
Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle

analysis from monocular image

Florian Chabot1 , Mohamed Chaouch1 , Jaonary Rabarisoa1 , Céline Teulière2 , Thierry Chateau2
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Abstract

In this paper, we present a novel approach, called Deep

MANTA (Deep Many-Tasks), for many-task vehicle analy-

sis from a given image. A robust convolutional network is

introduced for simultaneous vehicle detection, part local-

ization, visibility characterization and 3D dimension esti-

mation. Its architecture is based on a new coarse-to-fine

object proposal that boosts the vehicle detection. Moreover,

the Deep MANTA network is able to localize vehicle parts

even if these parts are not visible. In the inference, the net-

work’s outputs are used by a real time robust pose estima-

tion algorithm for fine orientation estimation and 3D vehi-

cle localization. We show in experiments that our method

outperforms monocular state-of-the-art approaches on ve-

hicle detection, orientation and 3D location tasks on the

very challenging KITTI benchmark.

1. Introduction

Over the last years, traffic scene analysis has been im-

proved thanks to deep learning approaches which paves the

way to multiple applications, especially, autonomous driv-

ing. Impressive recent work in 2D object detection [33,

15, 14] already provides important information related to

scenes content but does not yet allow to describe objects in

the 3D real world scene. In this paper, we are interested in

both 2D and 3D vehicle analysis from monocular images

in the context of self-driving cars. This is a relevant re-

search field because currently most cars are equipped with

a single camera. For an autonomously driving vehicle, it

is essential to understand the traffic and predict critical sit-

uations based on the information extracted from the image

of the scene. For the recovery of speed and direction of

the surrounding cars, 3D vehicle localization and orienta-

tion jointly used with temporal description are necessary.

Additionally, for proper traffic understanding it is important

to describe surrounding vehicles in a fine way. For example,

Figure 1. System outputs. Top: 2D vehicle bounding boxes, vehi-

cle part localization and part visibility. In this example, red dots

correspond to visible parts, green dots to occluded parts and blue

dots to self-occluded parts. Bottom: 3D vehicle bounding box lo-

calization and 3D vehicle part localization. The camera is repre-

sented in blue.

correct localization of high lights is required to interpret ve-

hicle direction indicators, for which knowledge of the exact

location of vehicle parts is needed. Finally, for interpreta-

tion of the overall scene the characterization of the visibility

of vehicle parts needs also to be obtained. Thus it will be

known if a vehicle is hidden by other vehicles or environ-

ment obstacles. Here we propose an approach that, given

a single image, provides accurate vehicle detections, vehi-

cle part localization, vehicle part visibility, fine orientation,

3D localization and 3D template (3D dimension). Figure 1

illustrates the outputs of our approach.

Our first contribution is to encode 3D vehicle informa-

tion using characteristic points of vehicles. The underly-

ing idea is that 3D vehicle information can be recovered

using monocular images because vehicles are rigid objects

with well known geometry. Our approach localizes vehi-

cle parts even if these parts are hidden due to occlusion,

truncation or self-occlusion in the image. These parts are
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found using regression instead of using a part detector. In

this way, the approach predicts the position of hidden parts

which are essential for robust 3D information recovering.

We use a 3D vehicle dataset composed of 3D meshes with

real dimensions. Several vertices are annotated for each 3D

model. These 3D points correspond to vehicle parts (such

as wheels, headlights, etc) and define a 3D shape for each

3D model. The main idea of the approach is to recover the

projection of these 3D points (2D shape) in the input image

for each detected vehicle. Then, the best corresponding 3D

model for each detection box is chosen. 2D/3D matching

is performed between 2D shapes and selected 3D shapes to

recover vehicle orientation and 3D location.

The second contribution is the introduction of the Deep

Coarse-to-fine Many-Task Convolutional Neural Network

called Deep MANTA. This network outputs accurate 2D

vehicle bounding boxes, 2D shapes, part visibility and 3D

vehicle templates. Its architecture contains several original-

ities. Firstly, inspired by the Region proposal network [33],

the MANTA model is able to propose coarse 2D bounding

boxes which are then iteratively refined, by multi-pass for-

ward, to provide accurate scored 2D detections. Secondly,

this network is based on the many-task concept. That means

that the same feature vector can be used to predict many

tasks. We optimize in the same time six tasks: region pro-

posal, detection, 2D box regression, part localization, part

visibility and 3D template prediction.

