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Abstract

In recent years, both online retail and video hosting ser-

vice have been exponentially grown. In this paper, a novel

deep neural network, called AsymNet, is proposed to ex-

plore a new cross-domain task, Video2Shop, targeting for

matching clothes appeared in videos to the exactly same

items in online shops. For the image side, well-established

methods are used to detect and extract features for cloth-

ing patches with arbitrary sizes. For the video side, deep

visual features are extracted from detected object region-

s in each frame, and further fed into a Long Short-Term

Memory (LSTM) framework for sequence modeling, which

captures the temporal dynamics in videos. To conduct ex-

act matching between videos and online shopping images,

LSTM hidden states for videos and image features extracted

from static images are jointly modeled, under the similarity

network with reconfigurable deep tree structure. Moreover,

an approximate training method is proposed to achieve the

efficiency when training. Extensive experiments conducted

on a large cross-domain dataset have demonstrated the ef-

fectiveness and efficiency of the proposed AsymNet, which

outperforms the state-of-the-art methods.

1. Introduction

With the exponential growth of e-commerce, online

clothing shopping becomes more and more popular, which

takes up a significant portion of the retail. Driven by the

huge profit potential, clothing item retrieval has been re-

ceived a great deal of attention in multimedia and comput-

er vision communities. Meanwhile, online video streaming

service becomes increasingly popular. When watching idol

drama or TV shows, such as Korean TV drama My Love

From the Star, where beautiful girls wear fashion clothes,

the viewers, especially the females, are more easily attract-

ed by those beautiful clothes and stimulated to buy the i-

dentical ones shown in the video. In this paper, we consid-

er a new scenario of such online clothing shopping, called

Video2Shop: finding the clothes appeared in videos to the

identical items in online shops.

Although the street-to-shop clothing matching has been

explored previously [9, 10, 16, 25, 29], which searches the

online clothing by street fashion photos, finding clothes ap-

peared in videos to the exactly same items in online shop-

s has not been well studied yet. The diverse appearance

of clothes, cluttered background, viewpoint change, occlu-

sion, different light condition and motion blur in videos,

make Video2Shop a challenging task. More specifically, the

clothing items appeared in videos and online shopping web-

sites demonstrate significant visual discrepancy. On one

hand, the clothes in the videos are usually captured from

different viewpoints (from front, side or back), which lead

to great varieties in visual appearance. The complex scenes

and common motion blur in videos make the situation even

worse. On the other hand, the online clothing images are

not always with clean background, since the clothes are of-

ten worn by fashion models in outdoor scenes to show the

real wearing effect. The cluttered background imposes dif-

ficulties for clothing localization and analysis. These prob-

lems make the Vidoe2Shop task more challenging than the

street-to-shop search.

The architecture of the proposed deep neural network,

AsymNet, is illustrated in Fig. 1. When users watch videos

through web pages or set-top box devices, the system will

retrieve the exactly matched clothing items from online

shops and return them to the users. Clothing detector is

first deployed for both video side and image side, to ex-

tract a set of proposals (clothing patches) to identify the

potential clothing regions, eliminating the impact of back-

ground regions and leading to more accurate clothing lo-

calization. For videos, clothing tracker is then conducted to

generate clothing trajectories from extracted clothing patch-

es, which contain the same clothing items appeared in con-

tinuous frames. Intuitively, the clothing patches with in-

consistent viewpoints can be preserved. Due to the promis-

ing performance and stability, Faster-RCNN [22] and Ker-

nelized Correlation Filters (KCF) tracker [8] are adopted

in this paper as the clothing detector and clothing tracker,

respectively. Deep visual features are generated for shop-

ping images and clothing trajectories in videos, which are

achieved with image feature network (IFN) and video fea-
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Figure 1. Framework of the proposed AsymNet. After clothing detection and tracking, deep visual features are generated by image feature

network (IFN) and video feature network (VFN), respectively. They are then fed into the similarity network to perform pair-wise matching.

ture network (VFN), respectively. For videos, deep visual

features are further fed into a Long Short-Term Memory

(LSTM) framework [4] for sequence modeling, which cap-

tures the temporal dynamics in videos. Then the problem of

Video2Shop is formulated as an asymmetric (multiple-to-

single) matching problem, i.e., exact matching a sequence

of clothes appeared in videos to a single online shopping

clothing. These features are then fed into the similarity net-

work to perform pair-wise matching between clothing re-

gions from videos and shopping images, in which a recon-

figurable deep tree structure is proposed to automatically

learn the fusion strategy. The top ranked results are then

returned to users.

