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Scotopic vision studies the tradeoff between accuracy and

exposure time. It is compelling in situations such as 1) au-

tonomous driving [11] and competitive robotics [41], where

the desired response time does not guarantee good quality

pictures, and 2) medical imaging / classification [38] and as-

trophysics [27], where photons are expensive due to photo-

toxicity or prolonged acquisition times.

Scotopic vision also gains prominence thanks to the re-

cent development of photon-counting imaging sensors: sin-

gle photon avalanche diode arrays [46], quanta image sen-

sors [12], and gigavision cameras [36]. These sensors detect

and report single photon arrival events in quick succession,

an ability that provides fine-grained control over photon ac-

quisition that is ideal for scotopic vision applications. By

contrast, conventional cameras, which are designed to re-

turn a high-quality image after a fixed exposure time, pro-

duce an insurmountable amount of noise when forced to read

out images rapidly and are suboptimal at low light. Current

computer vision technology has not yet taken advantage of

photon-counting sensors since they are still under develop-

ment. Fortunately, realistic noise models of the sensors [12]

are already available, making it possible (and wise) to in-

novate computational models that leverage and facilitate the

sensor development. The challenge facing these models is

to be compatible with the high sampling frequencies and the

particular noises of the photon-counting sensors.

While scotopic vision has been studied in the context of

the physiology and technology of image sensing [3, 10], as

well as the physiology and psychophysics of visual discrim-

ination [15] and visual search [5], little is known regarding

the computational principles for high-level visual tasks, such

as categorization and detection, in scotopic settings. Prior

work on photon-limited image classification [45] deals with

a single image, whereas our work not only studies the trade-

off between exposure time and accuracy, but also explores

scotopic visual categorization on datasets of modern com-

plexity.

Our main contributions are:

1. A discriminative framework for scotopic classification

that can trade-off accuracy and response time.

2. A feedforward architecture yielding any-time, quasi-

optimal scotopic classification.

3. A learning algorithm optimizing the speed accuracy

tradeoff of lowlight classifiers.

4. Robustness analysis regarding sensor noise in current

photon-counting sensors.

5. A spiking implementation that trades off accuracy with

computation / power.

6. A light-level estimation capacity that allows the imple-

mentation to function without an external clock and at situa-

tions with unknown illuminance levels.

2. Previous Work

Our approach to scotopic visual classification of collect-

ing only enough observations to make a decision descends

from Wald’s Sequential Probablistic Ratio Test (SPRT) [44].

Wald proved optimality of SPRT under fairly stringent con-

ditions (see Sec. 3). Lorden, Tartakowski and collabora-

tors [26, 40] later showed that SPRT is quasi-optimal in more

general conditions, such as the competition of multiple one-

sided tests, which turns out to be useful in multiclass visual

classification.

Convolutional neural networks (ConvNets) [14, 22, 21,

19, 39] have achieved great success in image recognition

problems. We show that vanilla ConvNets are inadequate for

scotopic vision. However, they are very appropriate once op-

portune modifications are applied. In particular, our scotopic

algorithm marries ConvNet’s ability to classify high-quality

images with SPRT’s ability to trade off acquisition time with

accuracy in a near-optimal fashion.

Sequential testing has appeared in the computer vision lit-

erature [43, 31, 28] in order to shorten computation time.

These algorithms assume that all visual information (‘the

image’) is present at the beginning of computation, thus fo-

cus on reducing computation time in photopic vision. By

contrast, our work aims to reduce capture time and is based

on the assumption that computation time is negligible when

compared to image capture time. In addition, these algo-

rithms either require an computationally intensive numer-

ical optimization [33] or fail to offer optimality guaran-

tees [47, 8]. In comparison, our proposed strategy has a

closed-form and is asymptotically optimal in theory.

