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Abstract

We propose a novel superpixel-based multi-view convo-

lutional neural network for semantic image segmentation.

The proposed network produces a high quality segmentation

of a single image by leveraging information from additional

views of the same scene. Particularly in indoor videos such

as captured by robotic platforms or handheld and body-

worn RGBD cameras, nearby video frames provide diverse

viewpoints and additional context of objects and scenes. To

leverage such information, we first compute region corre-

spondences by optical flow and image boundary-based su-

perpixels. Given these region correspondences, we propose

a novel spatio-temporal pooling layer to aggregate infor-

mation over space and time. We evaluate our approach on

the NYU–Depth–V2 and the SUN3D datasets and compare

it to various state-of-the-art single-view and multi-view ap-

proaches. Besides a general improvement over the state-

of- the-art, we also show the benefits of making use of un-

labeled frames during training for multi-view as well as

single-view prediction.

1. Introduction

Consumer friendly and affordable combined image and

depth-sensors such as Kinect are nowadays commercially

deployed in scenarios such as gaming, personal 3D capture

and robotic platforms. Interpreting this raw data in terms

of a semantic segmentation is an important processing step

and hence has received significant attention. The goal is

typically formalized as predicting for each pixel in the im-

age plane the corresponding semantic class.

For many of the aforementioned scenarios, an image se-

quence is naturally collected and provides a substantially

richer source of information than a single image. Multiple

images of the same scene can provide different views that

change the observed context, appearance, scale and occlu-

sion patterns. The full sequence provides a richer observa-

STD2P

Key frame Final result Ground truth

. . . . . .

. . . . . .

Im
a

g
e

 S
e

q
u

e
n

ce
S

in
g

le
-V

ie
w

P
re

d
ic

ti
o

n
s

Figure 1: An image sequence can provide rich context and

appearance, as well as unoccluded objects for visual recog-

nition systems. Our Spatio-Temopral Data-Driven Pooling

(STD2P) approach integrates the multi-view information to

improve semantic image segmentation in challenging sce-

narios.

tion of the scene and propagating information across views

has the potential to significantly improve the accuracy of se-

mantic segmentations in more challenging views as shown

in Figure 1.

Hence, we propose a multi-view aggregation method by

a spatio-temporal data-driven pooling (STD2P) layer which

is a principled approach to incorporate multiple frames

into any convolutional network architecture. In contrast to

previous work on superpixel-based approaches [12, 4, 2],

we compute correspondences over time which allows for

knowledgeable and consistent prediction over space and

time.

As dense annotation of full training sequences is time
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consuming and not available in current datasets, a key fea-

ture of our approach is training from partially annotated se-

quences. Notably, our model leads to improved semantic

segmentations in the case of multi-view observation as well

as single-view observation at test time. The main contribu-

tions of our paper are:

• We propose a principled way to incorporate super-

pixels and multi-view information into state-of-the-

art convolutional networks for semantic segmentation.

Our method is able to exploit a variable number of

frames with partial annotation in training time.

• We show that training on sequences with partial anno-

tation improves semantic segmentation for multi-view

observation as well as single-view observation.

• We evaluate our method on the challenging semantic

segmentation datasets NYU–Depth–V2 and SUN3D.

There, it outperforms several baselines as well as the

state-of-the-art. In particular, we improve on difficult

classes not well captured by other methods.

2. Related work

2.1. Context modeling for fully convolutional net
works

Fully convolutional networks (FCN) [26], built on deep

classification networks [19, 34], carried their success for-

ward to semantic segmentation networks that are end-to-end

trainable. Context information plays an important role in

semantic segmentation [28], so researchers tried to improve

the standard FCN by modeling or providing context in the

network. Liu et al. [24] added global context features to a

feature map by global pooling. Yu et al. [39] proposed di-

lation convolutions to aggregate wider context information.