The last contribution is related to the training dataset.

Deep neural networks require many samples and labels to

be efficiently learned. Furthermore, it is very fastidious

and almost impossible to annotate manually vehicle parts

which are not visible. For this purpose, we propose a semi-

automatic annotation process using 3D models to generate

labels on real images for the Deep MANTA training. Labels

from 3D models (geometry information, visibility, etc) are

automatically projected onto real images providing a large

training dataset without labour-intensive annotation work.

In the next section, related work is reviewed. The sec-

tion 3 explains the proposed model. Finally, we show that

our approach outperforms monocular state-of-the-art meth-

ods related to vehicle detection, orientation and 3D local-

ization on the very challenging KITTI dataset [12].

2. Related work

Object analysis is a well studied topic and we divide it

into two main categories: 2D object detection/coarse pose

estimation and 3D object detection/fine pose estimation.

2D Object detection and coarse pose estimation.

There are two ways to perform 2D object detection. The

first one is the standard sliding window scheme used in

many detection systems as [10, 34]. The second one is

the 2D object proposal based methods [15, 14, 38, 5, 1].

The goal of object proposal methods is to propose several

boxes with high objectness confidence score. These pro-

posals are then given to a detector which is able to classify

objects and background. The main advantage of object pro-

posal methods is the processing time because that consider-

ably reduces the search space. In parallel, Deep Convolu-

tional Neural Networks (CNN) have proven their effective-

ness in many computer vision fields such as object classi-

fication [36, 16, 19, 37], object detection [15, 14, 33] and

scene segmentation [26, 9]. Thus, the success of object pro-

posal methods as well as CNN, leads people to directly learn

Region Proposal Networks (RPN) sharing weights with the

down-stream detection network [33, 43, 40, 18]. RPN pro-

vides strong objectness confidence regions of interest com-

puted on deep feature maps. Experiments show that this

kind of method increases detection accuracy. The proposed

approach uses the RPN framework but uses several steps of

2D bounding box refinement to significantly increase object

detection performance. 2D object detection is often associ-

ated with pose estimation and many methods address the

two issues. They generally divide the viewing sphere in

several bins to learn multi-class models where each bin cor-

responds to a class [27, 41, 47, 22, 29]. These approaches

allow to get coarse information on objects and do not pro-

vide continuous viewpoint estimation.

3D Object detection and fine pose estimation. To

go further than 2D reasoning, several approaches are de-

signed to detect vehicles in 3D space and are able to give

a detailed 3D object representation. A part of them con-

sists in fitting 3D models [23, 32, 2, 17], active shape

model [44, 46, 45, 24, 42] or predicting 3D voxel pat-

terns [39] to recover the exact 3D pose and detailed object

representation. These methods generally use an initializa-

tion step providing the 2D bounding box and the coarse

viewpoint information. More recently, people have pro-

posed to use 3D object proposals generated while using

monocular images [7] or disparity maps [8]. In these ap-

proaches, 3D object proposals are projected in 2D bound-

ing boxes and given to a CNN based detector which jointly

predicts the class of the object proposal and the object fine

orientation (using angle regression). In the proposed ap-

proach, vehicle fine orientation estimation is found using a

robust 2D/3D vehicle part matching: the 2D/3D pose ma-

trix is computed using all vehicle parts (visible or hidden)

in contrast to other methods such as [44, 46, 45, 24] which

focus on visible parts. That clearly increases the precision

of orientation estimation.

3. Deep MANTA approach

In this section, we describe the proposed approach for

2D/3D vehicle analysis from monocular images. Our sys-

tem has two main steps. First, the input image is passed

through the Deep MANTA network that outputs 2D scored

bounding boxes, associated vehicle geometry (vehicle part
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Figure 2. Overview of the Deep MANTA approach. The entire input image is forwarded inside the Deep MANTA network. Conv

layers with the same color share the same weights. Moreover, these three convolutional blocks correspond to the split of existing CNN

architecture. The network provides object proposals {Bi,1} which are iteratively refined ({Bi,2} and then the final detection set {Bi,3}).

