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Abstract

Hyperspectral image (HSI) super-resolution, which fuses

a low-resolution (LR) HSI with a high-resolution (HR) mul-

tispectral image (MSI), has recently attracted much atten-

tion. Most of the current HSI super-resolution approaches

are based on matrix factorization, which unfolds the three-

dimensional HSI as a matrix before processing. In general,

the matrix data representation obtained after the matrix un-

folding operation makes it hard to fully exploit the inherent

HSI spatial-spectral structures. In this paper, a novel HSI

super-resolution method based on non-local sparse tensor

factorization (called as the NLSTF) is proposed. The sparse

tensor factorization can directly decompose each cube of

the HSI as a sparse core tensor and dictionaries of three

modes, which reformulates the HSI super-resolution prob-

lem as the estimation of sparse core tensor and dictionaries

for each cube. To further exploit the non-local spatial self-

similarities of the HSI, similar cubes are grouped together,

and they are assumed to share the same dictionaries. The

dictionaries are learned from the LR-HSI and HR-MSI for

each group, and corresponding sparse core tensors are esti-

mated by spare coding on the learned dictionaries for each

cube. Experimental results demonstrate the superiority of

the proposed NLSTF approach over several state-of-the-art

HSI super-resolution approaches.

1. Introduction

Hyperspectral imaging has been recently applied in

many computer vision tasks, including the tracking [19],

face recognition[20] and segmentation[28]. However, hy-

perspectral images (HSIs) usually have abundant spectral

information, but limited spatial resolution due to hardware

restrictions [13]. On the contrary, the high-resolution (HR)

gray images and multispectral images (MSIs) with much

less spectral bands can be easily obtained by current imag-

ing sensors. To enhance the spatial resolution of the H-

SI, the low-resolution (LR) HSIs are generally fused with

these HR images. The traditional spatial-spectral image fu-

sion methods focus on combining the LR-HSI with a HR

(a) Matrix factorization based HR-HSI decomposition.

(b) Tensor factorization based HR-HSI decomposition.

Figure 1. Illustration of the traditional matrix decomposition and

tensor decomposition of the HR-HSI.

panchromatic images (gray image), which is called as pan-

sharpening [5]. Representative methods in pan-sharpening

include the Intensity-Hue-Saturation (IHS) transform [22],

PCA-based method [23], and compressed sensing based

method [16]. Since the single band pan-sharpening has very

limited spectral resolution, the reconstructed HR-HSIs by

these approaches usually contain spectral distortions.

More recently, the HSI super-resolution approaches

which fuse a LR-HSI with a HR-MSI (often RGB image)

based on matrix factorization have been actively investigat-

ed [13, 34, 38, 15, 2, 24, 30, 9, 33, 3]. Assuming that a

typical scene of the HSI contains only a small number of

pure spectral signatures, these approaches first unfold HSI

as a matrix, and then decompose the matrix as spectral basis

and corresponding coefficients, as shown in Fig. 1(a). The

problem of the HSI super-resolution becomes the estima-

tion of spectral basis and corresponding coefficients from

the LR-HSI and the HR-MSI of the same scene. In specific,
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Kawakami et al. [13] firstly introduce matrix factorization

into the spatial-spectral fusion by decomposing the HR-HSI

on the learned dictionary with a sparse prior. By incorpo-

rating a non-negativity constraint to the spectral basis and

the coefficients, Wycoff et al. [34] use the framework of

alternating direction method of multipliers (ADMM) to ac-

quire spectral basis and corresponding coefficients. Instead

of estimating spectral basis in advance and keeping it fixed,

non-negative coupled matrix factorization methods [38, 15]

are utilized to unmix both the LR-HSI and HR-MSI simul-

taneously. In addition to the consideration of the spectral in-

formation of the HSI, some approaches [24, 30, 9, 33] also

use the spatial structures of the HSI to solve the HSI super-

resolution problem. For example, Akhtar et al. [2] acquire

coefficients of the HR-HSI with the simultaneous greedy

pursuit algorithm for each local patch, which exploits the

prior that nearby pixels are likely to represent the same ma-

terials in the HR images. Similarly, Veganzones et al. [30]

emphasize that the HSIs are often locally low rank. They

learn the spectral basis and conduct sparse coding process

independently for each local patch. Furthermore, Dong et

al. [9] propose a clustering-based structure sparse coding

method to utilize the non-local spatial self-similarities of

the HSI. In addition, Simoes et al. [24] use a total varia-

tion regularizer to favour spatial smoothness of the solution.