In addition, graphical models are applied to model the re-

lationship of neuron activation [5, 40, 25, 22]. Particularly,

Chen et al. [5] combined the strengths of conditional ran-

dom field (CRF) with CNN to refine the prediction, and thus

achieved more accurate results. Zheng et al. [40] formu-

lated CRFs as recurrent neural networks (RNN), and trained

the FCN and the CRF-RNN end-to-end. Recurrent neural

networks have also been used to replace graphical models

in learning context dependencies [3, 33, 21], which shows

benefits in complicated scenarios.

Recently, incorporating superpixels in convolutional net-

works has received much attention. Superpixels are able

to not only provide precise boundaries, but also to provide

adaptive receptive fields. For example, Dai et al. [8] de-

signed a convolutional feature masking layer for semantic

segmentation, which allows networks to extract features in

unstructured regions with the help of superpixels. Gadde et

al. [12] improved the semantic segmentation using super-

pixel convolutional networks with bilateral inception, which

can merge initial superpixels by parameters and generate

different levels of regions. Caesar et al. [4] proposed a

novel network with free-form ROI pooling which leverages

superpixels to generate adaptive pooling regions. Arnab et

al. [2] modeled a CRF with superpixels as higher order

potentials, and achieved better results than previous CRF

based methods [5, 40]. Both methods showed the merit

of providing superpixels to networks, which can generate

more accurate segmentations. Different from prior works

[12, 4], we introduce superpixels at the end of convolutional

networks instead of in the intermediate layers and also inte-

grate the response from multiple views with average pool-

ing, which has been used to replace the fully connected lay-

ers in classification [23] and localization [41] tasks success-

fully.

2.2. Semantic segmentation with videos

The aim of multi-view semantic segmentation is to em-

ploy the potentially richer information from diverse views

to improve over segmentations from a single view. Couprie

et al. [7] performed single image semantic segmentation

with learned features with color and depth information, and

applied a temporal smoothing in test time to improve the

performance of frame-by-frame estimations. Hermans et

al. [16] used the Bayesian update strategy to fuse new clas-

sification results and a CRF model in 3D space to smooth

the segmentation. Stückler et al. [35] used random forests

to predict single view segmentations, and fused all views

to the final output by a simultaneous localization and map-

ping (SLAM) system. Kundu et al. [20] built a dense 3D

CRF model with correspondences from optical flow to re-

fine semantic segmentation from video. Recently, McCor-

mac et al. [27] proposed a CNN based semantic 3D map-

ping system for indoor scenes. They applied a SLAM sys-

tem to build correspondences, and mapped semantic labels

predicted from CNN to 3D point cloud data. Mustikovela

et al. [29] proposed to generate pseudo ground truth an-

notations for auxiliary data with a CRF based framework.

With the auxiliary data and their generated annotations, they

achieved a clear improvement. In contrast to the above

methods, instead of integrating multi-view information by

using graphical models, we utilize optical flow and image

superpixels to establish region correspondences, and design

a superpixel based multi-view network for semantic seg-

mentation.

3. Fully convolutional multi-view segmentation

with region correspondences

Our goal is a multi-view semantic segmentation scheme,

that integrates seamlessly into exciting deep architectures

and produces highly accurate semantic segmentation of a

single view. We further aim at facilitating training from

partially annotated input sequences, so that existing datasets
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Figure 2: Pipeline of the proposed method. Our multi-view

semantic segmentation network is built on top of a CNN. It

takes a RGBD sequence as input and computes the semantic

segmentation of a target frame with the help of unlabeled

frames. We use superpixels and optical flow to establish

region correspondences, and fuse the posterior from multi-

ple views with the proposed Spatio-Temporal Data-Driven

Pooling (STD2P).

can be used and the annotation effort stays moderate for new

datasets. To this end, we draw on prior work on high quality

non-semantic image segmentation and optical flow which is

input to our proposed Spatio-Temporal Data-Driven Pool-

ing (STD2P) layer.