The main contributions of the proposed work are sum-

marized as follows:
• A novel deep-based network, AsymNet, is proposed

for cross-domain Video2Shop application, which is for-

mulated as an asymmetric (multiple-to-single) matching

problem. It mainly consists of two components: im-

age/video feature representation and similarity measure.

• To conduct exact matching, LSTM hidden states for

clothing trajectories in videos, and image features ex-

tracted from online shopping images, are jointly modeled

under the similarity network with a reconfigurable deep

tree structure.

• To train AsymNet, an approximate training method is

proposed to improve the training efficiency. The pro-

posed method can handle large-scale online search.

• Experiments have been conducted on the first and the

largest Video2Shop dataset, which consists of 26,352

clothing trajectories in videos and 85,677 clothing shop-

ping images. Experiments demonstrate the effectiveness

of the proposed method, which outperforms the state-of-

the-art approaches.

The rest of our paper is organized as follows: related

works are first reviewed in Section 2. The details of feature

extraction networks and similarity networks are elaborated

in Sections 3 and 4, respectively. The approximate training

of the network is presented in Section 5. Finally, experi-

ments are introduced in Section 6.

2. Related Work

2.1. Clothing Retrieval

Clothing retrieval has wide applicability for commercial

systems. Extensive efforts have been focused on similar

clothing retrieval [1, 2, 3, 10, 15, 18, 19] and exactly same

clothing retrieval [16, 25].

For similar clothing retrieval, clothing recognition and

segmentation techniques are used in [15, 18] to retrieve sim-

ilar clothing. In order to tackle the domain discrepancy be-

tween street photos and shop photos, sparse representations

are utilized in [19]. With the adoption of deep learning,

an attribute-aware fashion-related retrieval system is pro-

posed in [10]. A convolutional neural network using the

contrastive loss is proposed in [1] to learn the visual sim-

ilarity between products. Based on the Siamese network,

a Dual Attribute-aware Ranking Network (DARN) is pro-

posed in [9] to retrieve the similar clothing.

For exactly same clothing retrieval, exact matching street

clothing photos in online shops is firstly explored in [16].

A robust deep feature representation is learned in [25] to

bridge the domain gap between the street and shopping im-

ages. A new deep model, namely FashionNet, is proposed

in [20], which learns clothing features by jointly predicting

clothing attributes and land-marks. Despite recent advances

in exact street-to-shop retrieval, there are few studies fo-

cused specifically on exact matching clothes in videos to

online shops.

2.2. Deep Similarity Learning

As deep convolutional neural networks are becoming

ubiquitous, there has been growing interest in similarity

4049



learning with deep models [1, 6, 20, 26, 28]. Several con-

volutional neural networks are proposed for image patch-

matching [6, 26, 28]. For object retrieval, an neural net-

work with contrastive loss function is designed in [1]. A

novel Deep Fashion Network architecture is proposed in

[20] for efficient similarity retrieval. These techniques are

coupled with either pre-defined distance functions or multi-

layer neural networks to learn the similarity. Inspired by

these works, we propose a tree structure similarity learning

network to match clothes appeared in videos to the exactly

same items in online shops.

3. Representation Learning Networks

When clothing regions are detected in images and then

tracked into clothing trajectories for videos, feature extrac-

tion networks are then conducted to obtain the deep fea-

tures.

3.1. Image Representation Learning Network

Image Feature Network (IFN) is implemented based on

VGG16 [24], in which the input image patches are scaled to

256x256 and then cropped to a random 227x227 region, so

that it meets the output requirement for the last convolution-

al layer. In our Video2Shop matching task, Faster-RCNN

[22] is adopted to detect clothing regions in shopping im-

ages. Unfortunately, the detected clothing regions are with

arbitrary sizes, which violate the requirement of the input

size. Enlightened by the idea of recently proposed spatial

pyramid pooling (SPP) architecture [7], which pools fea-

tures in arbitrary regions to generate fixed-length represen-

tations, a spatial pyramid pooling layer is inserted between

the convolutional layers and the fully-connected layers of

the network, as shown in Fig. 2. It aggregates features of

the last convolutional layer through spatial pooling, so that

the size of the pooling regions is independent of the size of

the input.

