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Abstract

We address zero-shot learning using a new manifold

alignment framework based on a localized multi-scale

transform on graphs. Our inference approach includes a

smoothness criterion for a function mapping nodes on a

graph (visual representation) onto a linear space (semantic

representation), which we optimize using multi-scale graph

wavelets. The robustness of the ensuing scheme allows us

to operate with automatically generated semantic annota-

tions, resulting in an algorithm that is entirely free of man-

ual supervision, and yet improves the state-of-the-art as

measured on benchmark datasets.

1. Introduction

Zero-shot learning (ZSL) aims to enable decisions about

unseen (target) classes by assuming a shared intermedi-

ate representation learned from a disjoint set of (source)

classes [17]. Early methods assumed ground truth (human

annotation) was available for intermediate representations

such as object attributes that can be inferred from an im-

age. More recently, methods have emerged that automati-

cally infer such an intermediate “semantic” representation.

Among these, some have cast the problem as joint align-

ment of the data using graph structures [10, 5] or directly

using regularized sparse representations [23, 15]. Most au-

tomatic methods, however, perform at levels insufficient to

support practical applications.

We propose a new alignment algorithm based on Spec-

tral Graph Wavelets (SGWs) [13], a multi-scale graph trans-

form that is localized in the vertex and spectral domains.

The nodes in our graph are visual features, for example

activations of a convolutional neural network or any other

“graph signal.” Such graph signals are considered an em-

bedding of semantic attributes in a linear space, automati-

cally computed using Word2Vec. Learning is based on the

assumption that nearby visual representations should pro-

duce similar semantic representations, which translates into

a smoothness criterion for the graph signal. Our approach is

performed in a transductive setting, using all unlabeled data

where the classification and learning process on the transfer

data is entirely unsupervised.

While our suggested approach is similar in scope to other

”visual-semantic alignment” methods (see [5, 10] and ref-

erences therein) it is, to the best of our knowledge, the first

to use multi-scale localized representations that respect the

global (non-flat) geometry of the data space and the fine-

scale structure of the local semantic representation. More-

over, learning the relationship between visual features and

semantic attributes is unified into a single process, whereas

in most ZSL approaches it is divided into a number of inde-

pendent steps [10].

Our tests show improvements on popular benchmarks

such as the Animals With Attributes (AWA) dataset, demon-

strating the ability of our approach to perform multi-scale

manifold alignment using only automated semantic fea-

tures. In addition we also demonstrate the robustness of our

regularization method on the CUB dataset showing state-of-

the-art results.

1.1. Related Work

Currently there are two main approaches in zero shot

learning. In the first, following [16], given semantic at-

tributes of a previously-unseen image during the test time,

one would like to classify an unseen image when its at-

tributes are given at the test time. In the second, the test at-

tributes are unknown; however, all the test images are avail-

able at test time, and one wishes to estimate the attributes

and to classify the test datum simultaneously. Among

the first, [27, 24, 28, 2] suggest learning a cross-domain

matching function to compare attributes and visual features.

Among the second, [10] propose a multi-view transduc-

tive approach through multi-view alignment using Canon-

ical Correlation Analysis, and the method in [15].

Several approaches for zero shot learning have been re-

cently proposed. These include kernel alignment with unsu-

pervised domain-invariant component analysis [11] which

addresses the problem from the multi-source domain gener-

alization point of view. It is an extension of Unsupervised
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Figure 1. High level overview of our approach for zero shot learn-

ing.

Domain-Invariant Component Analysis with centered ker-

nel alignment. Joint Latent Similarity Embedding [30] uses

a dictionary-learning based discriminative learning frame-

work to learn class-specific classifiers in both source and

target domain jointly. Synthesized Classifiers for zero-

shot learning [5] address the problem from the perspective

of manifold learning, introducing phantom object classes

which live between the low-level feature space and the se-

mantic space, resulting in a better aligned semantic space.

An important component of ZSL is the choice of at-

tributes. There are two types of semantic representations

typically used in ZSL: (i) Human-annotated attributes, and

(ii) Automatically-generated attributes.