By imposing priors on the distribution of the image inten-

sities, Bayesian approaches [33, 3] apply MAP inference to

regularize the fusion problem. These matrix factorization

based methods start by unfolding the three-dimensional da-

ta structures into matrices. Although, the information pre-

sented in the two representations is the same, the methods

operating with matrices makes it hard to fully exploit the

inherent HSI spatial-spectral correlations.

In the past years, tensor factorization has been success-

fully applied into multiframe data denoising [10, 21], com-

pletion [41, 17, 40], compressive sensing [36] and classifi-

cation [35]. As one of the most effective tensor decompo-

sition methods, Tucker decomposition method [29] decom-

poses a tensor as a core tensor multiplied by factor matrix

along each mode. On the other hand, a typical natural scene

usually contains a collection of similar patches from all over

the image. These non-local similar patches are often clus-

tered together before processing, which can be exploited to

enhance the performance of image denoising [39] and de-

mosaicking [18].

Inspired by the above works, a novel non-local sparse

tensor factorization (NLSTF) based HSI super-resolution

approach is proposed for the fusion of a LR-HSI and a

HR-MSI. In the proposed NLSTF method, the non-local

means approach and sparse tensor factorization are uni-

fied into one framework, which modifies the HSI super-

resolution problem as the estimation of the dictionaries of

three modes and corresponding core tensor for each cube

of the HR-HSI. Each cube of the HR-HSI contains the lo-

cal spatial-spectral information. In order to better model

the local spatial-spectral information, each cube of the HR-

HSI is decomposed as a core tensor and factor matrixes

(also called dictionaries) of three modes, as shown in Fig.

1(b). In the decomposition, dictionaries of the width mode

and height mode represent spatial information of the HSI,

and dictionary of spectral mode represents spectral infor-

mation. Meanwhile, the core tensor models the relation-

ship of the dictionaries of three modes. In this framework,

spatial-spectral correlations of the HSI can be better used

since the information of three modes is incorporated into

an unified model. In addition, to exploit the non-local self-

similarities of the HR-HSI, we group similar cubes of the

HR-HSI together. Furthermore, a grouped sparsity regular-

izer is exploited to impose similar cubes to share the same

dictionaries in their sparse tensor decompositions.

The main contributions of this paper include: (1) The

tensor factorization is introduced to fuse the LR-HSI with

HR-MSI. In this way, the problem of HSI super-resolution

is reformulated as the estimation of dictionaries in three

modes and corresponding core tensors, which incorporates

the spatial-spectral information into an unified framework.

(2) Non-local spatial self-similarities of the HSI are incor-

porated into the tensor factorization.

2. Preliminaries on Tensors

An N -dimensional tensor is denoted as M ∈
RI1×I2,...,×IN . Elements of M are denoted as mi1i2,...,iN ,

where 1 ≤ in ≤ In. The n-mode unfolding vec-

tors of tensor M are the In-dimensional vectors obtained

from M by changing index in, while keeping the oth-

er indices fixed. The n-mode unfolding matrix M(n) ∈
RIn×I1I2,...,In−1In+1,...,IN is defined by arranging all the

n-mode vectors as the columns of the matrix [14]. The

product of two matrices can be generalized to the multi-

plication of a tensor and a matrix. The n-mode produc-

t of the tensor M ∈ RI1×I2...×IN with the matrix B ∈
RJn×In , denoted by M× nB, is an N-dimensional tensor

C ∈ RI1×I2...×Jn...×IN , whose elements are computed by

ci1...in−1jnin+1...iN =
∑

in

mi1...in−1inin+1...iN bjnin , (1)

The n-mode product M × nB can also be computed by

matrix multiplication C(n) = BM(n). For distinct modes

in a series of multiplications, the order of the multiplications

is irrelevant, which is

M× mA× nB = M× nB× mA(n 6= m). (2)