3.2. Video Representation Learning Network

Video Feature Network (VFN) is illustrated in Fig. 1.

For videos, the aforementioned Image Feature Network

(IFN) is also used to extract convolutional features. Since

the temporal dynamics exist in videos, traditional average

pooling strategy becomes invalid. Recurrent Neural Net-

work (RNN) [4] is a perfect choice to solve this problem.

Recently, due to its long short-term memory capability for

modeling sequential data, Long Short-Term Memory (L-

STM) [4] has been successfully applied to a variety of se-

quence modeling tasks. In this paper, it is chosen to charac-

terize the clothing trajectories in videos.

Based on the LSTM unit proposed in [27], a typical L-

STM unit consists of an input gate it, a forget gate ft, an

output gate ot, as well as a candidate cell state gt. The in-

teraction between states and gates along the time dimension

Figure 2. The Architecture of Image Feature Network

is defined as follows:
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ct = ft ⊙ ct−1 + it ⊙ gt, (1)

ht = ot ⊙ tanh (ct) .

Here, ct encodes the cell state, ht encodes the hidden state,

and mt is the convolutional feature generated by Image Fea-

ture Network. The operator ⊙ represents element-wise mul-

tiplication. Given convolutional features M(m1, ...,mn) of

a clothing trajectory in videos, a single LSTM computes a

sequence of hidden states (h1, ..., hn). Further, we find that

the temporal variety cannot be fully learned by a single L-

STM, so we stack LSTM network to further increase the

discriminative ability of the network, by using the hidden

units from one layer as the inputs for the next layer. Af-

ter experimental validation, a two-level LSTM network is

utilized in this work.

4. Similarity Learning Networks

4.1. Motivation

To conduct pair-wise similarity measure between cloth-

ing trajectories from videos and shopping images, a simi-

larity network is proposed. The inputs are several LSTM

hidden states (h1, h2, ..., hn) from Video Feature Network

and a convolutional feature m∗ from Image Feature Net-

work. The output is a similarity score sg . This problem is

formulated as an asymmetric (multiple-to-single) matching

problem. Traditionally, this problem is solved by conduct-

ing average or max pooling on whole clothing trajectories to

obtain the global similarity or directly select the similarity

of the last one in trajectories. More recently, a key volume

detection method [30] is proposed to solve the similar prob-

lem. However, these methods will fail in our Video2Shop

application due to the large variability and complexity of

video data. The average or max values cannot completely

represent the clothing trajectory. Although key volume is

able to learn the most critical parts, it is still too simple to

solve this task.

Based on the statistical theory [11, 14], these learning

problems are formulated as a mixture estimation problem,
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which attacks a complex problem by dividing it into simpler

problems whose solutions can be combined to yield a solu-

tion to the complex problem. Enlightened by this idea, we

novelly extend the generalized mixture expert model to Re-

current Neural Networks, and modify the strategy of mix-

ture estimation to gain a global similarity. The proposed ap-

proach attempts to allocate fusion nodes to summarize the

single similarity located in different viewpoints.

4.2. Network Structure

Because there are multiple inputs and only one output,

a tree structure is proposed to automatically adjust the fu-

sion strategy, which is illustrated in Fig. 1. There are two

types of nodes involved in the tree structure, i.e., similarity

network node (SNN) and fusion node (FN), corresponding

to the leaves and the branches in the tree. The similarity

network node acts as the leaves of the tree, which calcu-

lates the similarity between a single LSTM hidden state and

a convolutional feature. After that, these results are passed

to fusion nodes, which generate a scalar output controlling

the weight of similarity fusion. These fusion nodes will be

passed layer by layer to fuse the results of internal results.

In this work, a five-layer structure is adopted. Finally, a final

global similarity will be given. Details of each substructure

are given as follows.