Early methods, starting from [17], used human annota-

tion. Automatic annotation is clearly more practical, but

challenging to work with. Typically, the automatically-

generated attributes are Word2Vec outputs generated using

the skip-gram model trained on English Wikipedia articles

[20, 4].

Denoising-based alignment methods include [23], which

uses ℓ2,1 as an objective function. However, even using

deep learning features, the performance of automatic meth-

ods lags that of methods using manual annotation.

ZSL is closely related to transfer learning and domain

adaptation; we refer the reader to [12, 22, 9, 18] and refer-

ences therein for details.

Our regularization method is inspired by [8, 7], that re-

cently suggested a new framework for unsupervised mani-

fold denoising which is based on SGW [13]. However, our

approach is different in two ways from [8]: first, the task

in our case is to align the visual and semantic representa-

tions, and therefore our graph construction is different since

we use a graph attribute signal for the semantic representa-

tion, while in [8] the task is to remove noise in the manifold

coordinates, which are used as the graph signal, in order to

obtain a smooth manifold approximation. Second, we apply

a different regularization approach, which is better suited to

addressing complex manifolds which are not smooth every-

where. We employ this task by denoising all SGW bands

without using thresholds, thus avoiding loss of possibly im-

portant information which is discarded in [8, 7].

1.2. Summary of Contributions

We formalize ZSL as the problem of learning a map from

the data space X to a semantic descriptions Y (Sect. 3),

after making the underlying assumptions and the resulting

limitations explicit (Sec. 2).

Our first contribution is to cast the inference process as

imposing a differentiable structure on the map h : X → Y ,

supported on a discrete graph. To address this problem, we

use the multi-scale graph transform (Sect. 3.1), which al-

lows us to enforce global regularity without sacrificing local

structure.

Our second contribution is to perform such inference in

an integrated fashion (Sect. 3.2), which allows us to forgo

any manual annotation, even in the source (training) data

space. We avoid the independent steps followed by most

ZSL work, some of which require supervision, to arrive an

entirely automatic ZSL process.

Despite being entirely automatic, our ZSL approach

achieves state-of-the-art results on benchmark datasets

(Sect. 4.)

2. Problem Formulation and Model Assump-

tions

We call X the data or visual space (e.g. visual features),

Y the semantic or attribute space (e.g. words in the English

language), and Zs, Zt two disjoint class or label spaces (e.g.

different sets of labels). The subscript s denotes the source

(or sample, or training) set, and t denotes the target (or

transfer, or test) set.

More specifically, let {xi
s, z

i
s}

ns

i=1 be a sample, where

xi
s ∈ X,X ⊂ R

m is measured and zis ∈ Z is an observed

label in a set Z of cardinality cs, which we indicate with an

abuse of notation as zis ∈ {0, 1}
cs . Also, for each instance

i, let yi
s ∈ Y be its semantic representation, consisting of

D binary attributes Y = {0, 1}D (for instance, yi
s is the in-

dicator vector of a list of D words describing the datum xi
s).

It is also possible to consider yi as a vector of likelihoods,1

in which case Y ⊂ R
D
+ . The given training set consists of

the sample S = {(xi
s,y

i
s, z

i
s)}

ns

i=1.

Let {xj
t}

nt

j=1 be a test (or transfer) set with x
j
t ∈ X ,

with unknown semantic attributes y
j
t . We are interested in

classifying the test set into a different set of classes z
j
t ∈

Zt, where the set Zt is of cardinality ct, and disjoint from

Z: Z ∩ Zt = ∅. We assume that this can be done with a

classifier φ : X → Zt. However, the labels in the transfer

set are not given.

While one could just perform unsupervised learning on

X to cluster the test set into ct classes, ZSL breaks the prob-

lem into two: First, use the training set S to learn a map

1The k-th component of yi
s is the likelihood of attribute k describing

the datum x
i
s: yi

s[k] = ℓ
xi
s
(k) = P (xi

s|k).
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from X to Y , h : X → Y . Then, use the same h to map

points in the transfer set to attributes y
j
t

.
= h(xj

t ); finally,

perform unsupervised learning in Y , rather than X .