Recurrent neural networks (RNN) [18, 16] is a power-

ful tool for sequential reasoning. Our work is inherently

recurrent as every incoming photon prompts our system to

update its decision. However, conventional RNNs are in-

efficient at handling the sheer amount of data produced by

photo-counting sensors (imaging at 1kHz). Therefore, we

employ a continuous-time RNN [23] that can be trained us-

ing samples at arbitrary times and show that a logarithmic

number of (4) samples per photon stream suffice in practice.

VLSI designers have produced circuits that can signal

pixel ‘events’ asynchronously [9, 10, 25] as soon as a suf-

ficient amount of signal is present. This is ideal for our work

since conventional cameras acquire images synchronously

(all pixels are shuttered and A-D converted at once) and are

therefore ill-adapted to scotopic vision algorithms. The idea

of event-based computing has been extended to visual com-

putation by O’Connor et al. [34] who developed an event-

based deep belief network that can classify handwritten dig-

its. The classification algorithms and the spiking implemen-

tation that we propose are distantly related to this work. Our

emphasis is to study the best strategies to minimize response

time, while their emphasis is on spike-based computation.

The pioneering work of [7] establishes a generative
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framework for studying scotopic classification. By compar-

ison we employ a discriminative framework that does not

require a full probabilistic model of images. This gives us

the flexibility to incorporate image preprocessing (for better

classification accuracy), light-level estimation (for handling

unknown and variable light levels) and out-of-distribution

testing (for measuring robustness against realistic sensory

noises). We additionally provide a power-efficient spik-

ing network implementation for integration with photon-

counting sensors.

3. A Framework for Scotopic Classification

3.1. Image Capture

Our computational framework starts from a model of im-

age capture. Each pixel in an image reports the brightness

estimate of a cone of visual space by counting photons com-

ing from that direction. The estimate improves over time.

Starting from a probabilistic assumption of the imaging pro-

cess and of the target classification application, we derive an

approach that allows for the best tradeoff between exposure

time and classification accuracy.

We make three assumptions (relaxed or tested later):

1. The world is stationary during the imaging process. This

may be justified as many photon-counting sensors sample

the world at > 1kHz [36, 12]. Later we test the model un-

der camera movements and show robust performance.

2. Photon arrival times follow a homogeneous Poisson pro-

cess. This assumption is only used to develop the model. We

will evaluate the model in Sec. 4.4 using observations from

realistic noise sources.

3. A discriminative classifier based on photon streams is

available. We will discuss how to obtain such a model

in Sec. 3.4.

Formally, the input X1:t is a stream of photons incident

on the sensors during time [0, t∆), where time has been dis-

cretized into bins of length ∆. Xt,i is the number of photons

arrived at pixel i in the tth time interval, i.e. [(t− 1)∆, t∆).
The task of a scotopic visual recognition system is two fold:

1) computing the category C ∈ {0, 1, . . . ,K} of the under-

lying object, and 2) crucially, determining and minimizing

the exposure time t at which the observations are deemed

sufficient.

3.1.1 Noise Sources

The pixels in the image are corrupted by several noise

sources intrinsic to the camera [24]. Shot noise: The num-

ber of photons incident on a pixel i in the unit time follows a

Poisson distribution whose rate (in Hz) depends on both the

pixel intensity Ii ∈ [0, 1] and a dark current ǫdc:

P (Xt,i = k) = Poisson(k|λφ

Ii + ǫdc
1 + ǫdc

t∆) (1)

where the illuminance λφ is the expected photon count per

bright pixel (intensity 1) per unit time [32, 36, 24, 13]. Dur-

ing readout, the photon count is additionally corrupted first

by the amplifier’s read noise, which is an additive Gaussian,

then by the fixed-pattern noise which may be thought of

as a multiplicative Gaussian noise [17]. As photon-counting

sensors are designed to have low read noise and low fixed

pattern noise[12, 46, 13], we focus on modeling the shot

noise and dark current only. We will show (Sec. 4.4) that

our models are robust against all four noise sources. Addi-

tionally, according to the stationary assumption there is no

motion-induced blur. For simplicity we do not model charge

bleeding and cross-talk in colored images, and assume that

they will be mitigated by the sensor community [2].