2D part coordinates {Si}, part visibility {Vi} and template similarity {Ti} are associated to the final set of detected vehicle {Bi,3}. A

non-maximum suppression (NMS) is then performed. It removes redundant detections and provides the new set {Bj ,Sj ,Vj ,Tj}. Using

these outputs, the inference step allows to choose the best corresponding 3D template using template similarity Tj and then performs

2D/3D pose computation using the associated 3D shape.

coordinates, 3D template similarity) and part visibility

properties. The Deep MANTA network architecture is de-

tailed in the section 3.3. The second step is the inference

which uses Deep MANTA outputs and a 3D vehicle dataset

to recover 3D orientations and locations. This step is de-

tailed in the section 3.4. In this method, we use a dataset of

3D shapes and one of 3D templates. These two datasets

encode the variability of vehicles in terms of dimension,

type, and shape. These datasets are presented in the sec-

tion 3.1. In the section 3.2, we define the adopted 2D/3D

vehicle model for a given vehicle in a monocular image.

3.1. 3D shape and template datasets

We use a dataset of M 3D models corresponding to sev-

eral types of vehicles (Sedan, SUV, etc). For each 3D model

m, we annotate N vertices (called 3D parts). These parts

correspond to relevant vehicle regions. For one 3D model

m, we denote its 3D shape aligned in canonical view as

S̄
3d
m = (p1, p2, .., pN ) with pk = (xk, yk, zk) correspond-

ing to the 3D coordinate of the kth part. The 3D template

(i.e 3D dimension) associated to the 3D model m is de-

fined as t̄3Dm = (wm, hm, lm) where wm, hm, lm are

the width, the height and the length of the 3D model re-

spectively. Figure 3 shows some examples from the 3D

shape dataset {S̄3d
m }m∈{1,..,M} and the 3D template dataset

{t̄3dm }m∈{1,..,M}.

. . .

Figure 3. Some examples from the 3D template and 3D shape

dataset. Each 3D model m (first line) is associated to a 3D tem-

plate t̄3dm (second line) and a 3D shape S̄
3d
m (third line). The 3D

shape corresponds to manually annotated vertices.
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3.2. 2D/3D vehicle model

We represent each vehicle in a monocular image with a

2D/3D model. It is formally defined by the following at-

tributes:

(B,B3d,S,S3d,V)

B = (cx, cy, w, h) is the 2D vehicle bounding box in the

image where (cx, cy) is the center and (w, h) represents the

width and the height respectively. B3d = (cx, cy, cz, θ, t)
is the 3D bounding box characterized by its 3D cen-

ter (cx, cy, cz), its orientation θ and its 3D tem-

plate t = (w, h, l) corresponding to its 3D real size.

S = {qk = (uk, vk)}k∈{1,..,N} is the vehicle 2D part coor-

dinates in the image. S3d = {pk = (xk, yk, zk)}k∈{1,..,N}

is the vehicle 3D part coordinates in the 3D real word co-

ordinate system. V = {vk}k∈{1,..,N} is the part visibility

vector where vk denotes the visibility class of the kth part.

Four classes of visibility are defined: (1) visible if the part

is observed in the image, (2) occluded if the part is occluded

by another object, (3) self-occluded if the part is occluded

by the vehicle and (4) truncated if the part is out of the im-

age. Figure 4 shows an example of a 2D/3D vehicle model.

(a) (b)

(d)(c)

Figure 4. Example of one 2D/3D vehicle model. (a) the bounding

box B, (b) 2D part coordinates S and part visibility V: visible

parts (red), occluded parts (green) and self-occluded parts (blue).

(c) the 3D bounding box B3d and (d) the associated 3D shape S3d.

3.3. Deep MANTA Network

The Deep MANTA network is designed to detect vehi-

cles using a coarse-to-fine bounding box proposal as well as

to output other finer attributes such as vehicle part localiza-

tion, part visibility, and template similarity.

Coarse-to-fine forward. Given an entire input image,

the network returns a first set of K object proposals B1 =
{Bi,1}i∈{1,..,K} as the region proposal network proposed

by [33]. These regions are then extracted from a feature

map and pooled to a fixed size using ROI Pooling intro-

duced by [14]. Extracted regions are forwarded in a net-

work (sharing some weights with the first level) and re-

fined by offset transformations. A second set of K objects

B2 = {Bi,2}i∈{1,..,K} is proposed. This operation is re-

peated one last time to provide the final set of bounding box

B3. These three levels of refinement are illustrated in Fig-

ure 2. This procedure differs than Faster-RCNN [33] in that

our iterative refinement steps overcome the constraints of

large object scale variations and provide more accurate de-

tection. Furthermore, in our approach, ROI pooled regions

are extracted on the first convolution feature maps for keep-

ing high resolution to detect hard vehicles.