ZSL hinges on two assumptions: That the classifier for

the training set φ : X → Z;xi
s 7→ zis, has the composite

form φ(x) = g(h(x)), where g : Y → Z, and that the same

h can be applied to both the source and target sets. One can

then discard the component g of the trained classifier, and

perform unsupervised learning in the set {yj
t = h(xj

t )}
nt

j=1.

The assumptions above correspond to having a Markov

chain X → Y → {Z,Zt}, or equivalently that Y is a suffi-

cient statistic of X for Z. In other words, we are assuming

that, given the word representation, the image data tell us

nothing about the class.

The name of the game, therefore, is to craft the class of

functions so that the transferred one, h (sometimes improp-

erly called semantic ”projection” or ”embedding”), is rich.

Ideally, rich enough to yield a sufficient statistic of x for zs
and zt. The simplest choice is for all functions to be linear,

φ(x) = Wxx, g(y) = Sy and h(x) = Vx for suitable

matrices S,V and Wx = SV, as done in [24], even though

the space X is typically non-linear (not a vector space). At

the opposite end of the spectrum, specifying the function

h : X → Y requires defining its domain X , range Y and

map X → Y outside the sample set {xi
s}

ns

i=1, all of which

can be non-linear.

In our approach, we take an intermediate position,

whereby we assume that the training attribute space Y is

embedded in a linear space, through Word2Vec trained on

all English Wikipedia articles using the skip-gram neural

network model [20]. We then focus on X and h, with the

latter learned while acknowledging the intrinsically non-

linear nature of X , which is however not modified during

the learning procedure. In particular, we assume that X is a

smooth (but non-flat) manifold, and h is a smooth function

supported on it.

In Sect. 3 we describe how these smoothness assump-

tions arise, and show how they can be turned into a loss

function suitable for unsupervised learning.

3. Methodology

The criterion for learning the map h and its support space

X is that nearby points in X have similar attributes in Y ,

and that attributes in Y are sufficient to classify both in Zs

and Zt. Assuming a differentiable structure for X , this im-

plies smoothness for the map h. Unfortunately, we only

have the value of h on a discrete sample of X , so the goal

is to find a smooth manifold X and map h supported on it,

that are well ”aligned” with the training data.

To this end, consider a classifier in the original sample

space, φ, designed to minimize some loss function l : Zs ×
Zs → R

+; l(φ(xi
s), z

i
s) = l(g(h(xi

s)), z
i
s). Consider the

pre-image of zis via g, that is the set of all semantic attributes

that result in the same label: g−1(zis) = {y+ | g(y) = zis},
and a modified loss function ℓ : Y × Y → R defined by

ℓ(h(xi
s), g

−1(zis)) = l(g(h(xi
s), z

i
s) , ∀ i. (1)

The goal is to find h and g that minimize the expected loss,

with the expectation computed with respect to the variabil-

ity in X . Since the space X is not linear, and not known,

in addition to the usual regularization imposed on the maps

h, g, we also need to impose regularization on the space X ,

and infer it along with said maps. Finally, if we are given

true attributes, yi
s, we can replace them in the pre-image

g−1(zis) and solve

h,X = argmin

ns
∑

i=1

ℓ(h(xi
s),y

i
s) + ρh + ρX (2)

where ρh and ρX are regularizing functionals. However,

such attributes could have uncertainty or inconsistencies of

their own, for instance if they are obtained by some mea-

surement device rather than an oracle. Assuming that the

training data are noisy values computed at samples around

the manifold X , this problem can be naturally framed as the

alignment of a smooth Y -valued function on X . Samples

are represented as an attributed graph, in which the nodes

represent visual data xi’s, with weighted edges based on

their similarity, and the graph signal are the attributes yi’s

(semantic representations). We then have a Y -valued map

defined on X , which we learn from noisy samples using

regularization, adapted to the manifold domain.

Graph signal processing tools [26] are well-suited to ad-

dressing this problem: Once the graph is constructed, align-

ment is performed by regularization applied directly in the

Spectral Graph Wavelets domain [8]. This allows us to per-

form the alignment locally while taking into account the

global properties of the space.

The next section provides a brief overview of the graph

signal processing machinery needed to develop our ap-

proach in the following section.

