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Abstract

Numerous methods have been proposed for person re-

identification, most of which however neglect the matching

efficiency. Recently, several hashing based approaches have

been developed to make re-identification more scalable for

large-scale gallery sets. Despite their efficiency, these

works ignore cross-camera variations, which severely de-

teriorate the final matching accuracy. To address the above

issues, we propose a novel hashing based method for fast

person re-identification, namely Cross-camera Semantic Bi-

nary Transformation (CSBT). CSBT aims to transform orig-

inal high-dimensional feature vectors into compact identity-

preserving binary codes. To this end, CSBT first employs a

subspace projection to mitigate cross-camera variations, by

maximizing intra-person similarities and inter-person dis-

crepancies. Subsequently, a binary coding scheme is pro-

posed via seamlessly incorporating both the semantic pair-

wise relationships and local affinity information. Finally, a

joint learning framework is proposed for simultaneous sub-

space projection learning and binary coding based on dis-

crete alternating optimization. Experimental results on four

benchmarks clearly demonstrate the superiority of CSBT

over the state-of-the-art methods.

1. Introduction

In the last few years, person re-identification (ReID)

has attracted more and more research interest, due to its

wide range of applications such as long-term tracking [44],

searching people of interest (e.g. criminals or terrorists) and

activity analysis [48]. This task aims to match a certain per-

son across multiple non-overlapped cameras, which is very

challenging due to the cluttered backgrounds, severe occlu-

sions, illumination changes and pose variations.

A variety of approaches have been proposed to address

*Yunhong Wang is the corresponding author.

Figure 1. Illustration of the proposed framework. Different colors

(shapes) indicate different person identities (cameras).

the above problem [10, 20, 24, 46, 51, 53, 59, 62], by rep-

resentation learning or building robust signature matching.

However, most of them focused on improving the match-

ing accuracy, but neglected to consider the re-identification

efficiency. As a consequence, high computation costs and

memory load are required by conventional methods, making

them unable to provide timely responses, especially when

dealing with large-scale gallery sets. Meanwhile, recently,

there has been an explosive growth of wearable and mo-

bile devices with limited computation capability. It is there-

fore highly desirable to develop a re-identification system

that can quickly retrieve the target person from numerous

gallery images with low memory load and fast speed.

Recently, hashing has emerged as a promising way for

large-scale data processing [9, 38], and has a wide range of

applications such as action recognition [27, 36] and image

retrieval [26, 27, 28]. Inspired by this, several supervised

hashing based approaches have been developed for efficient

person re-identification [4, 54, 60]. These methods attempt

to build discriminative binary vectors, and subsequently

construct identity-preserving hash functions. By virtue of

the learned hash functions, original high-dimensional fea-

ture vectors are transformed into short binary codes, which

can be stored efficiently. More importantly, very fast match-

ing could be accomplished by calculating the Hamming dis-
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tance. However, these methods concentrate on learning dis-

criminative binary codes. The intrinsic cross-camera vari-

ations, i.e., large intra-person disturbances and small inter-

person discrepancies, in the raw data are not considered,

which may severely deteriorate the matching accuracy.

To deal with the aforementioned drawbacks of exist-

ing works, we propose a novel hashing based frame-

work, namely Cross-camera Semantic Binary Transfor-

mation (CSBT), for fast person re-identification. As il-

lustrated in Fig. 1, CSBT aims to transform original

high-dimensional feature vectors into compact identity-

preserving binary codes. To that end, we first employ a dis-

criminative projection to alleviate the cross-camera varia-

tions, by minimizing intra-person distances and maximizing

inter-person discrepancies in the projected subspace. Sub-

sequently, a binary coding scheme is proposed to learn a

set of binary vectors and a hash function. Specifically, the

binary vectors are constructed by simultaneously preserv-

ing the semantic pairwise relationships (a pair of persons

have the ‘same’ or ‘different’ identities) and local affinity

information embedded in the subspace. Inspired by [39], a

discrete learning procedure is developed to further guaran-

tee the quality of generated binary codes. A hash function is

finally built by fitting the projected feature vectors and cor-

responding binary codes. In order to avoid correlated code

bits, orthogonal constraints are further introduced into the

hash mapping, which can be efficiently solved. By adopting

the joint subspace projection learning and binary coding,

we can obtain a binary transformation that is more robust to

cross-camera variations.

The main contributions of this paper are three-fold:

(1) We propose a novel binary transformation framework

(CSBT) for fast person re-identification. This framework

jointly learns a subspace projection and a binary coding

scheme, which can seamlessly alleviate cross-camera vari-

ations in raw data and generate high quality binary codes.

As a consequence, we can construct a more robust binary

transformation to improve the matching accuracy with guar-

anteed re-identification efficiency.

(2) A new binary coding scheme is proposed by simul-

taneously incorporating the semantic pairwise relationships

and local affinity information embedded in the subspace.

A discrete alternating optimization algorithm is further in-

troduced, by virtue of which we can obtain representative

binary codes to preserve person identities across cameras.

(3) We extensively conduct experiments to evaluate the

performance of the proposed method. The results demon-

strate the efficiency of the proposed method, especially on

large-scale gallery sets.

2. Related Work

In the literature, most of existing works on person re-

identification can be divided into three categories: building

robust appearance [10, 20, 59] and spatial-temporal repre-

sentations [5, 25, 31, 47], developing discriminative simi-

larity metrics [6, 16, 20, 35, 62], or designing more reliable

matching strategies [5, 32]. Most of these works concen-

trate on promoting matching rates, and ignore their scala-

bility to large volumes of gallery images during test. As

a result, both the time and memory costs of existing re-

identification methods will grow sharply and become un-

affordable, as the number of gallery images increases.