Many-task prediction. The Deep MANTA architecture

outputs a final bounding box set B3 = {Bi,3}i∈{1,..,K}. For

each bounding box Bi,3, the MANTA network also returns

all 2D vehicle part coordinates Si, part visibility Vi and 3D

template similarity Ti. The template similarity vector Ti

is defined as Ti = {rm}m∈{1,..,M}. rm = (rx, ry, rz)
corresponds to the three scaling factors to apply on the 3D

template t̄3dm to fit the real 3D template of the detected ve-

hicle i. This vector encodes the similarity between the de-

tected vehicle and all the 3D templates {t̄3dm }m∈{1,..,M} of

the 3D template dataset.

At this stage of the approach, non-maximum suppression

is performed to remove redundant detections. This pro-

vides a new set of K ′ detections and associated attributes

{Bj ,Sj ,Vj ,Tj}j∈{1,..,K′}.

3.4. Deep MANTA Inference

The inference step uses the Deep MANTA network out-

puts, the 3D shape dataset {S̄3d
m }m∈{1,..,M} and the 3D

template dataset {t̄3dm }m∈{1,..,M} defined in 3.1 to recover

3D information. Given a vehicle detection j provided by

the Deep MANTA network, the inference consists in two

steps. In the first step, we choose the closest 3D template

c ∈ {1, ..,M} in the 3D template dataset {t̄3dm }m∈{1,..,M}

using the template similarity Tj = {rm}m∈{1,..,M} re-

turned by the network. For each sample t̄3dm of the 3D tem-

plate dataset we apply the scaling transformation rm. The

resulting 3D templates are defined by {t3dm }m∈{1,..,M}. The

best 3D template c is the one that minimizes the distance

between t3dm and t̄3dm :

c = argmin
m∈{1,..,M}

d(t̄3dm , t3dm ).

In other words, the best 3D template is the one that is pre-

dicted closer to (1, 1, 1) by the Deep MANTA network.

In the second step, 2D/3D matching is applied using 3D

shape S̄
3d
c . It is rescaled to fit the 3D template tj = t3dc .

Then, a pose estimation algorithm is performed to match

the rescaled 3D shape S̄
3d
c with the 2D shape Sj using a

standard 2D/3D matching [20]. This last step provides the

3D bounding box B3d
j and the 3D part coordinates S3d

j . The

last block in Figure 2 illustrates the inference step.
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4. Deep MANTA Training

This section defines all the tasks of the MANTA net-

work and the associated loss functions. In the following,

we consider three levels of refinement l ∈ {1, 2, 3} and five

functions to minimize: Lrpn, Ldet, Lparts, Lvis and Ltemp.

Lrpn is the RPN loss function defined in [33]. Ldet is the

detection loss function focusing on discriminating vehicle

and background bounding box as well as regressing bound-

ing boxes. Lparts is the loss corresponding to vehicle part

localization. Lvis is the loss related to part visibility. Ltemp

is the loss related to template similarity. We use the Faster-

RCNN framework [33] based on RPN to learn the end-to-

end MANTA model. Given an input image, the network

joint optimization minimizes the global function:

L = L1 + L2 + L3

with

L1 = Lrpn,

L2 =
∑

i

L2

det(i) + L2

parts(i),

L3 =
∑

i

L3

det(i) + L3

parts(i) + Lvis(i) + Ltemp(i),

where i is the index of a proposal object. These three losses

correspond to the three levels of refinement of the Deep

MANTA architecture: finer is the level, bigger is the amount

of information learned.

4.1. Manytask loss functions

Here, we will detail the different task losses used in the

global function presented above. In the following, each ob-

ject proposal at each level of refinement l, is indexed by i
and it is represented by its box Bi,l = (cxi,l

, cyi,l
, wi,l, hi,l).

The closest ground-truth vehicle box B to Bi,l is selected.