A natural quantifier of the information content within a

photon stream X1:t is the average number of photons per

bright pixel (PPP). PPP of X1:t is estimated by dividing the

average photon counts of pixels with true intensity 1 by the

average scene illuminance λφ over duration [0, t∆]. Fig. 1

shows a series of images with increasing PPP.

If the scene illuminance λφ is constant over time (which

we assume to be true prior to Sec. 3.5), PPP is linear in the

exposure time t:

PPP = λφt∆ (2)

hence we use exposure time t and PPP interchangeably.

When scene illuminance fluctuates over time, an effective

exposure time t̂ may be estimated (see Sec. 3.5) based on a

nominal illuminance so that the problem reduces to the case

with constant illuminance.

3.2. Sequential probability ratio test

Our decision strategy for trading off accuracy and speed

is based on SPRT, for its simplicity and attractive optimality

guarantees. Assume that a probabilistic model is available to

predict the class label C given a sensory input X1:t of any

duration t 4, SPRT conducts an accumulation-to-threshold

procedure to estimate the category Ĉ:

Let Sc(X1:t)
△
= log P (C=c|X1:t)

P (C 6=c|X1:t)
denote the class pos-

terior probability ratio of the visual category C for photon

count input X1:t, ∀c ∈ {1, . . . ,K}, and let τ be an appro-

priately chosen threshold. SPRT repeats the following:

Compute c∗ = argmax
c=1,...,K

Sc(X1:t)

if Sc∗(X1:t) > τ : report Ĉ = c∗

otherwise : increase exposure time t. (3)

When a decision is made, the declared class Ĉ has a prob-

ability that is at least exp(τ) times bigger than the probabil-

ity of all the other classes combined, therefore the error rate

4either provided by the application or learned from labeled data using

techniques described in Sec. 3.4
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ConvNets can not be applied directly as they operate on a

static input NT , the cumulative photon counts up to an iden-

tical exposure time T (e.g. T∆ ≈ 33ms in normal lighting

conditions). However we propose a simple adjustment that

transfers the uncertainty in the photon counts to uncertainty

in the task-relevant features of a ConvNet.

Standard ConvNets contain multiple layers of computa-

tions that may be viewed as a nesting of two transforma-

tions: (1) the first hidden layer SH(NT ) = WNT + bH

that maps the input to a feature vector5, and (2) the remain-

ing layers S(NT ) = F (SH(NT )) that map the features

SH(NT ) to the log class posterior probabilities S(NT ).
W ∈ R

D×nH and bH ∈ R
nH are the weights and biases.

Given only partial observations N t, computing features

of the first layer requires marginalizing out unobserved pho-

ton counts ∆N
△
=

∑T
t′=t+1 Xt′ . The marginalization re-

quires putting a prior on the photon emission rate per im-

age pixel i, which we assume to be a Gamma distribution:

Gam(µit0, t0), where µi represents the prior mean rate for

pixel i and t0 (shared across pixels) represents the strength

of the prior6. Then the first layer of hidden features may be

approximated by:

SH(N t) ≈ α(t)WN t + β(t) (4)

where the scaling factor α(t)
△
= T+t0

t+t0
is a scalar and the

biases β(t) is a length nH vector. For the j-th hidden feature,

βj(t)
△
= t0(T−t)

t+t0

∑

i Wijµi+bj . Derivations are in Sec. A.1.

Essentially, the adaptation procedure in Eq. 4 accounts

for the stochasticity in photon arrival time by using time-

dependent weights and biases, rendering an exposure-time

invariant feature representation SH(N t). The computations

downstream, F , may then treat SH(N t) as if it were ob-

tained from the entire duration. Therefore the same compu-

tations suffice to model the intra- and inter-class variations:

S(N t) = F (SH(N t)).

The network is trained discriminately (Sec. 3.4) with the

first layer replaced by Eq. 4. The network has nearly the

same number of parameters as a conventional ConvNet, but

has the capacity to process inputs at different exposure times.

The adaptation is critical for performance, as will be seen

by comparison with simple rate-based methods in Sec. 4.