Similarity Network Node (SNN) To facilitate under-

standing, we will first introduce the one-to-one similarity

measure between a LSTM hidden state hi and a convolu-

tional feature m∗. As indicated in [16], cosine similarity is

too general to capture the underlying differences between

features. Therefore, the similarity between hi and m∗ is

modeled as a network with two fully-connected layers, de-

noted as the red dotted box shown in Fig. 1. Specifically, the

first two fully-connected layers have 256 (fc1) and 1 (fc2)

outputs, respectively. The output of the last fully-connected

layer for the i-th SNN is a real value zi. On the top of the

network, logistic regression is used to generate the similar-

ity yi between hi and m∗:

yi =
1

1 + e−zi
(2)

Fusion Node (FN) Since SNN is piece-wisely smoothed,

which is analogous to corresponding generalized linear

models (GLIM) [5]. Once the individual SNN is calculat-

ed, the fusion scores of all fusion nodes will be generated

with a a tree-like structure. In this network, multiple low-

level fusion nodes are connected to a higher-level fusion n-

ode, which forms a tree-like structure. For simplicity, here

we use a 2-level structure (in Fig. 1) as an example. The

low-level fusion nodes refer to the leaves while the top-level

is the side of the root. For a low-level fusion node FNij ,

which indicates the i-th low-level node connecting to the j-

th neighboring top-level node, an intermediate variable εij
is defined as:

εij = vij
T (xij) (3)

where vij is the parameters of this FN and xij is the feature

vector from the fc1 layer of corresponding SSN. Here, each

low-level fusion node is connected to a specific SNN. The

output of the low-level fusion node gij is a weighted score

normalized by the scores of all fusion nodes connecting to

the same top-level fusion node:

gij =
eεi,j

∑

i e
εi,j

(4)

Similarly, for the top-level fusion node FNj , an interme-

diate variable εj is computed as: εj = vj
T (xj), where xj

is an average pooling vector from multiple low-level fusion

nodes, which are connected to FNj , vj is the parameters of

this fusion node. The fusion score gj is normalized by the

scores of all top-level fusion nodes as: gj = e
εj

∑
j
e
εj . With

such a tree structure, for each mini-batch, the parameters of

fusion nodes are updated in the forward pass. Once the sim-

ilarity network converges, the fusion strategy is obtained.

4.3. Learning Algorithm

In this subsection, we will introduce the learning method

of our similarity network. The learning is implemented in

a two-step iteration approach, where similar network nodes

and fusion nodes will be mutually enhanced. The feature

representation network and similar network nodes are first

learned, and then the fusion nodes are learned when similar

network nodes are fixed.

Learning of Similarity Network Node: The learning

problem of SNN is formulated as minimizing a Logarithmic

Loss. Suppose that we have N convolutional features from

the first fully-connected layer fc1 as X = {x1,x2, ...,xN}
and each has a label ŷk ∈ {0, 1}, where k ∈ [0, N ], and 0

means “does not match” while 1 denotes “matches”. The

loss function ▽(SNN) is defined as:

L =
1

N

N
∑

k=1

(ŷklog (yk)+(1− ŷk) log (1− yk))+λ ‖Wi‖
2

(5)

where Wi is the parameters of i-th SNN, yk is the output

of single similarity network with xk as the input, which is

defined in Eqn. 2.

Learning of Fusion Node: For a given mini-batch feature

set of the fc1 layer, when SNN is fixed, the global similarity

sg can be defined as the mixture of the similarity of each

SNN:

p(sg) =
∑

j

gj
∑

i

gijpi(y) (6)
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where p(s) and pi(y) are similarities of global and i-th

SNN. gj and gij are the fusion scores of higher and low-

level fusion nodes. The meaning of the Eqn. 6 is that the

similarity of all similar network nodes are passed to multi-

ply layers of fusion nodes to generate the results of global

similarity.

In order to implement the learning algorithms of Eqn. 6,

the posterior probabilities of fusion nodes are defined. The

fusion scores of top-level gj and low-level gij are referred

as prior probabilities, since they are computed without the

knowledge of corresponding output of SNN yi (as calculat-

ed in Eqn. 3 and Eqn. 4). With Bayes’ rule, the posterior

probabilities at the top-level fusion nodes and low-level n-

odes are denoted as follows:

hj =
gj

∑

i gijpi(y)
∑

j gj
∑

i gijpi(y)
(7)

and

hij =
gijpi(y)

∑

i gijpij(y)
(8)

With these posterior probabilities, a gradient descent learn-

ing algorithm is developed for Eqn. 6. The log likelihood

function of a training sample is obtained as:

l = ln
∑

j

gj
∑

i

gijpi(y) (9)

