate classes in the batch, σ is the standard deviation of

the current assignment of samples to surrogate classes, and

γ is the margin between surrogate classes. It is note-worthy

that Eq. (4) can scale to an arbitrary number of classes,

since it does not depend on a fixed-sized output target layer,

avoiding the shortcomings of large output spaces in CNN

learning [31] 1.

Finally, note that if Z = 1 the problem reduces to a

cross-entropy based classification, where the standard logits

(i.e. outputs of the last layer) are replaced by the similar-

ity to the surrogate class representative in feature space φ.

However, for Z > 1 relative similarities between surrogate

classes enter into play and posets encoding fine-grained in-

teractions naturally arise (cf. Fig. 5). In all our experi-

ments we set Z >= 2. During training, CNN parameters θ

are updated by error-backpropagation with stochastic mini-

batch gradient descent. In typical classification scenarios

the training set is randomly shuffled to avoid biased gradient

computations that hamper the learning process. Therefore,

at training time we build our mini-batches of samples by se-

lecting a random set of samples not assigned to a surrogate

1In our experiments we successfully scaled the output space to 20K

surrogate classes.
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Figure 4. Loss value L for long jump category over each unrolling

step. Evidently the model benefits from jointly optimizing {y, θ}.

class xi : yi = −1, and retrieving all the surrogate classes

Cc which contain xi in their poset xi ∈ Pc. In Fig. 4 we

take as a study case the long jump category of the Olympic

Sports dataset (cf. Sec. 4) and show the L decreases along

iterations. In particular, we show that if y and θ are opti-

mized jointly we attain better performance.

3.4. Joint Optimization

In our setup, the grouping and similarity learning tasks

are mutually dependent on each other. Therefore, we strive

to jointly learn a representation φθ, which captures similar-

ity relationships, and an assignment of samples to surrogate

classes y. A natural way to model such dependence in vari-

ables is to use a Recurrent Neural Network (RNN) [18]. In

particular, RNNs have shown a great potential to model re-

lationships on sequential problems, where each prediction

depends on previous observations. Inspired by this insight,

we employ a recurrent optimization technique. Following

the standard process for learning RNNs we jointly learn

{y, θ} by unrolling the optimization into steps. At time step

m we update y and θ as follows:

y(m) = argmax
y

G(X;φθ(m−1)

,y(m−1))

s.t.

n
∑

i:yi=c

1 > t, ∀c∈{0,...,C−1},
(5)

θ(m) = argmin
θ

L(X,y(m),R(m); θ(m−1)). (6)

Where G is a cost function of pairwise clustering that favors

compactness based on sample similarities, which are en-

tailed by the representation φθ(m−1)

, and t is a lower bound

on the number of samples of each cluster.

G(X;φθ,y) =

=

C−1
∑

c=0

n
∑

i:yi=c

n
∑

j:yj=c

exp(−‖φθ(xi)− φθ(xj)‖2)

(

n
∑

j:yj=c

1

)2 .
(7)

In order to avoid the trivial solution of assigning a single

sample to each cluster we initialize y(0) with the group-

ing introduced in Sec. 3.1 using HOG-LDA as our initial

φ. In our implementation, y follows a relaxed one-hot en-

coding, which can be interpreted as an affinity of samples

to clusters. Then, Eq. (5) becomes differentiable and is

optimized using SGD. Subsequently, L learns a deep sim-

ilarity encoding representation φθ(m) on samples X using

assignments y(m) and partial orders of X with respect to

representatives R(m). In a typical RNN scenario, for each

training iteration the RNN is unrolled m steps. However,

this would be inefficient in our setup, as the CNN repre-

sentation φθ is learnt using SGD, and thus, requires to be

optimized for a large number of iterations to be reliable, es-

pecially at the first unrolled steps. Therefore, at each step

m, we find θ(m) by optimizing Eq. (6) for a number of iter-

ations, fixing y(m) and R(m). Then, we use θ(m) to find the

optimal y(m+1) by optimizing G using SGD. The presented

RNN can also be interpreted as block-coordinate descent

[37], where the grouping y is fixed while updating the rep-

resentation parameters θ and vice versa. The convergence

of block coordinate-descent methods has been largely dis-

cussed obtaining guarantees of convergence to a stationary

point [30, 4].