See Sec. A.6 for implementation details.

3.4. Learning

Our goal is to train WaldNet to optimally trade off the

expected exposure time (or PPP) and error rate in the FR

5Without loss of generality and for notational simplicity, we assume that

the first layer is fully-connected as oppose to convolutional. Sec. A.1 dis-

cusses how to extend the results here to convolutional layers. We also define

the first layer feature as the activity prior to non-linearity.
6We use a Gamma prior because it is the conjugate prior of the Poisson

likelihood.

regime. Optimality is defined by the Bayes risk R [44]:

R
△
= ηE[PPP] + E[C 6= Ĉ] (5)

where E[PPP] is the expected (over examples) photon count

required for classification, E[C 6= Ĉ] is the error rate, and

η describes the user’s cost of photons per pixel (PPP) ver-

sus error rate. WaldNet asymptotically optimizes the Bayes

risk provided that it can faithfully capture the class log poste-

rior ratio Sc(N t), and selects the correct threshold τ (Eq. 3)

based on the tradeoff parameter η. Sweeping η traverses the

optimal time versus error tradeoff (Fig. 2c).

Since picking the optimal threshold according to η is in-

dependent from training a ConvNet to approximatel the log

posterior ratio Sc(N t), the same ConvNet is shared across

multiple η’s. This suggests the following two-step learning

algorithm.

Step one: posterior learning

Given a dataset {N
(n)
t , C(n)}n,t where n indexes training

examples (i.e. photon streams) and t denotes exposure times,

we train the adapted ConvNet to minimize:

−
∑

n,t

logP (Ĉ = C(n)|N
(n)
t ) (6)

When a lowlight dataset is not available we simulate the

dataset from normal images according to the noise model

in Eq. 1, where the exposure times are sampled uniformly

on a logarithmic scale (see Sec. 4).

Step two: threshold tuning

If the ConvNet in step one captures the log posterior ra-

tio Sc(N t), we can simply optimize a scalar threshold τη
for each tradeoff parameter η. In practice, we may opt for

a time-varying threshold τη(t) for calibration purposes 7.

τη(t) affects our Bayes risk objective in the following way

(Fig. 2d). Consider a high-quality (i.e. T → ∞) im-

age N
(n)
T , let {N

(n)
t }Tt=1 be a sequence of lowlight images

increasing in PPP generated from N
(n)
T . Denote q

(n)
t

△
=

I[maxc Sc(N
(n)
t ) > τη(t)] the event that the log posterior

ratio crosses decision threshold at time t, and e
(n)
t the event

that the class prediction at t is wrong. Let R
(n)
t denote the

Bayes risk of the sequence incurred from time t onwards.

R
(n)
t may be computed recursively (derived in Sec. A.3):

R
(n)
t = η∆+ q

(n)
t e

(n)
t + (1− q

(n)
t )R

(n)
t+1 (7)

where the first term is the cost of collecting photons at time

t, the second term is the expected cost of committing to a

decision that is wrong, and the last term is the expected cost

of deferring the decision till more photons are collected.

7This is because the learning in step-one can recover the Sc(N t) up to

a scaling and offset for each exposure time. The time-varying thresholds

help to normalize the scales and offsets across time.
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The Bayes risk, our minimization objective, is obtained

from averaging multiple photon count sequences, i.e. R =

E(n)[R
(n)
0 ]. To make R differentiable we approximate the

non-differentiable component q
(n)
t with a Sigmoid function

Sigm
(

1
σ
(maxc Sc(N

(n)
t )− τη(t))

)

, and anneal the tem-

perature σ over the course of training [30] (see Sec. A.6).

3.5. Automatic lightlevel estimation

Both scotopic algorithms (ensemble and WaldNet) as-

sume knowledge of the light-level PPP in order to choose the

right model parameters. This knowledge is easy to acquire

when the illuminance is constant over time because PPP is

linear in the exposure time t (Eq. 2), which may be mea-

sured by an internal clock.