Recently, several hashing based approaches have been

proposed to address fast person re-identification. In [54],

a deep regularized similarity comparison hashing method

(DRSCH) was developed by incorporating regularized

triplet-based formulation and bit-scalable hashing genera-

tion into a deep convolutional neural network. DRSCH to-

gether with the Deep Semantic Ranking Hashing (DSRH)

[56], which preserves multi-level semantic similarity be-

tween multi-label images, were then evaluated in the con-

text of person re-identification. In [60], the cross-view

binary identities (CBI) were learned by constructing two

sets of hash functions, through minimising the intra-person

Hamming distance and maximising the cross-covariances.

Additionally, a few existing methods for cross-view

hashing were also applied to person re-identification,

including: Cross-Modality Similarity Sensitive Hashing

(CMSSH) [2], Cross-View Hashing (CVH) [17], Pre-

dictable Dual-view Hashing (PDH) [37], Collective Matrix

Factorisation Hashing (CMFH) [8] and Canonical Correla-

tion Analysis based hashing (CCA) [60]. These approaches

were originally designed to address binary coding for multi-

modal data, through exploiting the correlations between dis-

tinct sources of representations. By taking each camera

view as one modality, they can be straightforwardly applied

to person re-identification.

Despite the promising efficiency achieved by existing

hashing based methods, all of them neglect to deal with

intrinsic cross-view variations in raw data. Meanwhile,

DRSCH requires a huge amount of labeled training data,

which is not easy to acquire in practice. And CBI can only

train a model between a pair of camera views, which is not

flexible to scenarios with multiple camera views.

3. The Proposed Framework

Suppose that N D-dimensional training samples

{xi}
N
i=1 together with corresponding labels {yi}

N
i=1 are

available, where yi indicates the person identity (ID) of xi.

We treat (xi, xj) as a positive sample pair if yi = yj , and

a negative pair otherwise. Our target is to transform high

dimensional feature vectors {xi}
N
i=1 into a set of binary

codes {bi}
N
i=1 with L bits, based on which a hash function

H : RD → {−1, 1}L can be trained via regression.

Traditional works learn {bi}
N
i=1 by exploiting either the

intrinsic local affinity of raw data {xi}
N
i=1, or the semantic
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similarities from labels {yi}
N
i=1. In our work, we attempt

to combine these two kinds of information. However, in

person re-identification, the local affinity information in the

original feature space is too noisy due to cross-camera vari-

ations. To address this problem, we introduce a discrim-

inative subspace, where intra-class distances are forced to

be smaller than inter-class distances. Through this way, we

can obtain two advantages: 1) The binary transformation

learned from the embedded subspace can be more robust to

cross-camera variations; 2) The local affinity of embedded

data will contain more useful information to train discrimi-

native binary codes.

Based on the aforementioned motivations, we formulate

the general framework of CSBT as follows:

min
B,P,F

ℓML(P) + βℓH(B,P)

s.t. bi = sgn(F (PT xi)), i = 1, · · · , N,
(1)

where X = [xT1 ; · · · ; xTN ] ∈ R
N×D, Y = [yT

1 ; · · · ; yT
N ] ∈

R
N , B = [bT

1 ; · · · ; bT
N ] ∈ {−1, 1}N×L, P ∈ R

D×d is the

subspace projection, ℓML is the loss function for subspace

projection learning, ℓH is the loss function for binary cod-

ing, H = sgn(F (·)) is the hash function, and β is a positive

trade-off parameter. Here, F (·) is the linear mapping func-

tion, and sgn(·) is the sign function.

In terms of the loss function ℓML, we harness the princi-

ple of metric learning to train the subspace projection matrix

P, or equivalently, a Mahalanobis distance function

D2
P(xi, xj) = ‖PT xi − PT xj‖

2

= (xi − xj)
T M(xi − xj)

(2)

to measure the distance between samples, where M = PPT .

We adopt the log-logistic loss function as in [20, 62],

which can provide a soft margin to separate different

classes, and is particularly useful for classification prob-

lems. Specifically, we utilize the following loss function

ℓML(P) =
∑

wi,j log(1 + eyi,j(D
2
P (xi,xj)−µ)), (3)

where

yi,j =

{

1, if yi = yj ,

−1, if yi �= yj ,
wi,j =

{

1/Np, if yi = yj ,

1/Nn, if yi �= yj .
(4)

Np and Nn are the numbers of positive and negative sample

pairs, respectively. µ is a constant bias, which is applied

considering that D2
P has a lower bound of zero.

Since log(1 + ez) is monotonically increasing and

log(1 + e−z) is monotonically decreasing, we can observe

that: positive sample pairs (with the same person IDs) from

different cameras are pulled close, and negative sample

pairs (with different person IDs) are pushed apart in the

projected subspace by minimizing ℓML shown in Eq. (3).

Through this way, we expect to learn a discriminative pro-

jection P that can mitigate cross-camera variations.

As for the loss function ℓH, our target is to learn binary

codes {bi}
N
i=1 of the embedded feature vectors {PT xi}

N
i=1,

by exploiting both the semantic and local data affinity infor-

mation. Concretely, we utilize the following loss function

ℓH(B,P) =
∑

wi,jyi,jai,jdh(bi, bj), (5)

where dh(bi,bj) = |{k|bi,k �= bj,k, 1 ≤ k ≤ L}| indicates

the Hamming distance [30], and ai,j encodes the semantic

and local data affinity between embedded samples PT xi and

PT xj . In this paper, we define that

ai,j =

⎧

⎨

⎩

1 , if yi = yj ;

1− e−
‖PT xi−PT xj‖

2
2

2σ2 , if yi �= yj .
(6)

When ℓH is minimized, from Eqs. (5) and (6) we have

the following observations: 1) The Hamming distance be-

tween samples xi and xj will be diminished/increased, if

they consist a positive/negative pair; 2) For two negative

sample pairs (xi,xj) and (xi,xk), if ‖PT xi − PT xj‖2 <

‖PT xi − PT xk‖2, then aij < aik, implying that a larger

weight will be imposed on maximizing the Hamming dis-

tance between binary codes of xi and xk. As a result,

dh(bi, bk) is preferred to be larger than dh(bi, bj). This

indicates that the learned binary codes are forced to pre-

serve both the semantic information and local affinity in the

embedded subspace, by reducing the loss ℓH(B,P) in (5).