If the modes of multiplications are the same, the equation

(2) is transformed into

M× nA× nB = M× n(BA). (3)
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Besides, the relationship between the Tucker mode and

a Kronecker product is specified by Caiafa and Cichock-

i [7]. Given the n-mode dictionaries Dn ∈ RJn×In(n =

1, 2, ..., N), c = vec(C) ∈ RJ×1(J =
∏N

n=1 Jn), and

m = vec(M) ∈ RI×1(I =
∏N

n=1 In), the following t-

wo representations of C are equivalent:

C = M× 1D1 × 2D2...× NDN , (4)

c = (DN ⊗DN−1⊗, ...,⊗D1)m, (5)

where the symbol ⊗ denotes Kronecker product. ||M||0
denotes ℓ0 norm of tensor M, defined as the number of

non-zero elements of tensor M, and the Frobenius norm of

tensor M is defined as ||M||F =
√

∑

i1,...,iN
|mi1...iN |2.

3. Problem Formulation

The desired HR-HSI is denoted by X ∈ RW×H×S ,

where W , H and S are the dimensions of the width mode,

height mode and spectral mode, respectively. Y ∈ Rw×h×S

denotes the acquired LR-HSI with invariant spectral band-

s, which is the spatial downsampled version of X , where

W > w, H > h. Z ∈ RW×H×s represents the HR-

MSI image of the same scene with the invariant spatial di-

mension, which is the spectral downsampled version of X ,

where S > s. The goal of super-resolution is to estimate

the HR-HSI X by fusing the LR-HSI Y with HR-MSI Z .

3.1. Matrix factorization based HSI super­
resolution

The matrix factorization based super-resolution methods

assume each pixel of the target HR-HSI can be written as

the linear combination of a small number of distinct spec-

tral signatures [12]. As can be seen from Fig. 1(a), these

approaches unfold the HR-HSI with spectral mode as ma-

trix, and then the unfolding matrix can be decomposed as

follows:

X(3) = DA, (6)

where X(3) ∈ RS×WH is the matrix by unfolding the HR-

HSI X with the spectral mode; matrix D ∈ RS×L and A ∈
RL×WH is the spectral basis and corresponding coefficient

matrix, respectively. Both the LR-HSI and HR-MSI can be

expressed as linear combinations of the desired HR-HSI:

Y(3) = X(3)M,Z(3) = P3X(3), (7)

where Y(3) ∈ RS×wh and Z(3) ∈ Rs×WH are the spec-

tral mode unfolding matrixes of Y and Z , respectively;

M ∈ RWH×wh and P3 ∈ Rs×S are the spatial downsam-

pling and spectral downsampling matrixes respectively. In

the matrix factorization based super-resolution approaches,

the goal is to estimate the spectral basis D and coefficient

matrix A from Y(3) and Z(3).

3.2. Tensor Factorization based HSI Super­
resolution

It can be seen from Fig. 1(b) that different from matrix

factorization based methods, the proposed tensor factoriza-

tion based method can directly decompose a typical scene

of the HR-HSI as a core tensor and dictionaries of the width

mode, height mode and spectral mode. The problem can be

formulated as follows:

X = C × 1W × 2H× 3S, (8)

where the matrix W ∈ RW×nw , H ∈ RH×nh , S ∈ RS×ns

denote the dictionaries of the width mode with nw atom-

s, height mode with nh atoms and spectral mode with ns

atoms, respectively. The tensor C ∈ Rnw×nh×ns is the co-

efficient of X over the three dictionaries. The acquired LR-

HSI Y is the spatially downsampled version of X ,

Y = X × 1P1 × 2P2, (9)

where P1 ∈ Rw×W and P2 ∈ Rh×H are the downsam-

pling matrixes along the width mode and height mode, re-

spectively, which describe the spatial response of the imag-

ing sensors.

The HR-MSI Z is the spectrally downsampled version

of X ,

Z = X × 3P3, (10)

where P3 ∈ Rs×S is the downsampling matrix of the spec-

tral mode. Here, the HR-MSI is RGB image.