Associated ground-truth parts S, ground-truth visibility V

and ground-truth template t are also selected (see sec-

tion 3.2). We denote the standard log softmax loss as P
and the robust SmoothL1 loss defined in [14] as R.

Detection loss. The object proposal i at the refinement

level l is assigned to a class label Ci,l. Ci,l is 1 if the object

proposal is a vehicle and 0 otherwise. The classification

criteria is the overlap between the box Bi,l and the ground-

truth box B. The predicted class returned by Deep MANTA

network for the proposal is C∗
i,l. A target box regression

vector ∆i,l = (δx, δy, δw, δh) is also defined as follows:

δx = (cxi,l
− cx)/w δw = log(wi,l/w)

δy = (cyi,l
− cy)/h δh = log(hi,l/h)

The predicted regression vector returned by Deep MANTA

network is ∆∗
i,l. The detection loss function is defined by:

Ll
det(i) = λclsP (C∗

i,l, Ci,l) + λregCi,lR(∆∗
i,l −∆i,l)

with λcls and λreg the regularization parameters of box

classification and box regression respectively.

Part loss. Using the ground-truth parts S = (q1, .., qN )
and the box Bi,l associated to the object proposal i at level l,
normalized vehicle parts Si,l = (q̄1, .., q̄N ) are computed as

follows:

q̄k = (
uk − cxi,l

wi,l

,
vk − cyi,l

hi,l

).

The predicted normalized parts are S∗
i,l. The part loss func-

tion is defined as:

Ll
parts(i) = λpartsCi,lR(S∗

i,l − Si,l)

with λparts the regularization parameter of part loss.

Visibility loss. This loss is only optimized on the final

level of refinement l = 3. The ground-truth visibility vector

Vi = V is assigned to the object proposal i. The predicted

visibility vector is V
∗
i . The visibility loss function is de-

fined as:

Lvis(i) = λvisCi,3P (V∗
i ,Vi)

with λvis the regularization parameter of visibility loss.

Template similarity loss. This loss is only optimized

on the final level of refinement l = 3. Instead of directly

optimizing the three dimensions of the 3D template t, we

encode it as a vector T using the 3D template dataset as

explained in 3.3. For training, the log function is applied

to each element of T for better normalization (similarity

values are thus in [−1, 1]). The ground-truth template sim-

ilarity vector vector Ti = T is assigned to the object pro-

posal i. The predicted template similarity vector is T∗
i . The

template similarity loss function is defined as:

Ltemp(i) = λtempCi,3R(T∗
i −Ti)

with λtemp the regularization parameter of template simi-

larity loss.

Notice that if the object proposal i is not positive (i.e

Ci,l = 0) the loss functions associated to bounding box

regression, part location, visibility and template similarity

are null because it does not make sense to optimize vehicle

properties on background regions.

4.2. Semiautomatic annotation

A semi-automatic annotation process is used to provide

useful labels to train our Deep MANTA network (vehicles

part coordinates, part visibility, 3D template). To perform

the annotation process, we only need a weakly annotated

real dataset providing 3D bounding boxes of vehicle and

a 3D CAD dataset. For this purpose, we use a 3D CAD

dataset composed of M 3D car models. We manually an-

notate N vertices on each 3D model. For each vehicle in

the weakly annotated real dataset, we choose automatically
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(a) (b) (c)

(d) (e)

Figure 5. Semi-automatic annotation process. (a) weak annotations on a real image (3D bounding box). (b) best corresponding 3D models

in green. (c) projection of these 3D models in the image. (d) corresponding mesh of visibility (each color represents a part). (e) Final

annotations (part localization and visibility). Red dots: visible parts, green dots: occluded parts, bleu dots: self-occluded parts.

the best corresponding 3D model in the 3D model dataset.

This is done by choosing the 3D model which has its 3D

bounding box closest to the real 3D vehicle bounding box

in the image (in terms of 3D dimensions). 3D parts asso-

ciated to the chosen CAD are projected onto the image to

get 2D part coordinates. The visibility of each projected

part is computed using a mesh of visibility. This mesh is a

low resolution 3D model where each face is associated to an

annotated vehicle 3D part. Figure 5 illustrates this process.