4. Experiments

In this section we present a quantitative and qualitative

analysis of our poset based approach on the challenging and

diverse scenarios of human pose estimation and object clas-

sification. In all our experiments we adopt the AlexNet ar-

chitecture [14].

4.1. Human Pose Estimation

To evaluate the proposed approach in the context of pose

estimation we consider 3 different datasets, Olympic Sports

(OS), Leeds Sports Pose (LSP), and MPII-Pose (MPI). We

show that our unsupervised method is valuable for a range

of retrieval problems: For OS we evaluate zero-shot re-

trieval of detailed postures. On LSP, we perform zero-shot

and semi-supervised estimation of pose. Finally, on MPII

we evaluate our approach as an initialization for a super-

vised learning approach for pose estimation. In contrast to

other methods that fine-tune supervised initializations of a

CNN, we train our AlexNet [14] architecture from scratch.

4.1.1 Olympic Sports

The Olympic Sports dataset [21] is a compilation of video

sequences of different 16 sports competitions, containing

more than 110000 frames overall. We use the approach

of [10] to compute person bounding boxes and utilize this

large dataset to learn a general representation that encodes
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fine-grained posture similarities. In order to do so, we ini-

tially compute 20000 surrogate classes consisting of 8 sam-

ples in average. Then, we utilize partially ordered sets of

samples not assigned to any surrogate classes. To train our

RNN we use the optimization approach described in Sec.

3.4, where the RNN is unrolled on m = 10 steps. At

each unrolled step, θ is updated during 20000 iterations of

error-backpropagation. To evaluate our representation on

fine-grained posture retrieval we utilize the annotations pro-

vided by [3] on their project webpage 2 and follow their

evaluation protocol, using their annotations only for testing.

We compare our method with CliqueCNN [3] by directly

evaluating their models provided at2, the triplet formulation

of Shuffle&Learn [20], the tuple approach of Doersch et.

al [5], Exemplar-CNN [6], Alexnet [14], Exemplar-SVMs

[16], and HOG-LDA [12]. For completeness we also in-

clude a version of our model that was initialized with Im-

agenet model [14]. During training we use as φ the fc7

output representation of Alexnet and compute similarities

using cosine distance. We use Tensorflow [1] for our imple-

mentation. (i) For CliqueCNN, Shuffle& Learn, and Doersh

et. al methods we use the models downloaded from their

respective project websites. (ii) Exemplar-CNN is trained

using the best performing parameters reported in [6] and

the 64c5-128c5-256c5-512f architecture. Then we use the

output of fc4 and compute 4-quadrant max pooling. (iii)

Exemplar-SVM was trained on the exemplar frames using

the HOG descriptor. The samples for hard negative mining

come from all categories except the one that an exemplar

is from. We performed cross-validation to find an optimal

number of negative mining rounds (less than three). The

class weights of the linear SVM were set as C1 = 0.5 and

C2 = 0.01. During training of our approach, each image in

the training set is augmented by performing random transla-

tion, scaling and rotation to improve invariance with respect

to these.

In Tab. 1 we show the average AuC over all categories

for the different methods. When compared with the best

runner up [3], the proposed approach improves the perfor-

mance 2% (the method in [3] was pre-trained on Imagenet).

This improvement is due to the additional relationships es-

tablished by posets on samples not assigned to any surrogate

class, which [3] ignored during training. In addition, when

compared to the state-of-the-art methods that leverage tu-

ples [5] or triplets [20] for training a CNN from scratch,

our approach shows 16% higher performance. This is ex-

plained by the more detailed similarity relationships en-

coded in each poset, which in tuple methods the CNN has

to learn implicitly.