3.1. Preliminaries

Consider a set of points x = {xi} , i = 1, ...N , xi ∈ R
m

which are sampled from an unknown manifold M . An undi-

rected, weighted graph G = (V,E) is constructed where V

corresponds to the nodes and E to the set of edges on the

graph. The adjacency matrix W = (wij) consists of the

weights wi,j between node i and node j. In this work, the

weights are chosen using the cosine similarity between the

vector observations:

Wij =

{

〈xi,xj〉
||xi||22||xj||22

if xj ∈ kNN(xi)

0 else
(3)

where 〈xi,xj〉 =
∑m

k=1 xik, xjk, xik is the scalar value in

the k dimension of the point xi.
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In order to characterize the global smoothness of a

function fr ∈ RN , we define its Graph Laplacian quadratic

form with respect to the graph as:

|| ▽ fr||
2 =

∑

V (i,j)

wij [fr(i)− fr(j)]
2 = fTr Lfr, (4)

where fr is the graph signal which correspond to an ar-

bitrary dimension r of the semantic representation y, and

L denotes the combinatorial graph Laplacian, defined as

L = D−W, with D the diagonal degree matrix with entries

dii = d(i). The degree d(i) of vertex i is defined as the sum

of weights of edges that are connected to i. The eigenval-

ues and eigenvectors of L are λ1, . . . , λN and u1, . . . , uN ,

respectively. Note that using the notation from the previ-

ous section we have that h(xi) = [f1(i), f2(i), ...fD(i)].
For a fixed dimension r, the graph signal of a fixed seman-

tic representation (e.g, semantic representation of ”tail”) is

(h(x))r = fr.

The Graph Fourier Transform (GFT) f̂r is defined as

the expansion of fr in terms of the eigenvectors u of

the Graph Laplacian f̂r(λl) =
∑

i fr(i)ul(i). Spectral

graph wavelets (SGWs) [13] define a scaling operator in

the Graph Fourier domain, based on the eigenvectors of

the graph Laplacian L, which can be thought of as an

analog of the Fourier transform for functions on weighted

graphs. SGWs are constructed using a kernel function op-

erator κ(L) which acts on a graph signal fr by modulat-

ing each graph Fourier mode f̂r(λl) by κ(λl). Scaling

is defined in the spectral domain by the operator κ(sL).
Given a function fr, the wavelet coefficients take the form

Ψfr
(s, n) =

∑N

l=1 κ(sλl)f̂r(λl)ul(n).
SGWs can be computed with a fast algorithm based on

approximating the scaled generating kernels by low order

polynomials. The wavelet coefficients at each scale can then

be computed as a polynomial of L applied to the input data.

When the graph is sparse, which is typically the case under

the manifold learning model, the computational complex-

ity scales linearly with the number of points, leading to a

computational complexity of O(N) [13]. Including a scal-

ing function corresponding to a low pass filter operation,

SGWs map an input graph signal, a vector of dimension N ,

to N(J + 1) scaling and wavelet coefficients, c = ALX
fr

which are computed efficiently using the Chebyshev poly-

nomial approximation. The inverse wavelet transform can

be estimated using a pseudo inverse transform of A, denoted

as A∗.

3.2. Description of the regularization algorithm

After the graph is constructed using the proposed repre-

sentation of semantic attributes as graph signals, we com-

pute the SGW transform using low-order polynomials of

the Laplacian. This way, the SGW coefficients are local-

ized in the vertex domain, since for any two points i and

n on the graph with dG(i, n) = K, where dG is the short-

est distance path between two points on the graph, we have

that LK(i, n) = 0 if K > J [13]. We denote N (i,K)
to be the set of vertex i’s neighbors in the graph which are

within K hops away from i. Let WN (K) and LN (K) de-

note the affinity matrix and its corresponding Laplacian, ob-

tained using (3) and connecting all vertices n on the graph

that areN (i,K) hops apart on W. Note that for K = 1 we

have that WN (K=1) = W and LN (K=1) = L.