However, in situations where the illuminance is dynamic

and unknown, the linear relationship between PPP and ex-

posure time is lost. In this case we propose to estimate PPP

directly from the photon stream itself, as follows. Given a

cumulative photon count image N (t, the time it takes to

accumulate the photons, is no longer relevant as the illumi-

nance is unknown), we examine local neighborhoods that re-

ceive high photon counts, and pool the photon counts as a

proxy for PPP. In detail, we (1) convolve N using an s × s
box filter, (2) compute the median of the top k responses,

and (3) fit a second order polynomial to regress the median

response towards the true PPP. Here s and k are parameters,

which are learned from a training set consisting of (N ,PPP)
pairs. Despite its simplicity, this estimation procedure works

well in practice, as we will see in Sec. 4.

3.6. Spiking implementation

One major challenge of scotopic systems is to compute

log posterior ratio computations as quickly as photons stream

in. Photon-counting sensors [36, 12] sample the world at

1k − 10kHz, overshadowing the fastest reported through-

put of ConvNets [35]8. Fortunately, since the photon arrival

events within any time bin is sparse, changes to the input

and the internal states of a scotopic system are small. We

thus propose an efficient implementation that models only

the changes above a certain magnitude. Our implementation

relies on spiking recurrent hidden units:

1) the first hidden layer of WaldNet SH(N t) may be

computed using the recurrent dynamics:

SH(N t) = r(t)SH(N t−1) + α(t)WXt + l(t) (8)

where r(t)
△
= α(t)

α(t−1) is a damping factor, l(t)
△
= β(t) −

r(t)β(t− 1) is a leakage term (derivations in Sec. A.4). The

photon counts Xt in [(t− 1)∆, t∆) is sparse, thus the com-

putation WXt is more efficient than computing SH(N t)
from scratch.

8The throughput is 2kHz for 32 × 32 color images and 800Hz for

100× 100 color images

2) We only propagate a change either in the positive or

the negative direction when the its magnitude exceeds a pre-

defined discretization threshold τdis.

3) Internal layers are represented using recurrent dynam-

ics and discretized the same way.

The threshold affects not only the number of communica-

tion spikes, but also the quality of the discretization, and in

turn the classification accuracy. For spike-based hardwares

the number of spikes is an indirect measure of the energy

consumption (Fig. 4(B) of [29]). For non-spiking hard-

wares, the number of spikes also translate to the number of

floating point multiplications required for the layers above.

Therefore, the τdis controls the tradeoff between accuracy

and power / computational cost. We will empirically evalu-

ate this tradeoff in Sec. 4.

4. Experiments

4.1. Baseline Models

We compare WaldNet against the following baselines, un-

der both the INT regime and the FR regime. For the first

three baselines we assume that an internal clock mea-

sures the exposure time t, and the illuminance λφ is known

and constant over time.

1) Ensemble. We construct an ensemble of 4 specialists with

PPPs from {.22, 2.2, 22, 220} respectively. The performance

of the specialists at their respective PPPs gives a upper bound

on the optimal performance by ConvNets of the same archi-

tecture.

2) Photopic classifier. An intuitive idea is to apply a

network trained in normal lighting conditions to properly

rescaled lowlight images. We choose the specialist with

PPP= 220 as the photopic classifier as it achieves the same

accuracy as a network trained with 8-bit images.

3) Rate classifier. A ConvNet on the time-normalized im-

age (rate) without weight adaptation. The first hidden layer

is computed as SH
j (N t) ≈ WN t/t + bH . Note the simi-

larity with the WaldNet approximation used in Eq. 4.

4) WaldNet with estimated light-levels (EstP). A WaldNet

that is trained on constant illuminance λφ, but tested in en-

vironments with unknown and dynamic illuminance. In this

case the linear relationship between exposure time t and PPP

(Sec. 2) is lost. Instead, the light-level is first estimated ac-

cording to Sec. 3.5 directly from the photon count image N .