In this case, by differentiating l with respect to the param-

eters, the following gradient descent learning rules for the

parameters of top-level and low-level fusion nodes are ob-

tained as:

▽ vj = α(hj − gj)xj
(t) (10)

▽ vij = αhj(hij − gij)xij (11)

where α is a learning rate. vj and vij are the parameters of

high-level and low-level fusion nodes, respectively. These

equations denote a batch learning algorithm to train fusion

nodes (i.e. tree structure). To form a deeper tree, each SNN

is expanded recursively into a fusion node and a set of sub-

SNN networks. In our experiment, we have five-level deep

tree structure and the number of fusion nodes in each level

is 32, 16, 8, 4, 2, respectively.

5. Approximate Training

Intuitively, to achieve good performance, different mod-

els should be trained independently for different clothing

categories. To achieve this goal, a general AsymNet is first

trained, followed by fine-tuning for each clothing category

to achieve category specific models. There are 14 models

to be trained. In this section, we will introduce the approxi-

mate training of AsymNet.

To train a robust model, millions of training samples are

usually needed. It is extremely time-consuming to train the

Algorithm 1 Approximate Training Method.

Input: An AsymNet containing IFN, VFN and SNN, LST-

M hidden states L, Convolutional features C.

Output: AsymNet

1: Sample N clothing trajectories;

2: Get the L=net foward(VFN), C=net foward(IFN);

3: Copy L 2× S times as L̂, sent C and L̂ to SNN;

4: Train SNN and compute ▽(SNN) as Eqn. 5;

5: Compute hi and hij as Eqn. 7-8;

6: Train fusion nodes as Eqn. 10-11;

7: Train IFN using ▽(SNN);
8: Train VFT using ▽(V FNu) as Eqn. 12;

AsymNet using traditional training strategy. Based on an

intrinsic property of this application, that is, many positive

and negative samples (i.e. shopping clothes) share the same

clothing trajectories in the training stage, an efficient train-

ing method is proposed, which is summarized in Alg. 1.

Assume that the batch size of training is N and 2 × S

shopping images are sampled for a trajectory, where the

numbers of positives and negatives are equal to S. In total,

we have N clothing trajectories of videos and 2 × S × N

clothing shopping images in each batch. To accelerate the

similarity network training, the LSTM hidden states of N

trajectories are copied 2 × S times and sent them to the

similarity network. To train the video feature networks, the

gradient of clothing trajectory can be approximated as:

▽ (V FN) =
1

2× S
▽ (SNN) (12)

Meanwhile, the gradient of image feature networks is

▽(SNN) as defined in Eqn. 5.

6. Experiment

In this section, we will evaluate the performance of indi-

vidual component of AsymNet, and compare the proposed

method with the state-of-the-art approaches.

6.1. Dataset and Metrics

Without proper datasets available for Video2Shop appli-

cation, we collect a new dataset to evaluate the performance

of identical clothing retrieval through videos. To the best

of our knowledge, this is the first and the largest dataset for

Video2Shop application. There are a number of online s-

tores in e-commerce websites Tmall.com and Taobao.com,

which sell the same styles of clothes appeared in movies,

TV and variety shows. Accordingly, the videos and corre-

sponding online clothing images are also posted on these

stores. We download these videos from Tmall MagicBox, a

set-top-box device from Alibaba Group, and the shots con-

taining the corresponding clothes are manually extracted as
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Figure 3. Performance Comparison of Representation Networks

the clothing trajectories. In total, there are 85,677 online

clothing shopping images from 14 categories, 26,352 cloth-

ing trajectories extracted from 526 videos, and 39,479 exact

matching pairs. The dataset information is listed in Table 1.

We also collect similar matching pairs for the evaluation of

similar retrieval algorithms.

In order to train the clothing detector, 14 categories of

clothes are manually labeled, in which 2000 positive sam-

ples are collected per category from online images. Faster-

RCNN [22] is utilized as the clothing detector, and the

clothing trajectories are generated by Kernelized Correla-

tion Filters (KCF) tracker [8]. The parameters used in

Faster-RCNN and KCF are the same as the original version.