To reconstruct a typical scene of the HSI, we only need

to estimated the dictionaries of the three modes and corre-

sponding core tensor, as shown in Fig. 1(b).

4. Proposed NLSTF Approach

As shown in Fig. 2, the proposed NLSTF algorithm

mainly includes three steps: Non-local clustering of the

similar cubes, tensor dictionary learning and tensor sparse

coding. Instead of estimating the whole HR-HSI direct-

ly, we reconstruct the HR-HSI in a cube-by-cube manner,

which can reduce the computation cost. According to above

tensor based HSI decomposition, the problem of the HSI

super-resolution can be changed to estimate dictionaries of

three modes and corresponding core tensor for each cube of

the HR-HSI. Firstly, to exploit the non-local spatial similar-

ities, we group the similar cubes of the HR-MSI together,

and then the cubes of the LR-HSI and unknown HR-HSI

are also grouped according to corresponding spatial loca-

tion. The cubes of HR-HSI in the same group are decom-

posed on the same dictionaries with a sparse prior. Next,

the dictionaries of three modes are learned for every group,

and sparse core tensor for every cube is estimated by sparse

coding algorithm. Finally, sparse core tensors and dictionar-

ies can be utilized to reconstruct the cubes of the HR-HSI.

More details of each step are described in the following.
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Figure 2. Scheme of the proposed NLSTF method.

4.1. Non­local Clustering of the Similar Cubes

Since the spatial information of the HR-HSI mainly ex-

ists in the HR-MSI, the HR-MSI Z ∈ RW×H×s is spa-

tially partitioned into several overlap cubes. The basic idea

is that similar cubes of the HR-MSI are grouped into clus-

ters Z(k) = {Z(k,j)}nk

j=1, k = 1, 2, ...,K, where K is the

number of clusters, and nk is the number of cubes in the

kth cluster. Z(k,j) ∈ RdW×dH×s denotes the jth cube

of the kth cluster, where dW and dH are the dimension-

s of the width mode and height mode, respectively. In the

cluster process, we employ the efficient K-means++ method

[6] (with automatically and carefully chosen initial seeds)

to obtain clusters of all HR-MSI cubes. According to the

corresponding spatial location, the LR-HSI Y ∈ Rw×h×S

and unknown HR-HSI X ∈ RW×H×S are also grouped

into K clusters Y (k) = {Y(k,j)}nk

j=1 ⊂ Rdw×dh×S and

X(k) = {X (k,j)}nk

j=1 ⊂ RdW×dH×S , k = 1, 2, ...,K, re-

spectively. Since the spatial size of the LR-HSI is smaller

than the HR-MSI, a pixel in the LR-HSI corresponds to a

c×c (downsampling factor) cube in the HR-MSI. Once any

pixel of the c × c cube in the HR-MSI is grouped into one

cluster, the pixel in the LR-HSI is also grouped into this

group. In this way, a pixel in the LR-HSI may belong to

different groups, simultaneously.

4.2. Tensor Dictionary Learning

Since cubes in the same cluster are similar, they are

assumed to share the same dictionaries of three modes.

The dictionary learning process is the same for all clusters.

Without loss of generality, we take the process of dictio-

nary learning in the kth cluster as an example to present our

dictionary learning process.

Based on the above mentioned tensor factorization, the

cubes X (k,j) in the kth cluster can be formulated as

X (k,j) = C(k,j)×1Wk×2Hk×3Sk, j = 1, 2, ..., nk, (11)

where the matrixes Wk ∈ RdW×lW , Hk ∈ RdH×lH and

Sk ∈ RS×lS denote the dictionaries of the width mod-

e with lW atoms, height mode with lH atoms and spec-

tral mode with lS atoms, respectively. The tensor C(k,j) ∈
RlW×lH×lS is a core tensor which models the relationship

of the three dictionaries. Since the HR-MSI mainly contains

the spatial information of the HR-HSI, the dictionaries Wk

and Hk can be learned from {Z(k,j)}nk

j=1. According to

the equation (10), the cubes Z(k,j) of the kth cluster in the

HR-MSI can be formulated as:

Z(k,j) = X (k,j) × 3P3, j = 1, 2, ..., nk, (12)

According to equation (11) and (12), the Z(k,j) can also

be formulated as

Z(k,j) = C(k,j)×1Wk×2Hk×3S
∗

k, j = 1, 2, ..., nk, (13)

where S
∗

k = P3Sk is the transformed spectral dictionary.