Finally, with respect to F (·), we adopt the widely used

linear mapping [39], i.e., F (z) = WT z, where W ∈ R
d×L

is the mapping matrix. To further avoid severely corre-

lated binary code bits, we introduce orthogonal constraints

on W, i.e., WT W = IL [13], where IL is the identity

matrix with order L. Moreover, inspired by [39], we re-

place bi = sgn(F (PT xi)) by a regularization loss ‖bi −

sgn(F (PT xi))‖
2, for optimization convenience. Mean-

while, by employing a regularization term on P and adopt-

ing matrix notations, we obtain the final formulation of the

proposed framework:

min
B,P,W

L (B,P,W)

s.t. WT W = IL,B ∈ {−1, 1}N×L
(7)

where L (B,P,W) = ℓML(P) + βℓH(B,P) + γ
2 ‖B −

XPW‖2F + ν
2‖P‖2F . γ and ν are trade-off parameters.

Based on the learned P and W by solving the optimiza-

tion problem (7), an unseen test data sample x can then be

transformed into binary codes by using sgn
(

WT PT x
)

.

4. Optimization

Since (7) is a non-convex optimization problem, it is dif-

ficult to find the global optimum. In this paper, we develop
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an alternating iteration algorithm to achieve a locally op-

timal solution. Specifically, we alternate updates of B, P

and W, i.e., optimize one variable whilst fixing the rest.

B-Step. When fixing P and W, based on the fact that

dh(bi, bj) =
L−bT

i bj

2 , problem (7) can be reformulated into

min
B∈{−1,1}N×L

−
β

2

∑

si,jbT
i bj +

γ

2
‖B − XPW‖2F , (8)

where si,j = wi,jyi,jai,j encodes the semantic and data

affinity correlation of the i-th and j-th samples.

Problem (8) is fundamentally NP-hard. Inspired by [39],

we propose to discretely learn B by adopting an alternating

optimization procedure. Concretely, we learn B sample-by-

sample, i.e., optimize bi whilst fixing the remaining N − 1
samples {b1, · · · , bi−1, bi+1, · · · , bN}. By setting z = bi

and using the fact zT z = L, we attain the following results

−
β

2

∑

si,jbT
i bj = zT

⎛

⎝−
β

2

∑

j �=i

si,jbj

⎞

⎠+ const, (9)

‖B − XPW‖2F = −2zT WT PT xi + const. (10)

By taking Eqs. (9) and (10) back into problem (8), we

finally derive the optimization problem below

min
z∈{−1,1}L

zT

⎛

⎝−
β

2

∑

j �=i

si,jbj − γWT PT xi

⎞

⎠ , (11)

which has the following closed-form solution

z = sgn
(

β
2

∑

j �=i si,jbj + γWT PT xi

)

. (12)

From Eq. (12), we can observe the update of each sample

bi relies on the remaining N − 1 binary vectors.

P-Step. By fixing B and W, problem (7) turns into

min
P∈RD×d

F(P), (13)

where F(P) =
∑

wi,j log(1 + eyi,j(D
2
P (xi,xj)−µ)) +

β
∑

wi,jyi,jai,jdh(bi, bj) +
γ
2 ‖B − XPW‖2F + ν

2‖P‖2F .

Generally, F(P) is non-convex with respect to P. It is

therefore difficult to find a global optimal solution. In this

paper, we aim to derive a local optimal solution by using

the gradient descent method. Concretely, given the point

P(k−1) at iteration k − 1, P is updated by

P(k) = P(k−1) − η(k)∇F(P(k−1)), (14)

where P(k), η(k), and ∇F(P(k)) are the value of P, the step

length, and the gradient of F(P) at the k-th iteration, re-

spectively. Here, ∇F(P) is formulated as follows:

∇F(P) =
∑

i,j

(gi,j(P) + βhi,j(P)) (xi − xj)(xi − xj)
T

P

+ γ(XT
XPWW

T
− X

T
BW

T ) + νP,

Algorithm 1 Cross-camera Binary Transformation

Input: Data matrix X, labels Y, the maximal iteration num-

ber Tmax, bit length L and trade-off parameters β, γ, ν.

Output: Binary codes B, subspace projection matrix P, and

linear mapping W.

1: repeat

2: B-Step: Update B by Eq. (12).

3: P-Step: Update P by Eq. (14).

4: W-Step: Update W by Eq. (19).

5: until converged or reach the maximal iteration Tmax

where gi,j(P) =
2wi,jyi,j

1+e
−yi,j(D

2
P
(xi,xj)−μ)

, and

hi,j(P) =

⎧

⎪

⎨

⎪

⎩

0 , if yi = yj ;

wi,jyi,jdh(bi, bj)

σ2e
D2

P
(xi,xj)

2σ2

, if yi �= yj .
(15)

In order to guarantee the convergence of the gradient

descent method depicted in Eq. (14), we choose the step

length η(k) that satisfies the Wolfe conditions by using

backtracking line search, according to [33].

W-Step. By fixing B and P, we can rewrite (7) into

min
W∈Rd×L,WT W=IL

G(W) := 1
2‖B − XPW‖2F . (16)

The above problem is a nonlinear optimization problem

with orthogonal constraints. Inspired by [49], we adopt the

Crank-Nicolson-like update scheme to find a feasible solu-

tion, due to its simplicity and computational efficiency.

Specifically, given a feasible point W(k−1) at iteration

k − 1 and the corresponding gradient

∇G(W(k−1)) = PT XT XPW(k−1) − PT XT B, (17)

a skew-symmetric matrix A(k) = ∇G(W(k−1))W(k−1)T −

W(k−1)∇G(W(k−1))T is firstly calculated. The new trial

point W(k)is then obtained by doing curvilinear search

along the path

Y(k)(τ) = (Id +
τ

2
A(k))−1(Id −

τ

2
A(k))W(k−1). (18)

Similar to the P-step, we utilize the backtracking line

search [33] to find a proper step length τ (k), based on which

W is updated by

W(k) = Y(k)(τ (k)). (19)

By repeating the aforementioned procedure, we can fi-

nally obtain a feasible W, which achieves a local optimum.