Duplicate clothing trajectories are removed. Each clothing

trajectory in our dataset is linked to exactly matched cloth-

ing images and they are manually verified by annotators,

which form the ground truth. With an approximate ratio

of 4:1, these exact matching video-to-shop pairs are split

into two disjoint sets (training and testing sets), which are

non-overlapped. Meanwhile, in order to reduce the impact

of background and lead to more accurate clothing localiza-

tion. Faster-RCNN is also used to extract a set of clothing

proposals for online shopping images.

Evaluation Measure: Since the category is assumed to

be known in advance, the experiments are performed with-

in the category. Followed by the evaluation criterion of

[16, 25], the retrieval performance is evaluated based on

top-k accuracy, which is the ratio of correct matches with-

in the top k returned results. Notice that once there is at

least one exactly same product among the top 5 results as

the query, which is regarded as a correct match in our setup.

For simplicity, the weighted average is used for evaluation.

6.2. Performance of Representation Networks

In this subsection, we compare the performance of rep-

resentation networks with other baselines. 1) Average pool-

ing, 2) Max pooling, 3) Fisher Vector [21] and 4) VLAD

[12]. We utilize 256 components for Fisher vectors and 256

centers for VLAD as common choices in [12, 23]. The P-

CA projections, GMM components of Fisher vectors, and

K-means centers of VLAD are learned from approximate-

ly 18,000 sampled clothing regions in the training set. For

these baselines, average pooling and max pooling are direct-

ly used on the CNN features of clothing trajectories. Fisher

vector and VLAD are used to encode the CNN features of

shopping images and clothing trajectories, respectively. The

similarity is then estimated by single similarity network. In

addition, the impact of different levels (1, 3 and 4 levels)

of LSTM network is also investigated, denoted as LSTM1,

LSTM3 and LSTM4, respectively. For LSTM based net-

works, the final output from the similarity feature network

is used as the final matching result. The performance com-

parison is shown in Fig. 3.

From Fig. 3, we can see that the general performance

is increased as k becomes larger, which means that it will

be treated as a correct match once there is at least one ex-

actly same item with the top k returned results. But we

can also noticed that the performance of top 10 is still far

from satisfactory, since it still a challenging task to match

clothes appeared in videos to the online shopping images.

There exists significant discrepancy between these cross-

domain sources, including diverse visual appearance, clut-

tered background, occlusion, light condition, motion blur in

the video, and so on.

The performance of average pooling is better than max

pooling. Both Fisher Vector and VLAD have better perfor-

mance than the average pooling representation. VLAD has

slightly better performance than Fisher Vector. Overall, all

LSTM based networks outperform pooling based method-

s. The proposed AsymNet achieves the best performance,

which has significantly better performance than the other

two pooling approaches. As the increase of the levels of L-

STM network, the performance is firstly increased and then

dropped when the number of levels is more than two. Our

AsymNet adopts the two-level LSTM structure.

6.3. Structure Selection of Similarity Network

To investigate the structure of similarity network, we

vary the number of levels and the fusion nodes in similari-

ty network, while keeping all other common settings fixed.

We evaluate two types of architectures: 1) Homogeneous

branches: all fusion nodes have the same number of branch-

es; 2) Varying branches: the number of branches is incon-

sistent across layers. For homogeneous setting, one-level

flat structure with 32 fusion nodes to hierarchical structure

with five levels (62 fusion nodes) are tested. For the varying

temporal branches, we compare six networks with branch-

es in increasing order: 4-8, 2-4-4, 2-2-2-4 and decreasing

order: 8-4, 4-4-2, 4-2-2-2, respectively.

The performance of these architectures is shown in Fig.

4, in which the structure is represented in the form: #Lev-

el:#Branches in each level from leaves to root of the tree,

connected with hyphen. From this figure, we can see that

the overall performance is significantly improved as the
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Figure 4. The top-20 retrieval accuracy (%) of the proposed Asym-

Net with different structures.

number of epoch increases. As the training proceeds, the

parameters in the fusion nodes begin to grow in magnitude,

which means that the weights of fusion nodes are becoming

more and more reasonable. Meanwhile, the performance

is significantly improved as the number of epoch increas-

es. However, the improvement is not obvious after 4 e-

pochs, since the weights of fusion nodes tend to be stable.

The weight adjustment becomes subtle because the overall

weights are optimized.