5. Experiments

In this section, we evaluate the proposed approach on the

challenging KITTI object detection benchmark dedicated

to autonomous driving [12]. This dataset is composed of

7481 training images and 7518 testing images. The cal-

ibration matrix is given. Since ground truth annotations

for the testing set are not released, we use train/validation

splits from the training set to validate our method. To com-

pare our approach to other state-of-the-art methods, we use

two train/val splits: val1 used by [40, 39] and val2 used

by [8, 7]. This is a means to compare our approach to these

methods for tasks which are not initially evaluated on the

KITTI benchmark. We use the 3D CAD dataset provided

by [11, 6] composed of M = 103 3D vehicle models for

semi-automatic annotation. We annotate N = 36 vehicle

parts on each 3D model. We train the Deep MANTA us-

ing the GoogLenet [36] and the VGG16 [35] architectures

with the standard stochastic gradient descent optimization.

The Deep MANTA is initialized using pre-trained weights

learned on ImageNet. We use 7 aspect ratios and 10 scales

for the RPN providing 70 anchors at each feature map lo-

cation as proposed by [40]. During training, an object pro-

posal is considered positive if its overlap with a ground-

truth box is greater than 0.7. For experiments, all regular-

ization parameters λ are set to 1 except for the part localiza-

tion task where λparts = 3. The choice of these parameters

are discussed at the end of this section.

We present results for several tasks: 2D vehicle detec-

tion and orientation, 3D localization, 2D part localization,

part visibility and 3D template prediction. In all presented

results, we use 200 object proposals and an overlapping

threshold of 0.5 for non-maximum suppression. Results are

presented for three levels of difficulty (Easy, Moderate and

Hard) as proposed by the KITTI Benchmark [12].

2D vehicle detection and orientation. We use mean

Average Precision (mAP) with overlapping criteria of 0.7

to evaluate 2D vehicle detection. We use average orien-

tation similarity (AOS) to evaluate vehicle orientation as

proposed by the KITTI Benchmark [12]. Table 1 shows

results for these two tasks on the two train/val splits. Ta-

ble 2 shows results on the KITTI testing set. We can see

that our method outperforms others for the two tasks on the

two train/val split as well as on the test set. In addition,

our approach is less time consuming. This is due to the

resolution of the input image. Many state-of-the-art object

proposal based approaches [40, 7, 8] upscale the input im-

age by a factor of 3 on the KITTI dataset. This is done

to not lose information on spatially reduced feature maps.

Our coarse-to-fine approach overcomes this loss of infor-

mation and that allows to give an input image at initial reso-

lution. The coarse-to-fine architecture of the Deep MANTA

is also evaluated and results are shown in Table 3. We com-

pare the presented Deep MANTA to two other networks.

The first line is a network which does not use refinement

steps and where pooling regions are extracted on the feature

map at the 5th level of convolution (as the original Faster-

RCNN [33]). The second line is a network without refine-

ment steps and where pooling regions are extracted at the

first level of convolution. We can see that extracting regions

on the first convolution level clearly boosts detection and

orientation score (around 24% up for moderate). The last

line is the presented Deep MANTA architecture (with re-

finement step and regions extracted on the first convolution

maps). These results shows that the coarse-to-fine architec-

ture increases detection and orientation estimation (around

4% up for moderate).
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AP AOS

Method Type Time Easy Moderate Hard Easy Moderate Hard

3DVP [39] Mono 40 s 80.48 / 00-00 68.05 / 00-00 57.20 / 00-00 78.99 / 00-00 65.73 / 00-00 54.67 / 00-00

Faster-RCNN [33] Mono 2 s 82.91 / 00-00 77.83 / 00-00 66.25 / 00-00 00-00 / 00-00 00-00 / 00-00 00-00 / 00-00

SubCNN [40] Mono 2 s 95.77 / 00-00 86.64 / 00-00 74.07 / 00-00 94.55 / 00-00 85.03 / 00-00 72.21 / 00-00

3DOP [8] Stereo 3 s 00-00 / 94.49 00-00 / 89.65 00-00 / 80.97 00-00 / 92.98 00-00 / 87.34 00-00 / 78.24

Mono3D [7] Mono 4.2 s 00-00 / 95.75 00-00 / 90.01 00-00 / 80.66 00-00 / 93.70 00-00 / 87.61 00-00 / 78.00

Ours GoogLenet Mono 0.7 s 97.90 / 97.58 91.01 / 90.89 83.14 / 82.72 97.60 / 97.44 90.66 / 90.66 82.66 / 82.35

Ours VGG16 Mono 2 s 97.45 / 97.2 91.47 / 91.85 81.79 / 85.15 97.10 / 97.09 91.01 / 91.57 81.14 / 84.72

Table 1. Results for 2D vehicle detection (AP) and orientation (AOS) on KITTI val sets. Results on the two validation sets: val1 / val2.