The overall solution is summarized in Algorithm 1. In

the B-step, we can alternatively infer B by directly adopt-

ing B = sgn(WT PT X) in the B-step. However, this strat-

egy may introduce large cumulative quantization errors. In
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contrast, we propose a new discrete learning method to en-

sure the high quality of learned B in our work. W and P

can be obtained based on the optimal B iteratively. This

training/testing strategy is widely adopted by recent hash-

ing methods [29, 39].

4.1. Convergence Analysis

From Eqs. (4) and (6), we can observe that 0 < wi,j ≤ 1
and 0 < ai,j ≤ 1 (∀i, j = 1, · · · , N ). Since log(1+ex) > 0
for any x ∈ R, we can then derive that

ℓML(P) =
∑

wi,j log
(

1 + eyi,j(D2
P (xi,xj)−µ)

)

> 0.

Moreover, we can easily deduce the following results

ℓH(B,P) ≥
∑

−dh (bi, bj) ≥ −N2L.

It is then straightforward to see that the objective func-

tion L(B,P,W) in (7) has a lower bound. On the other

hand, L(B,P,W) consistently decreases, when iteratively

conducting B-Step, P-Step and W-Step. We can therefore

conclude that Algorithm 1 converges to a local minimum

(see empirical studies in the supplementary material).

5. Experiments

In this section, we evaluate the proposed method on four

datasets: VIPeR [14], CUHK01 [18], CUHK03 [19] and

Market-1501 [61]. Several samples are shown in Fig. 2.

VIPeR is one of the most widely used datasets, which

contains 632 pedestrians from two non-overlapping cam-

eras. This dataset is very challenging due to the low image

quality, together with large variations in illumination, poses

and viewpoints. For evaluation, the single-shot setting is

used in our experiments as in [62]. We follow the standard

settings to randomly select p = 316 persons for test, and the

rest 316 persons for training. This is repeated for 10 times

and the averaged performance is reported.

CUHK01 includes 3,884 images of 971 pedestrians cap-

tured by two disjoint cameras, with each person having two

images under each camera. Different from VIPeR, images

in CUHK01 are of higher resolutions. On this dataset, both

the 485/486 and 871/100 training/test settings (multi-shot)

are widely used. We therefore report results for these two

different partitions over 10 trials.

CUHK03 contains 13,164 images of 1,360 pedestrians

under six surveillance cameras, with each person observed

by two disjoint cameras and having an average of 4.8 im-

ages in each view. We follow [1, 45, 54], and use the 20

training/test splits provided in [19] with manually cropped

images under the single-shot setting.

Market1501 contains 32,688 bounding boxes of 1501

identities, most of which are cropped by the Deformable

Parts Model (DPM) [11]. Each person is captured by 2∼6

Figure 2. Sample images: VIPeR (left) and CUHK01 (right). Im-

ages in the same column/row belong to the same person/camera.

cameras. This dataset is the largest publicly available per-

son re-identification dataset to date. Similar to [61], we use

12,936 images for training. During test, we utilize 3,368

images for query and 19,732 images for gallery under the

single-query evaluation settings.

5.1. Experimental Setup

Image Representation. We adopt the Local Maximal Oc-

currence (LOMO) feature [20] for person representation.

Specifically, all images are normalized to 128×64 pixels. A

set of sliding windows are then generated, where both color

and texture histograms are extracted. Maximal occurrences

of patterns encoded by histogram bins are calculated and

concatenated into a 26,960-dimensional feature vector.

Parameter Settings. In our evaluations, the dimension of

subspace d and balancing parameters β, γ, ν in (7) are se-

lected by cross-validation. The maximal iteration number

Tmax is set to 16. For computational efficiency, we employ

PCA to reduce the dimension of LOMO features to 3000.

Since the bit length L significantly affects the performance

of hashing based approaches, we fine-tune L in the range

[64,1024] with step-size 64, and choose the bit length that

achieves the highest rank 1 accuracies.

Evaluation Metrics. Similar to most publications, we use

the Cumulated Matching Characteristics (CMC) curve to

evaluate the performance of various person re-identification

methods. Since the mean average precision (mAP) is a

widely used evaluation metric for hashing methods, we also

report mAP when comparing CSBT with the state-of-the-art

hashing approaches.

5.2. Comparison with Hashing Methods

In this section, we evaluate CSBT on VIPeR, CUHK01

and CUHK03. We choose the following state-of-the-art

hashing methods for comparisons: single-view hashing in-

cluding MLH [34], KSH [30], FastHash [22], SDH [39],

COSDISH [15], and cross-view hashing including SCM

[52], SePH [23], CBI [60]. Note that [54] reported results

by using two deep learning based hashing, i.e., DRSCH [54]

and DSRH [56] on CUHK03. We also compare with these

two methods by directly adopting results from [54].

Since the bit length significantly affects the performance

of hashing methods, we demonstrate the rank 1 matching
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Table 1. Rank 1 matching rate (%) with different bit length L using different hashing approaches.
VIPeR CUHK01 (P=486) CUHK03

Method Reference 64 bits 128 bits 256 bits 512 bits 64 bits 128 bits 256 bits 512 bits 64 bits 128 bits 256 bits 512 bits