Overview. As illustrated in Figure 2, our method starts

from an image sequence. We are interested in providing

an accurate semantic segmentation of one view in the se-

quence, called target frame, which can be located at any po-

sition in the image sequence. The two components that dis-

tinguish our approach from a standard fully convolutional

architecture for semantic segmentation are, first, the com-

putation of region correspondences and, second, the novel

spatio-temporal pooling layer that is based on these corre-

spondences.

We first compute the superpixel segmentation of each

frame and establish region correspondences using optical

flow. Then, the proposed data-driven pooling allows to ag-

gregate information first within superpixels and then along

their correspondences inside a CNN architecture. Thus, we

achieve a tight integration of the superpixel segmentation

and multi-view aggregation into a deep learning framework

for semantic segmentation.

3.1. Region correspondences

Motivated by the recent success of superpixel based ap-

proaches in deep learning architectures [12, 4, 1, 9] and the

reduced computational load, we decide for a region-based

approach. In the following, we motivate and detail our ap-

proach on establishing robust correspondences.

Motivation. One key idea of our approach is to map in-

formation from potentially unlabeled frames to the target

frame, as diverse view points can provide additional context

and resolve challenges in appearance and occlusion as illus-

trated in Figure 1. Hence, we do not want to assume visibil-

ity or correspondence of objects across all frames (e.g. the

nightstand in the target frame as shown in Figure 2). There-

fore, video supervoxel methods such as [13] that force in-

terframe correspondences and do not offer any confidence

measure are not suitable. Instead, we establish the required

correspondences on a frame-wise region level.

Superpixels & optical flow. We compute RGBD super-

pixels [15] in each frame to partition a RGBD image into

regions, and apply Epic flow [31] between each pair of con-

secutive frames to link these regions. To take advantage

of the depth information, we utilize the RGBD version of

the structured edge detection [10] to generate boundary es-

timates. Then, Epic flow is computed in forward and back-

ward directions.

Robust spatio-temporal matching. Given the precom-

puted regions in the target frame and all unlabeled frames

as well as the optical flow between those frames, our goal is

to find highly reliable region correspondences. For any two

regions Rt in the target frame ft and Ru in an unlabeled

frame fu, we compute their matching score from their inter-

section over union (IoU). Let us assume w.l.o.g. that u < t.

Then, we warp Ru from fu to R
′

u in ft using forward opti-

cal flow. The IoU between Rt and R
′

u is denoted by
−−→
IoU tu.

Similarly, we compute
←−−
IoU tu with backward optical flow.

We regard Rt and Ru as a successful match if their match-

ing score meets min(
←−−
IoU tu,

−−→
IoU tu) > τ . We keep the one

with the highest matching score if Rt has several successful

matches. We show the statistics of region correspondences

on the NYUDv2 dataset in Figure 3.

It shows that 87.17% of the regions are relatively small

(less than 2000 pixels) The plot on the right shows that those

small regions generally only find less than 10 matches in

a whole video. Contrariwise, even slightly bigger regions
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Figure 3: Statistics of region correspondences on the

NYUDv2 dataset. (left) Distribution of region sizes; (right)

Histogram of the average number of matches over region

sizes.

can be matched more easily and they cover large portions

of images. They usually have more than 40 matches in a

whole video, and thus provide adequate information for our

multi-view network.

3.2. SpatioTemporal DataDriven Pooling (STD2P)

Here, we describe our Spatio-Temporal Data-Driven

Pooling (STD2P) model that uses the spatio-temporal struc-

ture of the computed region correspondences to aggregate

information across views as illustrated in Figure 2. While

the proposed method is highly compatible with recent CNN

and FCN models, we build on a per frame model using [26].

In more detail, we refine the output of the deconvolution

layer with superpixels and aggregate the information from

multiple views by three layers: a spatial pooling layer, a

temporal pooling layer and a region-to-pixel layer.