AP AOS

Easy Moderate Hard Easy Moderate Hard

LSVM-MDPM-sv [10, 13] 68.2 56.48 44.18 67.27 55.77 43.59

ACF-SC [3] 69.11 58.66 45.95 - - -

MDPM-un-BB [10] 71.19 62.16 48.43 - - -

DPM-VOC+VP [31] 74.95 64.71 48.76 72.28 61.84 46.54

OC-DPM [30] 75.94 65.95 53.56 73.50 64.42 52.40

SubCat [28] 84.14 75.46 59.71 83.41 74.42 58.83

3DVP [39] 87.46 75.77 65.38 87.46 75.77 65.38

AOG [21] 84.80 75.94 60.70 33.79 30.77 24.75

Regionlets [25] 84.75 76.45 59.70 - - -

Faster R-CNN [33] 86.71 81.84 71.12 - - -

3DOP [8] 93.04 88.64 79.10 91.44 86.10 76.52

Mono3D [7] 92.33 88.66 78.96 91.01 86.62 76.84

SDP + RPN [43] 90.14 88.85 78.38 - - -

MS-CNN [4] 90.03 89.02 76.11 - - -

SubCNN [40] 90.81 89.04 79.27 90.67 88.62 78.68

Ours Googlenet 95.77 90.03 80.62 95.72 89.86 80.39

Ours VGG16 96.40 90.10 80.79 96.32 89.91 80.55

Table 2. Results for 2D vehicle detection (AP) and orientation (AOS) on the KITTI test set.

3D localization. We use Average Localization Precision

(ALP) metric proposed by [39]. It consists in replacing ori-

entation similarity in AOS with localization precision. A 3D

location is correct if its distance from the ground truth 3D

location is smaller than a threshold. Table 4 presents results

on the two train/val splits for a threshold distance of 1 meter

and 2 meters. Our Deep MANTA approach clearly outper-

forms other monocular approaches [7, 39] for the 3D lo-

calization task (around 16% up compared to Mono3D [7]).

Figure 6 shows recall/3D localization precision curves of

Deep MANTA and Mono3D [7]. Compared to 3DOP [8],

which uses stereo information, the Deep MANTA perfor-

mances are equivalent at a threshold error distance of 2 me-

ters but less accurate at 1 meter: Deep MANTA only uses

a single image contrarily to the 3DOP approach which uses

disparity information.

3D template, part localization and visibility. We also

evaluate the precision of part localization, part visibility

classification accuracy as well as 3D template prediction.

Given a correct detection, we use the following three met-

rics. For part localization, a part is considered well local-

Figure 6. Recall/3D localization precision curves for 1 meter (left)

and 2 meters (right) precision on the val2 used by Mono3D [7].

ized if the normalized distance to the ground-truth part is

less than a threshold (20 pixels). Distances are normalized

using a fixed bounding box height (155 pixels) as proposed

by [45]. The visibility metric is the accuracy over the four

visibility classes. Finally, we evaluate 3D template predic-

tion by comparing the three predicted dimensions (w, h, l)
to the ground-truth 3D box dimensions (wgt, hgt, lgt) pro-
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AP AOS

Methode Refinement ROI Pooling on Easy Moderate Hard Easy Moderate Hard

Deep MANTA

No conv5 80.64 62.45 53.86 79.68 61.49 52.58

No conv1 95.19 86.85 78.62 94.98 86.52 78.05

Yes conv1 97.58 90.89 82.72 97.44 90.66 82.35

Table 3. Coarse-to-fine comparison for 2D vehicle detection (AP) and orientation estimation (AOS) on the validation set val2. These

experiments show the importance of the refinement step as well as the influence of the feature maps chosen for region extraction.