Cross-

View

CBI∗ IJCAI2016 [60] 13.9 18.0 23.1 26.3 - - - - - - - -

SePH CVPR2015 [23] 6.2 10.4 15.9 20.1 6.7 12.5 22.1 32.7 1.3 1.6 1.9 2.2

SCM AAAI2014 [52] 8.9 6.5 3.9 2.3 30.7 25.1 17.1 10.3 2.0 2.0 2.2 2.1

Single-

View

COSDISH AAAI2016 [15] 9.8 16.5 16.8 12.4 13.1 24.4 34.9 41.0 4.4 9.3 19.1 29.0

SDH CVPR2015 [39] 9.6 17.6 23.6 29.5 11.9 22.3 34.5 38.2 12.9 19.3 25.0 31.4

DRSCH TIP2015 [54] - - - - - - - - 22.0 18.7 - -

DSRH CVPR2015 [56] - - - - - - - - 14.4 8.1 - -

FastHash CVPR2014 [22] 1.5 2.4 5.7 10.3 1.7 4.1 8.7 15.4 2.6 4.9 8.6 12.1

KSH CVPR2012 [30] 10.6 13.6 15.9 16.5 10.6 13.6 15.9 10.2 19.1 18.0 15.3 15.0

MLH ICML2011 [34] 4.6 7.6 8.8 7.7 4.7 8.5 6.1 6.5 5.2 5.5 5.0 5.5

CSBT Ours 20.3 24.7 29.5 33.1 36.2 42.3 45.5 48.0 33.1 36.2 40.3 46.2

(‘*’: The best results are adopted from [60] for each bit length. ‘-’: The source codes or experimental results are not available.)
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Figure 3. Comparison of mAP for state-of-the-art hashing methods by using different bit lengths.
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Figure 4. Comparison of nAUC for state-of-the-art hashing methods by using different bit lengths.

rate and mAP across different bits in Table 1 and Fig. 3. Par-

ticularly, on the VIPeR dataset, [60] provided rank 1 match-

ing accuracies of CBI with various bit lengths, by using var-

ious kinds of features (including the LOMO feature). To

make a compact description, we only demonstrate the best

results of CBI for each bit length. On the CUHK01 dataset,

only the results with optimal bit lengths were reported for

CBI in [60]. Since the source code of CBI is not publicly

available, and the deep hashing methods (e.g., DRSCH and

DSRH) perform poorly on small datasets, we just provide

comparison results on CUHK01 by re-implementing MLH,

KSH, FastHash, SDH, COSDISH, SePH and SCM using

the LOMO feature. As shown in Table 1 and Table 2, even

using very short bit lengths (e.g., 64 bits), the performance

of CSBT is obviously superior to CBI with the optimal bit

lengths. On the CUHK03 dataset, [54] reported the rank

1 matching rates of DRSCH and DSRH with 64 and 128

bits. We directly copy the results and show them in Table 1.

Considering that top ranked results are usually desirable in

practice besides rank 1, we additionally report the normal-

ized Area Under the CMC Curve (nAUC) as in [60] to make

a more comprehensive study. In our work, we follow [60]

and summarize nAUC at top 85 ranks by using different bit

lengths in Fig. 4.

From Table 1, Fig. 3 and Fig. 4, we have the follow-

ing observations: 1) CSBT consistently outperforms com-

pared hashing methods over different bit lengths. 2) As the

bit length decreases, the performance of compared meth-

ods (e.g., SePH, SDH, COSDISH) drops sharply. In con-

trast, CSBT achieves more robust performance, since it still

yields promising results even using short codes (e.g., less

than 128 bits). This is due to that CSBT performs binary

3878



Table 2. Matching rates (%), average query time (in seconds) and memory usage (in kilobytes) for storing gallery data, by comparing with

state-of-the-art approaches on various datasets.
VIPeR CUHK03 (Labeled)

Method Reference r=1 r=5 r=20 Time (s) Mem. (KB) r=1 r=5 r=20 Time (s) Mem. (KB)

Hashing

CBI∗ IJCAI2016 [60] 31.3 57.3 81.6 1.4e-06 2.72e+01 - - - - -

DRSCH∗ TIP2015 [54] - - - - - 22.0 48.4 81.0 - -

DSRH∗ CVPR2015 [56] - - - - - 14.4 43.4 79.2 - -

Non

Hashing

DCSL IJCAI2016 [55] 44.6 73.4 92.1 - 5.68e+03 80.2 97.7 99.7 - 5.18e+02

Gated CNN ECCV2016 [43] 37.8 - - - 5.68e+03 - - - - -

EDM ECCV2016 [40] 40.9 - - - 5.68e+03 61.3 - - - 5.18e+02

SIR+CIR CVPR2016 [45] 35.8 - - - 5.68e+03 52.2 - - - 5.18e+02

JSTL CVPR2016 [50] 38.6 - - - 5.68e+03 75.3 - - - 5.18e+02

SCSP CVPR2016 [3] 53.5 - - 3.78e-02 2.96e+02 61.3 - - - -

NSL CVPR2016 [53] 42.3 71.5 92.1 - 6.66e+04 58.9 85.6 96.3 - 2.11e+04

KCCA+DCIA ICCV2015 [12] 63.9 78.5 - - 1.20e+04 - - - - -

Improved Deep CVPR2015 [1] 34.8 63.6 84.5 - 5.68e+03 54.8 86.2 98.5 - 5.18e+02

Semantic CVPR2015 [41] 31.1 68.6 94.9 - - - - - - -

MLF CVPR2014 [59] 29.1 52.3 79.9 - - - - - - -

DeepReID CVPR2014 [19] - - - - 5.68e+03 20.7 50.1 80.0 - 5.18e+02

SalMatch ICCV2013 [57] 30.2 52.3 79.2 - - - - - - -

eSDC CVPR2013 [58] 26.3 50.8 76.5 1.14+01 4.98e+05 8.8 27.0 55.1 3.45e+00 1.58e+05

KISSME CVPR2012 [16] 19.6 47.9 77.2 9.2e-03 8.39e+01 14.2 41.1 70.1 - -

SDALF CVPR2010 [10] 20.0 38.7 65.7 3.6e+00 1.17e+03 5.6 23.5 52.0 1.22e+00 3.72e+02

CSBT∗ Ours 36.6 66.2 88.3 1.68e-06 3.45e+01 55.5 84.3 98.0 4.83e-07 1.01e+01

CUHK01 (p=486) CUHK01 (p=100)

Method Reference r=1 r=5 r=20 Time (s) Mem. (KB) r=1 r=5 r=20 Time (s) Mem. (KB)