Spatial pooling layer. The input to the spatial pooling

layer is a feature map Is ∈ RN×C×H×W for N frames,

C channels with size H × W and a superpixel map S ∈
RN×H×W encoded with the region index. It generates the

output Os ∈ RN×C×P , where P is the maximum num-

ber of superpixels. The superpixel map S guides the for-

ward and backward propagation of the layer. Here, Ωij =
{(x, y)|S(i, x, y) = j} denotes a superpixel in the i-th

frame with region index j. Then, the forward propagation

of spatial average pooling can be formulated as

Os(i, c, j) =
1

|Ωij |

∑

(x,y)∈Ωij

Is(i, c, x, y) (1)

for each channel index c of the i-th frame and region in-

dex j. We train our model using stochastic gradient de-

scent. The gradient of the input Is(i, c, x, y), where (x, y) ∈
Ωij , in our spatial pooling is calculated by back propaga-

tion [32],

∂L

∂Is(i, c, x, y)
=

∂L

∂Os(i, c, j)

∂Os(i, c, j)

∂Is(i, c, x, y)

=
1

|Ωij |

∂L

∂Os(i, c, j)
.

(2)

Temporal pooling layer. Similarly, we formulate our

temporal pooling which fuses the information from N

frames It ∈ RN×C×P , which is the output of spatial pool-

ing layer, to one frame Ot ∈ RC×P . This layer also needs

superpixel information Ωij , which is the superpixel with in-

dex j of the i-th input frame. If Ωij 6= ∅, there exists

correspondence. The forward propagation can be expressed

as

Ot(c, j) =
1

K

∑

Ωij 6=∅

It(i, c, j) (3)

for channel index c and region index j, where K =
|{i|Ωij 6= ∅, 1 ≤ i ≤ N}|, which is the number of matched

frames for j-th region. The gradient is calculated by

∂L

∂It(i, c, j)
=

∂L

∂Ot(c, j)

∂Ot(c, j)

∂It(i, c, j)

=
1

K

∂L

∂Ot(c, j)
.

(4)

Region-to-pixel layer. To directly optimize a semantic

segmentation model with dense annotations, we map the re-

gion based feature map Ir ∈ RC×P to a dense pixel-level

prediction Or ∈ RC×H×W . This layer needs a superpixel

map on the target frame Starget ∈ RH×W to perform for-

ward and backward propagation. The forward propagation

is expressed as

Or(c, x, y) = Ir(c, j), Starget(x, y) = j. (5)

The gradient is computed by

∂L

∂Ir(c, j)
=

∑

Starget(x,y)=j

∂L

∂Or(c, x, y)

∂Or(c, x, y)

∂Ir(c, j)

=
∑

Starget(x,y)=j

∂L

∂Or(c, x, y)
.

(6)
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Figure 4: Visualization examples of the semantic segmentation on NYUDv2. Column 1 shows the RGB images and column

2 shows the ground truth (black represents the unlabeled pixels). Columns 3 to 6 show the results from CRF-RNN [40],

DeepLab-LFOV [6], BI(3000) [12] and E2S2 [4], respectively. Columns 7 to 9 show the results from FCN [26], single-view

superpixel and multi-view pixel baselines. The results from our whole system are shown in column 10. Best viewed in color.

Implementation details. We regard the frames with

groundtruth annotations as target frames. For each target

frame, we equidistantly sample up to 100 frames around it

with the static interval of 3 frames. Next, we compute the

superpixels [15] and Epic flow [31] with the default settings

provided in the corresponding source codes. The thresh-

old τ for the computation of region correspondence is 0.4
(cf. section 3.1). Finally, for each RGBD sequence, we

randomly sample 11 frames including the target frame to-

gether with their correspondence maps as the input for our

network. We use RGB images and HHA representations

of depth [15] and train the network by stochastic gradient

descent with momentum term. Due to the memory lim-

itation, we first run FCN and cache the output pool4 rgb

and pool4 hha. Then, we finetune the layers after pool4

with a new network which is the copy of the higher lay-

ers in FCN. We use a minibatch size of 10, momentum

0.9, weight decay 0.0005 and fixed learning rate 10−14.