1 meter 2 meters

Method Type Time Easy Moderate Hard Easy Moderate Hard

3DVP [39] Mono 40 s 45.61 / 00-00 34.28 / 00-00 27.72 / 00-00 65.73 / 00-00 54.60 / 00-00 45.62 / 00-00

3DOP [8] Stereo 3 s 00-00 / 81.97 00-00 / 68.15 00-00 / 59.85 00-00 / 91.46 00-00 / 81.63 00-00 / 72.97

Mono3D [7] Mono 4.2 s 00-00 / 48.31 00-00 / 38.98 00-00 / 34.25 00-00 / 74.77 00-00 / 60.91 00-00 / 54.24

Ours GoogLenet Mono 0.7 s 70.90 / 65.71 58.05 / 53.79 49.00 / 47.21 90.12 / 89.29 77.02 / 75.92 66.09 / 67.28

Ours VGG16 Mono 2 s 66.88 / 69.72 53.17 / 54.44 44.40 / 47.77 88.32 / 91.01 74.31 / 76.38 63.62 / 67.77

Table 4. 3D localization accuracy (ALP) on KITTI val sets for 1 meter and 2 meters precision. Results on the two validation sets: val1 /

val2.

vided by KITTI. A 3D template (w, h, l) is considered cor-

rect if |
wgt−w

wgt
| < 0.2 and |

hgt−h

hgt
| < 0.2 and |

lgt−l

lgt
| < 0.2.

Table 5 shows the good performances for these tasks.

Metric Easy Moderate Hard

Part localization 97.54 90.79 82.64

Part visibility 92.48 85.08 76.90

3D template 94.04 86.62 78.72

Table 5. Part localization, part visibility, 3D template evaluation

on the validation set val2.

Many-task and regularization parameters. Table 6

shows results with different sets of regularization parame-

ters. These results also aim to compare performances of the

Deep MANTA approach with networks optimized on fewer

tasks. In Table 6, D corresponds to the detection task, P to

the part localization task, V to the part visibility task and

T to the template similarity task. With these notations, the

first line of Table 6 is the Deep MANTA trained only on the

detection task (λparts = λvis = λtemp = 0). As part local-

ization and template similarity are not trained, orientation

and 3D localization cannot be predicted in this case. The

second line is the Deep MANTA trained without the visi-

bility task (λvis = 0) and with λparts = 3. The third line is

the complete Deep MANTA (all tasks) but with the regular-

ization parameter associated to part localization λparts = 1.

Finally, the last line is the Deep MANTA with λparts = 3
(the one presented in all above results). These results are

interesting for several reasons. First, we can see that in-

creasing the number of learned tasks (i.e enriching the vehi-

cle description) does not significantly affect performances

(it is slightly higher for detection and orientation accuracy

but slightly lower on 3D localization). That proves the rele-

vance of the Many-Task concept: a neural network is able to

learn one feature representation which can be used to pre-

dict many tasks. Secondly, we can see that the parameter

λparts is very important for 3D localization. Learning the

Deep MANTA with λparts = 3 improves the 3D localiza-

tion by 6% for 1 meter distance precision.

AP AOS 1 m 2 m

D 89.86 - - -

DPT / λparts = 3 89.73 89.39 58.37 78.11

DPVT / λparts = 1 89.58 89.27 51.47 73.93

DPVT / λparts = 3 90.54 90.23 57.44 77.58

Table 6. The influence of the amount of tasks learned as well as

different regularization parameters. This table gives results for ve-

hicle detection (AP), orientation (AOS), and 3D localization for 1

meter and 2 meters precision (ALP). Given results are averaged

over the two validation sets and over the three levels of difficulty

(Easy, Moderate, Hard). See text for details.

6. Conclusion

To conclude, we propose a new approach for joint 2D

and 3D vehicle analysis from monocular image. It is based

on the Many-task CNN (Deep MANTA) which proposes

accurate 2D vehicle bounding boxes using multiple refine-

ment steps. The MANTA architecture also provides vehicle

part coordinates (even if these parts are hidden), part visibil-

ity and 3D template for each detection. These fine features

are then used to recover vehicle orientation and 3D local-

ization using robust 2D/3D point matching. Our approach

outperforms state-of-the-art methods for vehicle detection

and fine orientation estimation and clearly increases vehicle

3D localization compared to monocular approaches. One

perspective is to adapt this framework to other rigid objects

and build a multi-class Deep MANTA network.
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