Hashing CBI∗ IJCAI2016 [60] 30.6 52.9 69.1 - - 34.0 63.7 90.5 - -

Non

Hashing

DCSL IJCAI2016 [55] 76.5 94.2 98.7 - 1.70e+04 89.6 97.8 99.2 - 3.48e+03

EDM ECCV2015 [40] - - - - - 86.6 - - - 3.48e+03

SIR+CIR CVPR2016 [45] - - - - 1.70e+04 72.5 - - - 3.48e+03

JSTL CVPR2016 [50] 66.6 - - - 1.70e+04 - - - - -

NSL Zhang2016 [53] 65.0 85.0 94.4 - - - - - - -

Improved Deep CVPR2015 [1] 47.5 71.6 87.5 - 1.70e+04 65.0 89.0 97.5 - 3.48e+03

Semantic CVPR2015 [41] 32.7 51.2 76.3 - - - - - - -

MLF CVPR2014 [59] 34.3 55.1 75.0 - - - - - - -

DeepReID CVPR2014 [19] - - - - 1.70e+04 27.9 61.0 88.2 - 3.48e+03

SalMatch ICCV2013 [57] 28.5 46.0 67.3 - - - - - - -

eSDC CVPR2013 [58] 19.7 32.4 50.2 1.09e+02 2.52e+06 22.8 46.1 70.5 2.61e+01 5.19e+05

KISSME CVPR2012 [16] - - - - - 29.4 60.2 86.6 - -

SDALF CVPR2010 [10] 9.9 22.7 39.7 2.51e+01 4.02e+03 9.9 45.7 67.8 6.23e+00 9.01e+02

CSBT∗ Ours 51.2 76.3 91.8 9.57e-06 9.85e+01 74.3 93.8 99.3 2.26e-07 4.69e+00

(‘*’: Experimental results with the optimal bit length are adopted. ‘-’: The source codes or implemental details are not available.)

coding scheme in a subspace with less cross-camera vari-

ations, making the learned binary transformation more ro-

bust. 3) For longer bit lengths (e.g., 256 and 512 bits), SDH

can obtain better results than cross-view hashing methods.

This is probably because SDH adopts the training strat-

egy similar to B-step of CSBT, i.e., discretely learning bi-

nary codes without relaxation, while cross-view hashing ap-

proaches only generate approximate results.

5.3. Comparison with the State-of-the-art Person
Re-identification Methods

In this section, we compare CSBT to the state-of-

the-art person re-identification approaches on the VIPeR,

CUHK01, CUHK03 and Market-1501 datasets. The com-

pared methods include existing hashing based approaches

for fast person re-identification: DSRH [56], DRSCH [54]

and CBI [60]. Same as [60], we also compare to several rep-

resentative non-hashing based methods, which adopt differ-

ent matching strategies during testing: 1) Metric Learn-

ing - KISSME [16] and NSL [53]; 2) Local Patches based

Matching - SDC [58], SalMatch [57] and MLF [59]; 3)

Table 3. Rank 1 matching rate (%), mAP, average query time (in

seconds) and memory usage (in kilobytes) for storing gallery data,

by comparing with state-of-the-art approaches on Market-1501.

Method Reference r=1 mAP Time (s) Mem. (KB)

Gated CNN ECCV2016 [43] 65.9 39.6 - 4.32e+04

SSDL ECCV2016 [42] 39.4 19.6 - -

SCSP CVPR2016 [3] 51.9 - - 1.21e+01

NSL CVPR2016 [53] 55.4 - - 4.13e+06

BoW+KISSME ICCV2015 [61] 39.6 17.7 2.08e+00 1.54e+04

eSDC CVPR 2013 [58] 33.5 13.5 7.47e+02 1.45e+06

KISSME (LOMO) CVPR 2012 [16] 40.5 19.0 - -

SDALF CVPR2010 [10] 20.5 8.2 2.53e+02 9.31e+04

CSBT Ours 42.9 20.3 4.7e-04 1.52e+03

Deep Learning - DeepReID [19], Improved Deep [1],

DCSL [55], SIR+CIR [45], EDM [40], SSDL [42] and

Gated CNN [43]; 4) Semantic Attribute based Matching

- Semantic [41]; 5) SDALF [10].

Table 2 summarizes the comparison results on the

VIPeR, CUHK01 and CUHK03 datasets, and Fig. 5 demon-

strates the corresponding CMC curves at top 50 ranks. Ta-

ble 3 shows the rank 1 matching rate together with mAP on

Market-1501. In [60], the results of CBI by using different

features (including the LOMO feature) and bit lengths are
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Figure 5. CMC curves on various datasets: (a) VIPeR; (b) CUHK01 (486 test persons); (c) CUHK01 (100 test persons); (d) CUHK03.

provided on VIPeR and CUHK01. We simply adopt the best

performance of each method with the optimal bit length.

It should be noted that some non-hashing based works

proposed recently have reported higher results, by employ-

ing deep learning [7, 55], model ensembling [20, 21, 53, 59]

or rank optimization [12]. Generally, the matching accura-

cies by using hashing based methods are relatively lower

than non-hashing based ones, due to the binary quantiza-

tion loss [60]. However, this paper mainly focuses on fast

person re-identification. Hashing methods are significantly

more efficient compared to non-hashing based approaches,

which will be shown in the later experiments. It is therefore

a trade-off between accuracy and efficiency. As we pointed

out, efficiency was paid little attention in the literature, but

is important for large-scale sets. We thus aim to improve

the efficiency without sacrificing too much accuracy.

From Tables 2–3 and Fig. 5, it can be observed that

CSBT significantly outperforms existing hashing based

person re-identification approaches. For instance, CSBT

boosts the rank 1 matching rate of CBI by 5.3%, 20.6%

and 40.3%, on VIPeR and CUHK01, respectively. Similar

observations can be obtained on CUHK03.