We retain all scaling coefficients, which correspond to

the low frequencies, and apply Tikhonov regularization di-

rectly to each of the SGW bands Ψ
f̃r
(s(j)), 2 ≤ j ≤ J ,

for each of the noisy coordinate semantic representation

(h(xt))r = f̃r:

minΨfr (s)

{

||Ψfr
(s)−Ψ

f̃r
(s)||22 + γΨT

fr
(s)LN (j)Ψfr

(s)
}

(5)

Using equality (19) in [6] and replacing the graph signal

f̃r with the SGW band coefficients Ψ
f̃r
(s), it can be shown

that the optimal solution to this problem is

Ψ∗
f̃r
(s, n) =

N
∑

l=1

[
1

1 + γλ
j
l

] ˆ̃Ψ
f̃r
(s, λl)ul(n) (6)

where
ˆ̃Ψ
f̃r
(s, λl) is the Graph Fourier transform of Ψ

f̃r
(s).

To calculate this solution, we use a few steps of a diffu-

sion process on a fixed graph, by solving:

Ψ∗
f̃r
(s) = (I+ γLN (j))

−1Ψ
f̃r
(s) (7)

Note that one step of a diffusion process on the graph is

equivalent to Tikhonov regularization [14]. Thus our ap-

proach is essentially solving a diffusion process on the

graph using graph signals which are SGW coefficients

themselves that are localized both in the visual and seman-

tic spaces. Note that (5) smooths out the predicted signal

(h(xt))r based on the graph underlying connectivity.

After performing regularization, which provides us with

the denoised ÂLX
f̃r, we take the pseudo inverse transform

A∗ and obtain A∗ÂLX
(f̃r) = f∗

r
, (Note that (h(xt))r =

f∗r ). The proposed algorithm is applied to all semantic rep-

resentation dimensions, to obtain the full regularized se-

mantic representation (h(xt
i)) = y∗

i for each instance i in

the testing set. Using the regularized semantic representa-

tion (h(xt
i)) = y∗

i for each instance i in the testing set, we

perform clustering into ci, i = 1..ct classes by globally par-

titioning the regularized graph (constructed from y∗
i ) using

Spectral Clustering [19] or Affinity Propagation [25]).

We summarize the proposed regularization approach for

zero-shot learning using Spectral Graph Wavelets in the

pseudo code in Tables 1 and 2 and in the block diagram.
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Algorithm 1: Alignment Algorithm

Input: The data set target unseen classes instances
{

Xt, Ỹt

}

, k nearest neighbors on the graph, K

- the order of Chebyshev polynomial

approximation

1 Construct an undirected affinity graph W based on the

visual features Xt using (3) and construct the

Laplacian L from W. ;

2 for r ← 1 to D do

3 Assign the corresponding coordinate values of the

semantic representation in dimension r,

f̃r = (Ỹt)r, to its corresponding vertex on the

graph. ;

4 Calculate the SGW transform of f̃r , Ψ
f̃r
(s(j)),

with 1 ≤ j ≤ J ;

5 Perform regularization directly in the SGW

domain Ψ
f̃r

using Algorithm 2 . ;

6 Given the regularized SGWs,

ALx
f̂r =

{

Ψ
f̂r
(s(j))

}J

j=1
, take the

pseudo-inverse SGW transform A∗
r to obtain

(h(xt))r = f∗r , and assign (Ŷt)r = f∗r .

7 Classify the unseen classes into ci, i = 1..ct classes

using Spectral Clustering or by using Affinity

Propagation [25] .;

Output: The regularized semantic space Ŷt, estimated

classes zt

Algorithm 2: Regularization Algorithm

Input: Semantic representation in dimension r,

f̃r = (Ỹt)r, its corresponding SGW

coefficients Ψ
f̃r
(s(j)), Laplacian L, γ

smoothing parameter, J - number of

resolutions used for wavelet decompositions

1 Retain the low pass scaling coefficients. For each

resolution 1 ≤ j ≤ J , construct LN (j). .;

2 for j ← 2 to J do

3 Solve (7) with respect to LN (j), and SGW

coefficients Ψf̃r
(s(j))