When one-level flat structure is adopted, it only has the

leaves in the tree structure. The entire similarity network

is reduced to a single averaged generalized linear models at

the root of the tree. As the training proceeds, the parame-

ters in the fusion nodes begin to grow in magnitude. When

the fusion notes begin to take action, the performance of the

system is boosted. We also notice that the general perfor-

mance is increased when more levels of fusion nodes are in-

volved. The boosting is pretty conspicuous for the first three

layers. The improvement becomes minor when multi-level

structure is formed. It indicates that the similar network be-

comes stable when the levels of fusion nodes are more than

three.

6.4. Performance of Similarity Learning Network

In order to verify the effectiveness of our similarity net-

work, we compare the performance of the proposed method

with other methods when fusion nodes are not included.

These baselines include: the final matching result is deter-

mined by the average (Avg) and the maximum (Max) of all

similar networks, or the last (Last) similar network. In addi-

tion, the latest work KVM [30] is also considered, in which

the key volume proposal method used in KVM is directly

utilized to fuse the fc1 features in SNN. We formulate the

similarity learning task as a binary classification problem.

With that, the same loss function in KVM can still be used.

The top-20 retrieval performance comparison is shown

in Fig. 5. From this figure, we can see that the performance

of Avg is better than Max. Last has better performance than

Avg and Max. The main reason is that the last hidden s-

tates learn the whole temporal information in the clothing

Figure 5. Performance of Similarity Learning Network

trajectories. The noise in clothing trajectories affects the

performance of Avg and Max greatly. KVM considers the

discriminative information may occur sparsity in a few key

volumes, while other volumes are irrelevant to the final re-

sult. Although KVM is able to learn the most critical parts

from clothing trajectories, it is too simple to consider the

whole trajectory, in which different local viewpoints in tra-

jectory are not well considered. The proposed AsymNet

outperforms these baselines, which has significantly higher

performance.

6.5. Comparison With Stateoftheart Approaches

To verify the effectiveness of the proposed AsymNet,

we compare it with the following the state-of-the-art ap-

proaches: 1) AlexNet (AL) [17]: the activations of the

fully-connected layer fc6 (4,096-d) are used to form the

feature representation. 2) Deep Search (DS) [10]: it is

an attribute-aware fashion-related retrieval system based on

convolutional neural network. 3) F.T. Similarity (FT) [16]:

category-specific two-layer neural networks are trained to

predict whether two features extracted by the AlexNet rep-

resent the same product item. 4) Contrastive & Softmax

(CS) [1]: it is based on the Siamese Network, where the tra-

ditional contrastive loss function and softmax loss function

are used. 5) Robust contrastive loss (RC) [25]: multi-task

fine-tuning is adopted, in which the loss is the combina-

tion of contrastive and softmax. For clothing trajectories in

videos, we calculate the average similarity to gain the most

similar shopping images. The cosine similarity is used for

all these methods except FT.

The detailed performance comparison is listed in Table

1. AsymNet achieves the best performance for top-20 re-

trieval accuracy. It significantly outperforms AlexNet, in

which the performance is almost doubled. The performance

of AlexNet [17] and Deep Search [10] is unsatisfactory,

which only use the convolutional features to retrieve im-

ages and do not learn the underlying similarity, The per-

formance of two contrastive based methods (CS [1] & RC

[25]) are slightly better than FT [16], since contrastive loss

has a stronger capability to identify minor differences. RC

has better performance than CS because it exploits the cat-

egory information of clothing. For some categories having
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Table 1. The top-20 retrieval accuracy (%) of the proposed AsymNet compared with state-of-the-art approaches. The notations represent

the numbers of images (# I), video trajectories (# TJ), queries (# Q) and its corresponding results (# R).