Compared with state-of-the-art non-hashing based meth-

ods, CSBT can still achieve competitive performance. As

shown in Tables 2–3, the matching rates at rank 1 of CSBT

are higher than many existing non-hashing approaches, in-

cluding deep learning based methods such as SIR+CIR and

Improved Deep. However, there remains a gap between the

matching accuracy of CSBT and that of non-hashing mod-

els such as DCSL. Nevertheless, CSBT has its advantages

in the matching efficiency, which we will show shortly.

The efficiency of CSBT. As previously claimed, the pro-

posed hashing based method is significantly more effi-

cient than non-hashing person re-identification approaches.

To make it clear, we compare the average time cost for

one query during re-identification, i.e., the time for com-

puting the similarities between one query and all gallery

data (316, 972/200, 100 and 19732 samples for VIPeR,

CUHK01, CUHK03 and Market-1501, respectively). Ad-

ditionally, we provide the memory load for storing gallery

data. All experiments are conducted on a PC with Intel Core

CPU (3.4GHz) and 16GB RAM. Since the source codes of

SIR+CIR, SSDL, Improved Deep, Semantic and DeepReID

are not available, we can not directly evaluate their time

and storage efficiency. However, as described in [1, 19, 45],

these methods require all raw gallery images during test-

ing. As a consequence, we can compare their memory us-

age. Besides, the implementation details of KISSME are

unknown on CUHK01. We therefore only evaluate its time

and memory cost on VIPeR, CUHK03 and Market-1501.

As shown in Table 2 and Table 3, the hashing based

methods, i.e., CSBT and CBI, are significantly more ef-

ficient than compared ones. Particulary, on the largest

Market-1501 dataset, CSBT is at least 1,000 times faster,

while requiring much less memory usage, compared to non-

hashing based person re-identification approaches.

6. Conclusion

In this paper, we have presented a novel hashing based

approach, namely cross-camera semantic binary transfor-

mation (CSBT), for fast person re-identification. A joint

framework has been proposed to learn subspace projec-

tion and discriminative binary codes, which simultaneously

preserves identities and mitigates cross-camera variations.

Moreover, a new discrete learning optimization method was

adopted, which can avoid quantization errors and generate

better binary codes. Extensive experimental results demon-

strated that CSBT has significantly enhanced the perfor-

mance of existing hashing based methods. Meanwhile,

CSBT can achieve competitive matching accuracy than the

state-of-the-art person re-identification approaches, whilst

significantly reducing the time and memory costs.

Acknowledgments

This work was supported in part by the National Key

Research and Development Program of China under Grant

2016YFB1001002, in part by the Hong Kong, Macao, and

Taiwan Science and Technology Cooperation Program of

China under Grant L2015TGA9004, in part by the Na-

tional Natural Science Foundation of China under Grant

61573045, and in part by the Foundation for Innovative Re-

search Groups through the National Natural Science Foun-

dation of China under Grant 61421003.

3880



References

[1] E. Ahmed, M. Jones, and T. K. Marks. An improved deep

learning architecture for person re-identification. In CVPR,

2015.

[2] M. M. Bronstein, A. M. Bronstein, F. Michel, and N. Para-

gios. Data fusion through cross-modality metric learning us-

ing similarity-sensitive hashing. In CVPR, 2010.

[3] D. Chen, Z. Yuan, B. Chen, and N. Zheng. Similarity learn-

ing with spatial constraints for person re-identification. In

CVPR, 2016.

[4] J. Chen, Y. Wang, and R. Wu. Person re-identification by

distance metric learning to discrete hashing. In ICIP, 2016.

[5] J. X. Chen, Y. H. Wang, and Y. Y. Tang. Person re-

identification by exploiting spatio-temporal cues and multi-

view metric learning. IEEE Signal Processing Letters,

23(7):998–1002, 2016.

[6] J. X. Chen, Z. X. Zhang, and Y. H. Wang. Relevance

metric learning for person re-identification by exploiting

listwise similarities. IEEE Trans. on Image Processing,

24(12):4741–4755, 2015.

[7] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Per-

son re-identification by multi-channel parts-based cnn with

improved triplet loss function. In CVPR, 2016.

[8] G. Ding, Y. Guo, and J. Zhou. Collective matrix factorization

hashing for multimodal data. In CVPR, 2014.

[9] Q. S. A. H. Z. T. F. Shen, C. Shen. Inductive hashing on

manifolds. In CVPR, 2013.

[10] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. ris-

tani. Person re-identification by symmetry-driven accumula-

tion of local features. In CVPR, 2010.

[11] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(9):1627–1645, 2010.

[12] J. Garcia, N. Martinel, C. Micheloni, and A. Gardel. Person

re-identification ranking optimization by discriminant con-

text information analysis. In ICCV, 2015.

[13] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In CVPR, 2011.

[14] D. Gray and H. Tao. Viewpoint invariant pedestrian recogni-

tion with an ensemble of localized features. In ECCV, 2008.

[15] W. C. Kang, W. J. Li, and Z. H. Zhou. Column sampling

based discrete supervised hashing. In AAAI, 2016.

[16] M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and

H. Bischof. Large scale metric learning from equivalence

constraints. In CVPR, 2012.

[17] S. Kumar and R. Udupa. Learning hash functions for cross-

view similarity search. In IJCAI, 2011.

[18] W. Li and X. Wang. Locally aligned feature transforms

across views. In CVPR, 2013.

[19] W. Li, R. Zhao, T. Xiao, and X. Wang. Deepreid: Deep filter

pairing neural network for person re-identification. In CVPR,

2014.

[20] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification

by local maximal occurrence representation and metric

learning. In CVPR, 2015.

[21] S. Liao and S. Z. Li. Efficient psd constrained asymmetric

metric learning for person re-identification. In ICCV, 2015.

[22] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.

Fast supervised hashing with decision trees for high-

dimensional data. In CVPR, 2014.

[23] Z. Lin, G. Ding, M. Hu, and J. Wang. Semantics-preserving

hashing for cross-view retrievalg. In CVPR, 2015.