Unfolding the tensor Z(k,j) and A(k,j) with the width mod-

e, the equation (13) can be represented as

Z
(k,j)
(1) = Wk ×A

(k,j)
(1) , j = 1, 2, ..., nk, (14)
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where Z
(k,j)
(1) and A

(k,j)
(1) are 1-mode unfolding matrixes of

tensors Z(k,j) and A(k,j) = C(k,j) × 2Hk × 3S
∗

k, respec-

tively. From equation (14), we can observe each column

of Mwk
= [Z

(k,1)
(1) ,Z

(k,2)
(1) , ...,Z

(k,nk)
(1) ] can be represented

as a linear combination of columns in the matrix Wk. The

estimation of Wk is severely ill-posed problem, because

the decomposition of Mwk
is not unique. We use sparsi-

ty prior to regularize the problem, which can not only bet-

ter estimate Wk, but can also promote the sparsity in core

tensor. Hence, the estimation of matrix Wk can be seen

as a sparsity-constrained dictionary learning problem. The

problem can be formulated as

min
Wk,BWk

||Mwk
−Wk ×Bwk

||2F ,

s.t.||Bwk
(:, i)||0 ≤ kw, 1 ≤ i ≤ ldHnk,

(15)

where ||·||0 and ||·||F denote the ℓ0 norm and Forbenius nor-

m, respectively, and kw represents permissible maximum

number of non-zero elements of each column in coefficien-

t matrix Bwk
. To solve the problem in (15), we use the

dictionary-updates-cycles KSVD (DUC-KSVD) [25] ap-

proach which is a modification version of the KSVD algo-

rithm [1]. In the dictionary-update stage, both the dictionary

and representations are found while keeping the supports

intact. The known representations are leveraged from the

previous sparse coding in the quest for the updated repre-

sentations in the sparse coding stages.

Unfolding the tensor Z(k,j) and A(k,j) with the height

mode, the equation (13) can be represented as:

Z
(k,j)
(2) = Hk ×B

(k,j)
(2) , j = 1, 2, ..., nk, (16)

where Z
(k,j)
(2) and B

(k,j)
(2) are 2-mode (height mode) un-

folding matrixes of tensors Z(k,j) and B(k,j) = C(k,j) ×

1Wk × 3S
∗

k, respectively. From equation (16), we

can also find that each column of the matrix Mhk
=

[Z
(k,1)
(2) ,Z

(k,2)
(2) , ...,Z

(k,nk)
(2) ] can be represented as a linear

combination of columns in Hk. Similar with the estima-

tion of Wk, the acquisition of Hk can also be changed into

the sparsity constrained dictionary learning problem:

min
Hk,Bhk

||Mhk
−Hk ×Bhk

||2F ,

s.t.||Bhk
(:, i)||0 ≤ kh, 1 ≤ i ≤ ldWnk,

(17)

where kh is the maximum number of non-zero elements of

each column in the matrix Bhk
. Similarly, the problem in

(17) can be solved by the DUC-KSVD algorithm.

Since the LR-HSI is only spatially downsampled, it still

has the main spectral information of the HR-HSI. Hence,

we can induce the dictionary of the spectral mode Sk from

{Y(k,j)}nk

j=1, which are cubes of the kth cluster in the LR-

HSI. Assuming each pixel of the HR-HSI cubes of kth clus-

ter can be written as the linear combination of a small num-

ber of distinct spectral signatures, the dictionary of the spec-

tral mode Sk can be estimated by solved the following prob-

lem:

min
Sk,Bsk

||Msk − Sk ×Bsk ||
2
F ,

s.t.||Bsk(:, i)||0 ≤ ks, 1 ≤ i ≤ dwdhnk,
(18)

where Msk = [Y
(k,1)
(3) ,Y

(k,2)
(3) , ...,Y

(k,nk)
(3) ] is the 3-mode

(spectral mode) matrix obtained from all the LR-HSI cubes

of the kth cluster, and ks is the maximum number of non-

zero elements of each column in the matrix Bsk . Similarly,

the problem in (18) can be solved by the DUC-KSVD algo-

rithm.