The estimate ˆPPP is then converted to an ‘equivalent’ ex-

posure time t̂ using t̂ =
ˆPPP

λφ∆
(by inverting Eq. 2), which is

used to adapt the first hidden layer of WaldNet in Sec. 4, i.e.

SH(N) ≈ α(t̂)WN + β(t̂).

4.2. Datasets and Training

We consider two standard datasets: MNIST [22] and CI-

FAR10 [20]. We simulate lowlight training image sequences

using Eq. 1 and testing photon streams using the noise

model of photon-counting sensors [12]. We set dark current
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of a WaldNet that achieves 22% error on CIFAR10.

ǫdc = 3% and ignore other noise sources for model com-

parison in Sec. 4.3, and separately evaluate the effect of all

noise sources in Sec. 4.4. We use the default LeNet [22] for

MNIST and the CIFAR10-quick architecture from the Mat-

ConvNet package [42], both with batch normalization [37]

and without data augmentation. Details of the models and

training are described in Sec. A.5 and A.6, and the code

(based on MatCovNet [42]) is online[1].

4.3. Results

The speed versus accuracy tradeoff curves in the INT

regime are shown in Fig. 3a,b. Median PPP versus accu-

racy tradeoffs for all models in the FR regime are shown

in Fig. 3c,d. All models use constant thresholds for pro-

ducing the tradeoff curves. In Fig. 4a are average PPP ver-
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sus accuracy curves when the models use optimized dynamic

thresholds described in Sec. 3.4, step-two.

4.3.1 Model comparisons

Overall, WaldNet performs well under lowlight. It only re-

quires < 1 PPP to stay within 0.1% (absolute) degradation

in accuracy on MNIST and around 20 PPP to stay within 1%
degradation on CIFAR10.

WaldNet is sufficient. The ensemble was formed using

specialists at logarithmically-spaced exposure times, thus

its curve is discontinuous in the interrogation regime (esp.

Fig. 3b). The peaks delineate transitions between special-

ists. Even though WaldNet uses 1/4 the parameters of the

ensemble, it stays close to the performance upper bound (es-

timated from ensemble performance). Under the FR regime,

WaldNet is indistinguishable from the ensemble in MNIST

and superior to the ensemble in lowlight conditions (≤ 22
PPP) of CIFAR10.

Training with scotopic images is necessary. The photopic

classifier retrofitted to lowlight applications performs well at

high light conditions (≥ 220 PPP) but works poorly over-

all in both datasets. Investigation reveals that the classifier

fails to assess probability of low light images and often stops

evidence collection prematurely.

Weight adaptation is necessary. The rate classifier

slightly underperforms WaldNet in both datasets. Since the

two system have the same degrees of freedom and differ only

in how the first layer feature is computed, the comparison

highlights the advantage of time-adaptation (Eq. 4).

FR is better than INT. Cross referencing Fig. 3a,b

and Fig. 3c,d reveals that FR with constant thresholds often

brings 3x reduction in median photon counts.

4.3.2 Effect of threshold learning

The comparison above under the FR regime uses constant

thresholds on the learned log posterior ratios (Fig. 3c,d). Us-
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ing learned dynamic thresholds (step two of Sec. 3.4) we

see consistent improvement on the average PPP required for

given error rate across all models (Fig. 4b), with more ben-

efit for the photopic classifier. Fig. 4c examines the PPP

histograms on CIFAR10 with constant (FR) versus dynamic

threshold (optimized FR). We see with constant thresholds

many decisions are made at the PPP cutoff of 220, so the

median and the mean are vastly different. Learning dynamic

thresholds reduces the variance of the PPP but make the me-

dian longer. This is ok because the Bayes risk objective

(Eq. 5) concerns the average PPP, not the median. Clearly

which threshold to use depends on whether the median or

the mean is more important to the application.

4.4. Sensitivity to sensor noise

How robust is the speedup observed in Sec. 4.3 affected

by sensor noise? For MNIST and CIFAR10, we take Wald-

Net and vary independently the dark current, the read noise,

the fixed pattern noise and a rotational jitter noise where a

random rotation parameterized by σθ is applied per unit time

(details in Sec. A.7).