In addition to the quantitative analysis we also perform

a qualitative evaluation of the similarities learnt by the pro-

posed method. In order to do so, we take a sequence from

2 https://asanakoy.github.io/cliquecnn/

HOG-LDA [12] Ex-SVM [16] Ex-CNN [6]

0.62 0.72 0.64

Alexnet [14] Doersch et. al [5] Suffle&Learn [20]

0.65 0.62 0.63

CliqueCNN [3] Ours scratch Ours Imagenet

0.83 0.78 0.85

Table 1. Avg. AUC for each method on Olympic Sports dataset.

the long jump category of Olympic Sports and select two

representatives {r1, rr} with a gap of 8 frames between

them and show in Fig. 5 the poset learnt by our approach.

The top row shows two representatives of the same se-

quence highlighted in red and the remaining sub-sequence

between them in blue. In the bottom row, we present the

poset learnt by our approach. Since r1 and r2 show dif-

ferent parts of a short gait cycle, the similarity relations in

the poset should set other frames into perspective and order

them. And indeed, we observe that the poset successfully

encodes this temporal coherence by ordering frames from

other sequences that fit in this gap. This is even more inter-

esting, since during training absolutely no temporal struc-

ture was introduced in the model, as we were training on

only individual frames. These results spurred our interest

to also apply the learnt posets for video reconstruction us-

ing only few sparse representatives per sequence, additional

results can be found in the supplementary material.

4.1.2 Leeds Sports Pose

After evaluating the proposed method for fine-grained pos-

ture retrieval, we tackle the problem of zero-shot pose es-

timation on the LSP dataset. That is, we transfer the pose

representation learnt on Olympic Sports to the LSP dataset

and retrieve similar poses based on their similarity. The LSP

[13] dataset is one of the most widely used benchmarks for

pose estimation. In order to evaluate our model we then

employ the fine-grained pose representation learnt by our

approach on OS, and transfer it to LSP, without doing any

further training. For evaluation we use the representation

to compute visual similarities and find nearest neighbours

to a query frame. Since the evaluation is zero-shot, joint

labels are not available. At test time we therefore estimate

the joint coordinates of a query person by finding the most

similar frame from the training set and taking its joint co-

ordinates. We then compare our method with Alexnet [14]

pre-trained on Imagenet, the triplet approach of Misra et. al

(Shuffle&Learn) [20] and CliqueCNN [3]. In addition, we

also report an upper bound on the performance that can be

achieved by zero-shot evaluation using ground-truth simi-

larities. Here the most similar pose for a query is given by

the frame, which is closest in average distance of ground-

truth pose annotations. This is the best one can achieve

without a parametric model for pose (the performance gap

to 100% shows the discrepancy between poses in test and
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Figure 5. Partially ordered set learnt by the proposed approach. The top row shows two surrogate class representatives (highlighted in red)

of the same sequence and the ground truth sub-sequence between them highlighted in blue. The bottom row shows the predicted poset

highlighted in green, successfully capturing fine-grained similarities.

Method T UL LL UA LA H Total

Ours - Imagenet 83.5 54.0 46.8 34.1 16.8 54.3 48.3

CliqueCNN [3] 80.1 50.1 45.7 27.2 12.6 45.5 43.5

Alexnet[14] 76.9 47.8 41.8 26.7 11.2 42.4 41.1

Ours - Scratch 67.0 38.6 34.9 20.5 9.8 35.1 34.3

Shuffle&Learn [20] 60.4 33.2 28.9 16.8 7.1 33.8 30.0

Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2

P. Machines [24] 93.1 83.6 76.8 68.1 42.2 85.4 72.0

Table 2. PCP measure for each method on Leeds Sports dataset for

zero-shot pose estimation.

train set). For completeness, we compare with a fully su-

pervised state-of-the-art approach for pose estimation [24].