4.3. Tensor Sparse Coding

Once the dictionaries Wk, Hk and Sk of the kth clus-

ter are known, the core tensor C(k,j) ∈ RlW×lH×lS should

be estimated in order to get the HR-HSI cubes of kth clus-

ter. The estimation of C(k,j) is severely ill-posed problem,

and we need to use the prior information to regularize it.

The dictionaries of three modes are all estimated with s-

parse prior, which means the dictionaries of three modes are

redundant enough to represent information in each mode.

Hence we assume the cubes of the HR-HSI can be sparse-

ly represented by the three dictionaries, which means core

tensors C(k,j) are sparse. In this way, the estimation of the

core tensor C(k,j) can be changed into the following l0 norm

constrained optimization problem:

min
C(k,j)

||Z(k,j) − C(k,j) × 1Wk × 2Hk × 3S
∗

k||
2
F ,

s.t.||C(k,j)||0 ≤ m,
(19)

where m is permissible maximum sparsity. According to

the relationship of the Tucker mode and Kronecker product,

the problem in (19) can also be formulated as:

min
c(k,j)

||z(k,j) −Dk × c
(k,j)||2F ,

s.t.||c(k,j)||0 ≤ m,
(20)

where c
(k,j) = vec(C(k,j)) ∈ RlW lH lK×1 and z

(k,j) =
vec(Z(k,j)) ∈ RsdW dH×1 are vectors by stacking all the 1-

mode vectors of tensor C(k,j) and Z(k,j), respectively, and

the matrix Dk = S
∗

k ⊗ Hk ⊗ Wk ∈ RsdW dH×lW lH lS is

the dictionary. The problem in (20) is a NP-hard problem

[11] , which indicates that the problem should be relaxed or

solved by greedy strategy. In general, the Kronecker oper-

ation will create a very large dictionary Dk, which results

in a very heavily computational burden for the sparse cod-

ing. To achieve the efficient sparse coding over the large

dictionary, a very efficient greedy approach, called as the
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Method
CAVE database [37]

RMSE SAM SSIM ERGAS

SNNMF [34] 4.38 17.85 0.918 0.773

GSOMP [2] 5.44 12.23 0.960 0.781

SSR [24] 4.71 22.00 0.945 0.642

BSR [3] 5.19 12.93 0.955 0.742

NLSTF 2.60 6.83 0.980 0.372

Table 1. Quantitative results (on RMSE, SAM, SSIM and ERGAS)

of the test methods on the CAVE database [37].

Method
Harvard database [8]

RMSE SAM SSIM ERGAS

SNNMF [34] 2.46 4.93 0.973 0.381

GSOMP [2] 3.10 4.34 0.971 0.449

SSR [24] 3.08 5.59 0.820 0.459

BSR [3] 2.64 4.48 0.974 0.453

NLSTF 1.78 3.12 0.982 0.261

Table 2. Quantitative results (on RMSE, SAM, SSIM and ERGAS)

of the test methods on the Harvard database [8].

Matching Pursuit Lasso (MPL) [26, 27], is used. The M-

PL is based on a novel quadratically constrained linear pro-

gram formulation, which can greatly reduces the computa-

tion cost of sparse coding problem over large dictionary.

Once the dictionaries Wk, Hk, Sk, and core tensors

{C(k,j)}nk

j=1 are known, the HR-HSI cubes {X (k,j)}nk

j=1 of

the kth cluster can be estimated by equation (11). Finally,

the estimated cube sets can be returned to the original place

to reconstruct the HR-HSI X . In addition, the performance

of the proposed approach can be further improved via back-

projection operation [13].