Category # I # TJ # Q # R AL [17] DS [10] FT [16] CS [1] RC [25] AsymNet

Outwear 18,144 5,581 1,116 3,628 17.31 22.94 26.97 27.61 31.80 42.58

Dress 14,128 4,346 869 2,825 22.93 24.90 25.56 29.33 34.34 49.58

Top 7,155 2,201 440 1,431 17.45 24.83 25.26 29.14 32.94 35.12

Mini skirt 6,571 2,021 404 1,314 23.35 24.83 27.47 29.50 31.30 32.48

Hat 6,534 2,010 402 1,306 15.82 13.98 20.19 25.87 33.81 35.12

Sunglass 6,133 1,886 377 1,226 11.85 7.46 11.35 11.83 12.26 12.16

Bag 5,257 1,617 323 1,051 23.78 27.63 27.47 25.67 25.48 36.82

Skirt 4,453 1,370 274 890 19.79 25.06 22.44 24.50 24.43 41.75

Suit 3,906 1,201 240 781 18.65 25.18 19.72 25.29 26.60 42.08

Shoes 3,358 1,033 206 671 11.45 24.10 23.92 25.03 27.58 26.95

Shorts 3,249 999 199 649 11.15 5.99 13.90 14.84 16.62 13.74

Pants 2,738 842 168 547 17.57 22.54 25.77 29.49 28.36 32.13

Breeches 2,044 628 125 408 23.45 22.99 25.03 28.52 28.76 48.28

High shoots 2,007 617 123 401 12.05 13.11 14.57 15.46 16.04 14.94

Overall 85,677 26,352 5,266 17,128 18.36 21.44 23.47 25.73 28.73 36.63

Figure 6. Example with top-5 retrieval results of the proposed

AsymNet. The difference in terms of detailed decorative patterns

are labelled with red boxes.

no obvious difference in clothing trajectories, RC performs

slightly better than AsymNet. Overall, our proposed ap-

proach demonstrates clearly better performance than these

approaches. This is mainly because AsymNet can handle

the temporal dynamic variety existing in videos, and it inte-

grates discriminative information of video frames by auto-

matically adjusting the fusion strategy.

Three examples with top-5 retrieval results of the pro-

posed AsymNet are illustrated in Fig. 6, where the exact

matches are marked with green tick. Relatively, it is easier

to obtain the visually similar clothes, but it is much chal-

lenging to obtain the identical ones, especially the query is

from videos. For the first two rows, these returned results

are visually similar. However, some detailed decorative pat-

terns are different, which are labelled with red boxes. In the

last row, although the clothing style is the same, the color is

different, so it will not be treated as the correct match.

6.6. Efficiency

To investigate the efficiency of the approximate training

method, we compare it with traditional training procedure.

All these experiments are conducted on a server with 24 In-

tel(R) Xeon(R) E5-2630 2.30GHz CPU, 64GB RAM and

one NVIDIA K20 Tesla Graphic GPUs. In our experiment,

only one sample is performed in inference, the image fea-

ture network processes 200 images/sec. The video feature

network conducts 0.5 trajectories/sec and the similarity net-

work performs 345 pairs/sec. The computation can be fur-

ther pipelined and distributed for large-scale applications.

The approximate training only costs 1/25 of the training

time of traditional way. Meanwhile, the effectiveness of

AsymNet is not influenced with the approximate training

method. The training of our AsymNet model only takes

around 12 hours to converge.

7. Conclusion

In this paper, a novel deep neural network, AsymNet is

proposed to exact match clothes in videos to online shop-

s. The challenge of this task lies in the discrepancy exist-

ing in cross-domain sources between clothing trajectories in

videos and online shopping images, and the strict require-

ment of exact matching. This work is the first exploration of

Video2Shop application. In our future work, we will inte-

grate clothing attributes to further improve the performance.
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[4] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio.

On the properties of neural machine translation: Encoder-

decoder approaches. arXiv, 2014.

[5] G. Enderlein. Mccullagh, p., j. a. nelder: Generalized linear

models. chapman and hall london new york 1983, 261 s.,

16,. Biometrical Journal, 29(2):206–206, 1987.

[6] X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.

Matchnet: unifying feature and metric learning for patch-

based matching. In CVPR, pages 3279–3286, 2015.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pool-

ing in deep convolutional networks for visual recognition.

TPAMI, 37(9):1904–1916, 2015.

[8] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015.

[9] J. Huang, R. S. Feris, Q. Chen, and S. Yan. Cross-domain

image retrieval with a dual attribute-aware ranking network.

In ICCV, pages 1062–1070, 2015.

[10] J. Huang, W. Xia, and S. Yan. Deep search with attribute-

aware deep network. In ACM MM, pages 731–732. ACM,

2014.

[11] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hin-

ton. Adaptive mixtures of local experts. Neural Computa-

tion, 3(1):79–87, 1991.

[12] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating
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