Output: Regularized SGW coefficients Ψ∗
f̃r
(s(j)),

1 ≤ j ≤ J

4. Experimental Results

4.1. Experimental Settings

We present experimental results on the AWA (animals

with attributes) dataset which is among the most widely

used for ZSL. AWA consists of 50 classes of animals

(30,475 images). It has a source/target split for zero-shot

learning of 40 and 10 classes, respectively. We use as visual

feature space X the activations of a pre-trained GoogleNet

[28, 5], consistent with most current methods that use the

same or other deep learning features [29]. For the semantic

space Y we used Word2Vec, where each instance is repre-

sented by a 100-dimensional vector, constructed automati-

cally from a large unlabeled text corpora [20], in the form of

word vectors, that does not incur additional manual annota-

tion. Similar to transductive approaches in zero shot learn-

ing such as [10], we begin with an initial estimation of the

semantic representation of the testing data by projecting X

on the semantic embedding space Y using a learned projec-

tion function from the source data with a support vector re-

gression function [17, 10]. Note that the semantic represen-

tation of the testing data (obtained using a projection func-

tion from X to Y ) are first used as graph signals which is

transformed to SGW coefficients, that provides information

that is localized in both X and Y , which is further aligned

in the regularization process (the noisy SGW are treated as

graph signals themselves). Clustering is performed in the

regularized semantic embedding space, where classification

accuracy is evaluated using Rand index. Note that there is

no supervision. We use J = 4 scales for the SGW trans-

form, and k = 20 for the nearest neighbor parameter for the

affinity graph.

4.2. Effectiveness of Noise Suppression

We first validate our approach’s ability to denoise the

semantic coordinate dimension when applied to the AWA

dataset. Word2Vec is typically very noisy, making manifold

alignment challenging for current ZSL methods [10, 5]. For

each point in the test data we compute the percentage of k

nearest neighbors from the same class and report the aver-

age accuracy for all points in the test set.

Figure 2 shows the average percentage of correct k near-

est neighbors from the same unseen class in the noisy

Word2Vec semantic space (bright-blue) and the same af-

ter our proposed regularization (magenta) for a wide range

of k nearest neighbor parameters. As can be seen, af-

ter performing alignment using our approach, the average

percentage of k nearest neighbors from the same unseen

class has improved significantly compared to the noisy se-

mantic space, which indicates the effectiveness and robust-

ness of the alignment process. Moreover, due to the multi-

resolution properties of SGWs, our regularization performs

well for a wide range of k nearest neighbor selections. In

Figure 3 we show an illustration of our method using t-SNE

embedding, which is also compared to the noisy Word2Vec.

As can be seen, the noisy graph signals (Word2Vec) embed-

ding produce semantic representation that can be very dif-

ferent with respect to the graph constructed from the visual

features. On the other hand, using our method produces em-

bedding results which are significantly better, showing the
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Figure 2. Average percentage of the same-class k nearest neigh-

bors for unseen data, evaluated for k ∈ {1, 3, ..37} (blue noisy

semantic representation, Magenta- regularized semantic represen-

tation). It can be seen that the regularization improves the same

class percentage of the k nearest neighbors for a wide range of k

nearest neighbor graph parameter consistently

embedded graph signals of same instances having similar

values with respect to the graph structure.

4.3. Comparison to the State of the Art

To evaluate the classification accuracy of our method,

we performed Spectral Clustering [21] on the regularized

semantic attributes and compared it to the original noisy se-

mantic attributes for the AWA and CUB (see Section 4.4)

datasets. As can be seen in Table 1, after performing reg-

ularization using our approach, the average percentage of

k nearest neighbors which belong to the same unseen class

improved significantly. In Table 2 we see a comparison to

the state of the art in ZSL. The method is noted in brack-

ets, where ”H” correspond to human annotation, ”W” to

Word2Vec or other automated method to generate the se-

mantic representation. It can seen that our method outper-

forms the state of the art, and is significantly better than

all automatic methods including Transductive Multi-view

Zero-Shot Learning (TMZL). We also tested our method

using Affinity Propagation, which is a popular clustering

method based on belief propagation that does not require

specifying the number of clusters in the data in advance.

Using Affinity Propagation we were able to outperform the

state of the art and demonstrate the effectiveness of our

method.