For computing simialarities we use the same experimental

settings described in Sect. 4.1.1, where φ is the represen-

tation extracted from pool5 layer of Alexnet. In Tab. 2

we show the PCP@0.5 obtained by the different methods.

For a fair comparison with CliqueCNN [3] (which was pre-

trained on Imagenet), we include a version of our method

trained using Imagenet initialization. Our approach signif-

icantly improves the visual similarities learned using both

Imagenet pre-trained AlexNet and CliqueCNN [3], obtain-

ing a performance boost of at least 4% in PCP score. In ad-

dition, when trained from scratch without any pre-training

on Imagenet our model outperforms the recent triplet model

of [20] by 4%, due to the fact that posets are a natural gener-

alization of triplet models, which encode finer relationships

between samples. Finally, it is notable that even though our

pose representation is transferred from a different dataset

without fine-tuning on LSP, it obtains state-of-the-art per-

formance. In Fig. 6 we show a qualitative comparison

of the part predictions of the supervised approach in [29]

trained on LSP, with the heatmaps yielded by our zero-shot

approach.

In addition to the zero-shot learning experiments we also

used our pose representation learnt on Olympic Sports as

an initialization for learning the DeepPose method [29] on

LSP in a semi-supervised fashion. To evaluate the valid-

ity of our representation we compare the performance ob-

tained by DeepPose [29], when trained with one of the fol-

lowing models as initialization: random initialization, Shuf-

Initialization T UL LL UA LA H Total

Ours 89.7 62.1 48.2 36.0 16.0 54.2 51.0

Shuffle&Learn [20] 90.4 62.7 45.7 33.3 11.8 52.0 49.3

Random init. 87.3 52.3 35.4 25.4 7.6 44.0 42.0

Alexnet [14] 92.8 68.1 53.0 39.8 17.5 62.8 55.7

Table 3. PCP measure for each method on Leeds Sports dataset

using different methods as initialization for the DeepPose method

[29].

fle&Learn [20] (triplet model), and our approach trained

on OS. For completeness, we also compared with Imagenet

pre-trained AlexNet [14]. Tab. 3 shows the PCP@0.5 ob-

tained by training DeepPose (stg-1) using their best reported

parameters. The obtained results show that our representa-

tion successfully encodes pose information, obtaining a per-

formance boost of 9% when compared with a random ini-

tialization (that our model starts from), since we learn gen-

eral pose features that act as a regularizer during training. A

note-worthy comparison is that the difference between uti-

lizing Imagenet pre-training, which uses 1.2 million labeled

images, and our unsupervised learning approach is just 5%.

4.1.3 MPII Pose

We now evaluate our approach in the challenging MPII Pose

dataset [2] which is a state of the art benchmark for eval-

uation of articulated human pose estimation. The dataset

includes around 25K images containing over 40K people

with annotated body joints. MPII Pose is a particularly chal-

lenging dataset because of the clutter, occlusion and num-

ber of persons appearing in images. To evaluate our ap-

proach in MPII Pose we follow the semi-supervised train-

ing protocol used for LSP and compare the performance

obtained by DeepPose [29], when trained using as initial-

ization each of the following models: Random initializa-

tion, Shuffle&Learn [20] (triplet model) and our approach

trained on OS. For completion, we also evaluate Imagenet

pre-trained AlexNet [14] as initialization. Following the

standard evaluation metric on MPII dataset, Tab. 4 shows

the PCKh@0.5 obtained by training DeepPose (stg-1) us-
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Head Neck Shoulders Elbows Wrists Hips Knees Ankles

Figure 6. Top row: Heatmaps obtained by DeepPose (stg-1) [29] trained on LSP, highlighted in red. Bottom row: Heatmaps obtained by

our zero-shot unsupervised approach, highlighted in green.