5. Experiments

5.1. Experimental Database

In this section, experiments are conducted on two pub-

lic databases (CAVE database [37]1 and Harvard database

[8]2) to evaluate the effectiveness of the proposed NLST-

F method. The CAVE database [37] consists of 32 in-

door HSIs captured under controlled illumination. The im-

ages have 31 spectral bands, and each band has a size of

512×512. The images of the scenes are acquired at a wave-

length interval 10nm in the range of 400-700nm. The Har-

vard database [8] has 50 indoor and outdoor images record-

ed under daylight illumination, and 27 images under arti-

ficial or mixed illumination. The spatial resolution of the

images is 1392 × 1040, with 31 spectral bands. The im-

ages of the scenes are acquired at a wavelength interval

10nm in the range of 420-720nm. We use only the top left

1http://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://vision.seas.harvard.edu/hyperspec/

1024×1024 pixels for the convenience of the spatial down-

sampling process. The HSIs from two databases are used

as ground truth images. We downsample the HR-HSIs by

averaging the 32× 32 disjoint spatial blocks, to get the LR-

HSIs Y . The HR-MSI (RGB image) Z of the same scene

can be stimulated by downsampling X with spectral model

using spectral dowmsampling matrix P3 derived from the

response of a Nikon D700 camera3.

5.2. Compared Methods

We have compared the proposed method with several

state-of-the-art HSI super-resolution methods, including the

Sparse Non-negative Matrix Factorization (SNNMF) [34],

Generalization of Simultaneous Orthogonal Matching Pur-

suit (GSOMP) method [2], Subspace Regularization (SS-

R) method [24] and Bayesian Sparse Representation (BSR)

method [3].

5.3. Quantitative Metrics

To evaluate the quality of the reconstructed HSIs, four

indexes are used in our study. The first index is root mean

square error (RMSE), and the images are on a 8-bit intensity

range. We also use the the spectral angle mapper (SAM),

which is given in degrees. The third index is SSIM [32]

which is defined as the mean SSIM of all bands between the

estimated HSI and the ground truth. The fourth index is the

relative dimensionless global error in synthesis (ERGAS),

proposed in [31].

5.4. Parameters Discussion

The maximum number of non-zero elements sparsity m

has an important influence on the accuracy and efficiency

of sparse coding problem. Since the size of dictionary Dk

in different databases may be different, it is not convenient

to discuss the effects of m directly. Therefore, we test the

effects of sparsity scaling parameter, defined as

α =
m

lW lH lS
, (21)

which is proportional to the sparsity of the solution. Fig. 3

plots the curves of the RMSE and time of reconstructed H-

SIs Cloth (image in CAVE database), and b4 (image in the

Harvard database) under various parameters α. From Fig.

3 (a), we can see that the accuracy of the NLSTF method is

affected obviously when tuning α from 0.005 to 0.03. The

parameter α also has an important effect on the sparse cod-

ing time which occupies the majority of the running time.

It can be seen from Fig. 3 (b) that the time has an approxi-

mate linear increase with the growth of α in both the CAVE

database and Harvard database. This is because the bigger

3https://www.maxmax.com/spectral response.htm
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(a) (b)

Figure 3. The RMSE and running time in seconds curves under various sparsity scaling parameters for the proposed NLSTF method. (a)

RMSE; (b) Running time.

(a) Ground truth (b) SNNMF [34] (c) SSR [24] (d) BSR [3] (e) NLSTF

Figure 4. The first row: the reconstructed images of CD in the CAVE database at 670nm. The second row: the corresponding error images

of the competing approaches for the image CD. The third row: the reconstructed images of b4 in the Harvard database at 550nm. The

fourth row: the corresponding error images of the competing approaches for the image b4.

the value of α is , the more atoms will be chosen in the pro-

cess of sparse coding , which can add computational cost.

We set α = 0.03 for both two databases.

The remaining parameters of the proposed NLSTF
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method are set as follows: the number of clusters K = Nc

100 ,

where Nc is the total number of cubes, the spatial size of

HR-HSI cubes is 8 × 8 (dW = 8, dH = 8) with overlap

4× 4, the number of atoms is lW = 10, lH = 10, lS = 32.

The target sparsity is kw = 2, kh = 2, ks = 2 in the process

of dictionary learning.