First, the effect of dark current and fixed pattern noise

is minimal. Even an 11% dark current (i.e. photon emis-

sion rate of the darkest pixel is 10% of that of the brightest

pixel) merely doubles the exposure time with little loss in

accuracy. The multiplicative fixed pattern noise does not af-

fect performance because WaldNet in general makes use of

very few photons. Second, current industry standard of read

noise (σr = 22% [12]) guarantees no performance loss for

MNIST and minor loss for CIFAR10, suggesting the need for

improvement in both the algorithm and the photon-counting

sensors. The fact that σr = 50% hurts performance also

suggests that single-photon resolution is vital for scotopic

vision. Lastly, while WaldNet provides certain tolerance to

rotational jitter, drastic movement (22◦ at 220 PPP) could

cause significant drop in performance, suggesting that fu-

ture scotopic recognition systems and photon-counting sen-

sors should not ignore camera / object motion.

4.5. Efficiency of spiking implementation

Finally, we inspect the power efficiency of the spiking

network implementation (Eq. 8) on the MNIST dataset. We

assume that a photon-counting sensor observes a photon

stream totalling 22 PPP, and reports 100 binarized “images”

of photon arrival events (i.e. at .22 PPP / frame). Our refer-

ence implementation (“Continuous”) runs a ConvNet from

end-to-end every time a binary image arrives. The spik-

ing implementations employ a discretization threshold τdis
(Sec. 3.6) that is common across all layers. As a proxy for

power efficiency we use the number of multiplications and

additions (MultAdds) [29], normalized by the MultAdds of

running the baseline throughout the whole duration.

The power vs accuracy tradeoff results in Fig. 6a,b sug-

gest that the discretization threshold is optimal near τdis =
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Figure 6. “Energy” and accuracy tradeoff of the spiking recur-

rent neural network implementation on MNIST. a) Error rates

of spiking networks with different discretization thresholds τdis
(Eq. 8) against the MultAdds (normalized) running in FR mode.

b) MultAdds per frame (normalized) as a function of time / PPP.

Numbers inset represent the cumulative percentage of MultAdds of

the network running in INT mode till PPP= 22 (normalized).

0.2, where the spiking implementation is 2 − 3× more effi-

cient than the continuous implementation at equal error rate

in FR mode (Fig. 6a). Fig. 6b suggests that the spiking im-

plementation becomes increasingly more efficient over time

as the network’s signals become more stable, and the spiking

implementation with τdis = 0.2 is 5× more efficient than the

baseline in INT mode.

5. Discussion and Conclusions

We study the important yet relatively unexplored prob-

lem of scotopic visual recognition, where the available light

is low or expensive to acquire, and image capture is more

lengthy / costly than computation. In this regime vision com-

putations should start as soon as the shutter is opened, and

algorithms should be designed to process photons as soon as

they hit the photoreceptors.

We proposed WaldNet, a model that combines photon ar-

rival events over time to form a coherent probabilistic inter-

pretation, and make a decision as soon as sufficient evidence

has been collected. The proposed algorithm may be imple-

mented by a deep feed-forward network similar to a con-

volutional network. Despite the similarity of architectures,

we see clear advantages of approaches developed specifi-

cally for the scotopic environment. An experimental com-

parison between WaldNet and models of the conventional

kind, such as photopic approaches retrofitted to lowlight im-

ages and ensemble-based approaches agnostic of lowlight

image statistics, shows large performance differences, both

in terms of model parsimony and response time (measured

by the amount of photons required for decision at desired

accuracy). WaldNet further allows for a flexible tradeoff be-

tween energy / computational efficiency with accuracy when

implemented as a recurrent spiking network. When trained

assuming a constant illuminance, WaldNet may be applied in

environments with varying and unknown illuminance levels.

Finally, despite relying only on few photons for decisions,

WaldNet is minimally affected by camera noises, making it

ideal for integration with the evolving lowlight sensors.
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