4.4. Comparison using the CUB dataset

In this section we compare our method on the Caltech-

USCD Birds (CUB200) dataset which is another popular

dataset used in zero shot learning as well as in other do-

Method/Dataset AWA CUB

Word2Vec 36% 13 %

Regularized semantic Word2Vec 80% 35%

Table 1. Unsupervised Classification accuracy of Word2Vec before

and after regularization using our method

Method/Data AwA

DAP (A) [17] 57.5%

EZSL (A) [24] 62.85%

UDA (A)[15] 73.2%

UDA (A+ W)[15] 75.6%

Less is more (W)[23] 64.46%

Semantic Embedding (A)[29] 76.33%

LatEm (A)[28] 72.5%

LatEm (W)[28] 52.3%

SJE (W) [3] 51.2%

SJE (A.real) [3] 66.7%

TZSL (W) [10] 67%

Our approach (W), [21] based classification 80%

Our approach (W), AP [25] classification 81.3%

Table 2. Classification accuracy results using our method com-

pared to the state of the art methods in zero shot learning on the

AWA dataset. The corresponding semantic representation used is

noted in brackets, where ”A” corresponds to human annotated at-

tributes and W corresponds to Word2Vec or other automated se-

mantic representation

mains in computer vision applications. The CUB dataset

contains 200 different bird classes, with 11,788 images in

total. We use the same split as in [5]. with 150 classes

for training and 50 disjoint classes for testing. The seman-

tic attributes used with our method are 300 dimensional

Word2Vec. In this case, the classes are close (fine-grained),

and both the Word2Vec and the deep Learning features are

extremely noisy, which makes the problem considerably

more difficult as is evident from the low performance of

nearly all ZSL methods on the CUB dataset. We compare

to the state of the art methods which tested their algorithms

using automated attributes.

For the CUB200 dataset, we used the method introduced

in [24] (as opposed to the support vector regression used

in the AWA dataset) to obtain an initial linear mapping

h : X → Y from the image feature space to the semantic

attribute space. This linear mapping, h, is used to provide

an initial estimation for test attributes based on input im-

age features, ỹt = h(xt). Spectral Clustering is then used

for clustering and Rand index for classification accuracy as

in the previous Section. The experimental results, shown

in Table 3 show that our manifold alignment method leads

to the state of the art zero shot classification results on this

dataset.
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Figure 3. An Illustration of the our framework using t-SNE Embedding: on the left hand side: noise 2D embedding of the graph features.

The middle and right hand side figures show the 2D embedding of the noisy and denoised graph signals, receptively. As can be seen, the

embedding of the noisy graph signals result with (typically) very different values of the graph signals with respect to the intrinsic structure

of the graph, while the embedding of the regularized graph signals successfully achieves the desired outcome, such that similar features

have similar attributes

Method/Data CUB

EZSL (Wikipedia) [24] 23.8%

SJW (GloVe) [3] 24.2 %

SJW (Word2Vec) [3] 28.4 %

LatEm (Word2Vec) [28] 33.1.%

LatEm (GloVe)[28] 30.7%

Less Is more (Wikipedia) [23] 29.2%

Multi-Cue Zero-Shot Learning (Word2Vec)[1] 32.1%

Our approach (Word2Vec) 35 %

Table 3. Classification accuracy results using our method com-

pared to the state of the art methods on the word2vec CUB dataset.

The type of semantic representation used is denoted in brackets

5. Discussion

We cast the problem of zero-shot learning as the fitting

(“alignment”) of a smooth function h defined on a smooth

(but non-flat) manifold X to sample data (x,y) where

points on the visual domain X (activation functions of a

convolutional network pre-trained on ImageNet) are repre-

sented as nodes on a graph, and noisy values in Y (outputs

of Word2Vec) are the corresponding graph signals. Then,

tools from graph signal processing are used to smooth the

function h : X → Y in a way that respects the geometry of

X . Once the map h is learned by smoothing, unsupervised

clustering is performed in Y , thus allowing classification in

a target label set. Our method is more complex than those

modeling h as a linear map between linear spaces X and

Y . However, the gain in accuracy is such that it allows us

to operate with “noisy” samples in Y and therefore forgo

all human annotation, resulting in an entirely automatic ap-

proach to zero-shot learning. Despite the lack of human

annotation, our approach is competitive with the state of the

art, as measured by performance in benchmarks such as the

AWA and CUB200 datasets.
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