5.5. Experimental Results

All the methods are run with the same spectral down-

sampling matrix P3, and the parameters are set as the de-

fault values. For the SSR [24] method, we directly use the

spectral downsampling matrix P3 already known in our ex-

periments, instead of estimating it as in [24].

Table 1 shows the average objective results of the CAVE

database in terms of RMSE, SAM, SSIM and ERGAS. The

best results are marked in bold for clarity. As can be seen

from Table 1, the proposed NLSTF method performs con-

sistently better than the other compared methods. Specifi-

cally, the NLSFT advantage is considerable in the cases of

RMSE, SAM, SSIM, and ERGAS. The significantly lower

SAM indicates that our approach performs the best in re-

constructing the spectral distribution of the intensities. Our

approach has the largest SSIM among all the testing meth-

ods, which means the proposed method can better preserve

the spatial structures of the HSI. In Fig. 4, we show the

reconstructed HR-HSI at 670mm by the competing method

for the test image Cloth of the CAVE database. For better

visual comparison, one meaningful region for each of the

resulting image is magnified. It can be seen from Fig. 4 that

the proposed NLSTF approach in reconstructing the very

detailed structures.

The average RMSE, SAM, SSIM and ERGAS of the re-

covered HSIs of the Harvard database are reported in Table

2. The proposed NLSTF method also outperforms other

competing methods as it has the lowest RMSE, SAM, ER-

GAS and the biggest SSIM. In Fig. 4, the reconstruction

results of testing approaches for image b4 of the Harvard

database is shown. As can be observed, the proposed NL-

STF approach can also better recover the HR structures of

HSI among the testing methods.

5.6. The Effectiveness of Non­local Part and Sparse
Tensor Factorization Part

The proposed NLSTF method mainly has the non-local

clustering step and sparse tensor factorization part. In this

subsection, we clarify the effectiveness of two steps, respec-

tively.

To the best of our knowledge, no sparse tensor factor-

ization method has been used for the hyperspectral image

super-resolution. Hence, we just remove the non-local clus-

tering part of the NLSTF method to get the sparse tensor

factorization (STF) method. In the STF method, all HR-

HSI cubes are assumed share the same dictionaries W, H,

Method
CAVE database

Ballons Beads Cloth Pompoms CD

SMF [13] 2.3 8.2 6.0 4.3 7.9

HBP [4] 1.9 5.8 3.7 3.9 5.3

STF 1.5 6.9 4.6 2.5 6.4

NLSTF 1.3 5.5 3.7 2.5 5.3

Table 3. Quantitative results (on RMSE) of the test methods.

and S. Also, the sparse matrix factorization (SMF) method

[13] is included into the comparisons. Both of the SMF and

STF methods only exploit a sparse prior without other pri-

or information. The main difference of them is the SMF is

based on matrix factorization, and the STF is based on ten-

sor factorization. Since the code of SMF is not available,

we directly use the results of SMF on five images of the

CAVE database from the reference [4]. Besides, we also

compare with the hierarchical beta process (HBP) method

[4]. To ensure fair comparison, the experimental settings of

NLSTF and STF are the same as that of [4].

The results of SMF, STF, NLSTF, and HBP are reported

in Table 3. The STF method performs consistently better

than the SMF method, which can indicate the advantages

of tensor factorization over matrix factorization. Further-

more, the NLSTF method outperforms the STF method,

which proves that the non-local strategy indeed improves

the performance.

6. Conclusions

In this paper, we present a novel non-local sparse ten-

sor factorization based framework to acquire the HR-HSI,

by fusing a LR-HSI with a HR-MSI. Unlike recent matrix

factorization based HSI super-resolution methods, the pro-

posed NLSTF method considers the HSI as a tensor with

three modes, and factorizes the tensor as a sparse core tensor

multiplication by dictionaries of the three modes. In addi-

tion, non-local spatial self-similarity is incorporated into the

sparse tensor factorization. With the proposed framework,

the spatial-spectral information of the HSI can be better ex-

ploited. Our approach is tested on two public databases,

which demonstrates the superiority of the proposed method

over several state-of-the-art HSI super-resolution methods.
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