[24] G. Lisanti, I. Masi, A. D. Bagdanov, and A. D. Bimbo. Per-

son re-identification by iterative re-weighted sparse ranking.

IEEE Trans. on Pattern Analysis and Machine Intelligence,

37(8):1629–1642, 2013.

[25] K. Liu, B. Ma, W. Zhang, and R. Huang. A spatio-

temporal appearance representation for viceo-based pedes-

trian re-identification. In ICCV, 2015.

[26] L. Liu, Z. Lin, L. Shao, F. Shen, G. Ding, and J. Han. Se-

quential discrete hashing for scalable cross-modality simi-

larity retrieval. IEEE Transactions on Image Processing,

26(1):107–118, 2017.

[27] L. Liu, M. Yu, and L. Shao. Multiview alignment hashing

for efficient image search. IEEE Transactions on Image Pro-

cessing, 24(3):956–966, 2015.

[28] L. Liu, M. Yu, and L. Shao. Unsupervised local feature hash-

ing for image similarity search. IEEE Transactions on Cy-

bernetics, 46(11):2548–2558, 2016.

[29] W. Liu, C. Mu, S. Kumar, and S. F. Chang. Discrete graph

hashing. In NIPS, 2014.

[30] W. Liu, J. Wang, R. Ji, Y. G. Jiang, and S. F. Chang. Super-

vised hashing with kernels. In CVPR, 2012.

[31] Z. Liu, J. Chen, and Y. Wang. A fast adaptive spatio-temporal

3d feature for video-based person re-identification. In ICIP,

2016.

[32] C. C. Loy, C. Liu, and S. Gong. Person re-identification by

manifold ranking. In ICIP, 2013.

[33] J. Nocedal and S. Wright. Numerical optimization. Springer

Science and Business Media, 2008.

[34] M. Norouzi and D. M. Blei. Minimal loss hashing for com-

pact binary codes. In ICML, 2011.

[35] S. Paisitkriangkrai, C. Shen, and A. van den Hengel. Learn-

ing to rank in person re-identification with metric ensembles.

In CVPR, 2015.

[36] J. Qin, L. Liu, M. Yu, Y. Wang, and L. Shao. Fast action

retrieval from videos via feature disaggregation. In BMVC,

2015.

[37] M. Rastegari, J. Choi, S. Fakhraei, H. D. III, and L. S. Davis.

Predictable dual-view hashing. In ICML, 2013.

[38] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen. Learning

binary codes for maximum inner product search. In ICCV,

2015.

[39] F. Shen, C. Shen, W. Liu, and H. T. Tao. Supervised discrete

hashing. In CVPR, 2015.

[40] H. Shi, Y. Yang, X. Zhu, S. Liao, Z. Lei, W. Zheng, and S. Z.

Li. Embedding deep metric for person re-identification: A

study against large variations. In ECCV, 2016.

[41] Z. Shi, T. M. Hospedales, and T. Xiang. Transferring a se-

mantic representation for person re-identification and search.

In CVPR, 2015.

3881



[42] C. Su, S. Zhang, J. Xing, W. Gao, and Q. Tian. Deep

attributes driven multi-camera person re-identification. In

ECCV, 2016.

[43] R. R. Varior, M. Haloi, and G. Wang. Gated siamese

convolutional neural network architecture for human re-

identification. In ECCV, 2016.

[44] B. Wang, G. Wang, K. L. Chan, and L. Wang. Tracklet asso-

ciation with online target-specific metric learning. In CVPR,

2014.

[45] F. Wang, W. Zuo, L. Lin, D. Zhang, and L. Zhang. Joint

learning of single-image and cross-image representations for

person re-identification. In CVPR, 2016.

[46] G. Wang, L. Lin, S. Ding, Y. Li, and Q. Wang. Dari: Distance

metric and representation integration for person verification.

In AAAI, 2016.

[47] T. Wang, S. Gong, X. Zhu, and S. Wang. Person re-

identification by video ranking. In ECCV, 2014.

[48] X. Wang, K. Tieu, and E. L. Grimson. Correspondence-

free activity analysis and scene modeling in multiple camera

views. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 32(1):56–71, 2010.

[49] Z. Wen and W. Yin. A feasible method for optimization

with orthogonality constraints. Mathematical Programming,

142(1):397–434, 2013.

[50] T. Xiao, H. Li, W. Ouyang, and X. Wang. Learning deep fea-

ture representations with domain guided dropout for person

re-identification. In CVPR, 2016.

[51] Y. Yang, Z. Lei, S. Zhang, H. Shi, and S. Z. Li. Metric

embedded discriminative vocabulary learning for high-level

person representation. In AAAI, 2016.

[52] D. Zhang and W. J. Li. Large-scale supervised multimodal

hashing with semantic correlation maximization. In AAAI,

2014.

[53] L. Zhang, T. Xiang, and S. Gong. Learning a discriminative

null space for person re-identification. In CVPR, 2016.

[54] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-

scalable deep hashing with regularized similarity learning for

image retrieval and person re-identification. IEEE Trans. on

Image Processing, 24(12):4766–4779, 2015.

[55] Y. Zhang, X. Li, L. Zhao, and Z. Zhang. Semantics-aware

deep correspondence structure learning for robust person re-

identification. In IJCAI, 2016.

[56] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic rank-

ing based hashing for multi-label image retrieval. In CVPR,

2015.

[57] R. Zhao, W. Ouyang, and X. Wang. Person re-identification

by salience matching. In ICCV, 2013.

[58] R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience

learning for person re-identification. In CVPR, 2013.

[59] R. Zhao, W. Ouyang, and X. Wang. Learning mid-level fil-

ters for person re-identification. In CVPR, 2014.

[60] F. Zheng and L. Shao. Learning cross-view binary identities

for fast person re-identification. In IJCAI, 2016.

[61] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian.

Scalable person re-identification: A benchmark. In ICCV,

2015.

[62] W. S. Zheng, S. Gong, and T. Xiang. Person re-identification

by probabilistic relative distance comparison. In CVPR,

2011.

3882