Ours Shuffle&Learn [20] Random Init. AlexNet[14]

Head 83.8 75.8 79.5 87.2

Neck 90.9 86.3 87.1 93.2

LR Shoulder 77.5 75.0 71.6 85.2

LR Elbow. 60.8 59.2 52.1 69.6

LR Wrist 44.4 42.2 34.6 52.0

LR Hip 74.6 73.3 64.1 81.3

LR Knee 65.4 63.1 58.3 69.7

LR Ankle 57.4 51.7 51.2 62.0

Thorax 90.5 87.1 85.5 93.4

Pelvis 81.3 79.5 70.1 86.6

Total 72.7 69.3 65.4 78.0

Table 4. PCKh@0.5 measure for each initialization method on

MPII Pose benchmark dataset using different initializations for the

DeepPose approach [29].

ing their best reported parameters with the different initial-

izations.

The performance obtained on MPII Pose benchmark

shows that our unsupervised representation successfully

scales to challenging datasets, successfully dealing with

clutter, occlusions and multiple persons. In particular, when

comparing our unsupervised initialization with a random

initialization we obtain a 7% performance boost, which in-

dicates that our features encode a robust notion of pose that

is robust to the clutter present in MPII dataset. Furthermore,

we obtain a 3% improvement over the Shuffle&Learn [20]

approach, due to the finer-grained relationships encoded by

posets. Finally, it is important to note that the difference be-

tween utilizing Imagenet pre-trained AlexNet[14], and our

unsupervised learning approach is just 5%.

4.2. Object Classification on PASCAL VOC

To evaluate the general applicability of our approach, let

us now switch from human pose estimation to the challeng-

ing diverse problem of object classification. We classify ob-

ject bounding boxes of the PASCAL VOC 2007 [9] dataset

in zero-shot fashion by predicting the most similar images

to a query. The object representation needed for computing

similarities, we obtain without supervision information, us-

ing visual similarities of the triplet model of Wang et al.

[33] as initializiation. Neither this initialization nor our

method apply pre-training or fine tuning on ImageNet or

Pascal VOC. Using this initialization we then compute an

initial clustering on 1000 surrogate classes with 8 samples

in average, on the training set images. We then utilize par-

tially ordered sets of samples not assigned to any class, and

jointly optimize assignments and representation using the

recurrent optimization approach describe in Sec. 3.4. The

representation φ used to compute similarities on the PAS-

CAL datasets is for each CNN method that we now com-

pare the fc6 layer. We compare our approach with HOG-

LDA [12], the triplet approach of [33], CliqueCNN [3], Im-

agenet pre-trained AlexNet [14], and RCNN [11]. In Tab. 5

we show the classification performance for all methods for

k = 5 (for k > 5 there was only insignificant performance

improvement). Our approach improves upon the initial sim-

ilarities of the unsupervised triplet approach of [33] to yield

a performance gain of 6% without requiring any supervision

information or fine-tuning on PASCAL.

HOG-LDA Wang et. al [33] CliqueCNN[3]

0.1180 0.4501 0.4812

Wang et.al [33] + Ours Alexnet [14] RCNN [11]

0.5101 0.6160 0.6825

Table 5. Classification results for PASCAL VOC 2007

5. Conclusions

We have presented an unsupervised approach to similar-

ity learning based on CNNs by framing it as a combination

of surrogate classification tasks and poset ordering. This

generalizes the widely used tuple and triplet losses to estab-

lish relations between large numbers of samples. Similar-

ity learning then becomes a joint optimization problem of

grouping samples into surrogate classes while learning the

deep similarity encoding representation. In the experimen-

tal evaluation the proposed approach has shown competi-

tive performance when compared to state-of-the-art results,

learning fine-grained similarity relationships in the context

of human pose estimation and object classification 3.

3This research has been funded in part by the Heidelberg Academy of

Sciences. We are grateful to the NVIDIA corporation for donating a Titan

X GPU.
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