We finetune our model by using cross entropy loss with

1000 iterations for all our models in the experiments. We

implement the proposed network using the Caffe frame-

work [17], and the source code is available at https:

//github.com/SSAW14/STD2P.

4. Experiments and analysis

We evaluate our approach on the 4-class [30], 13-

class [7], and 40-class [14] tasks of the NYU–Depth–V2

(NYUDv2) dataset [30], and 33-class task of the SUN3D

dataset [38].

The NYUDv2 dataset contains 518 RGBD videos, which

have more than 400,000 images. Among them, there are

1449 densely labeled frames, which are split into 795 train-

ing images and 654 testing images. We follow the experi-

mental settings of [9] to test on 65 labeled frames. We com-

pare our models of different settings to previous state-of-

the-art multi-view methods as well as single-view methods,

which are summarized in Table 1. We report the results on

the labeled frames, using the same evaluation protocol and

metrics as [26], pixel accuracy (Pixel Acc.), mean accuracy

(Mean Acc.), region intersection over union (Mean IoU),

and frequency weighted intersection over union (f.w. IoU).

Table 1: Configurations of competing methods

RGB RGBD

Single-View [11, 18] [4, 5, 6, 9, 12, 15, 26, 36, 37, 40]

Multi-View / [7, 16, 35, 27]

4.1. Results on NYUDv2 40class task

Table 2 evaluates performance of our method on

NYUDv2 40-class task and compares to state-of-the-art

methods and related approaches [26, 9, 15, 18, 11, 40, 5,

6, 12, 4] 1. We include 3 versions of our approach:

Our superpixel model is trained on single frames without

additional unlabeled data, and tested using a single target

frame. It improves the baseline FCN on all four metrics by

at least 2 percentage points (pp), and it achieves in particular

1For [26, 9, 15, 18, 11], we copy the performance from their paper. For

[40, 5, 6, 12, 4], we run the code provided by the authors with RGB+HHA

images. Specifically, for [12], we also increase the maximum number of

superpixels from 1000 to 3000. The original coarse version and the fine

version are abbreviated as BI(1000) and BI(3000).
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Table 2: Performance of the 40-class semantic segmentation task on NYUDv2. We compare our method to various state-of-

the-art methods: [26, 15, 18, 11] are also based on convolutional networks, [5, 40, 6] are the models based on convolutional

networks and CRF, and [12, 4, 9] are region labeling methods, and thus related to ours. We mark the best performance in all

methods with BOLD font, and the second best one is written with UNDERLINE.
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CRF-RNN [40] 57.9 31.4 57.2 45.4 36.9 39.1 4.9 14.6 9.5 29.5 66.3 48.9 35.4 51.0

DeepLab [5] 55.3 37.7 57.9 47.7 40.0 44.7 6.6 18.0 12.9 33.8 68.7 46.9 36.8 52.5

DeepLab-LFOV [6] 67.0 41.8 69.7 46.8 40.1 45.1 2.1 20.7 12.4 33.5 70.3 49.6 39.4 54.7

BI (1000) [12] 45.9 15.8 56.5 32.2 24.7 17.1 0.1 12.2 6.7 21.9 57.7 37.8 27.1 41.9

BI (3000) [12] 44.7 15.8 53.8 32.1 22.8 19.0 0.1 12.3 5.3 23.2 58.9 39.3 27.7 43.0

E2S2 [4] 35.0 17.6 31.8 36.3 14.8 26.0 9.9 14.5 9.3 20.9 58.1 52.9 31.0 44.2

FCN [26] 57.6 30.1 61.3 44.8 32.1 39.2 4.8 15.2 7.7 30.0 65.4 46.1 34.0 49.5

Ours (superpixel) 66.1 37.4 56.1 46.3 34.5 26.7 5.8 12.7 12.3 30.6 68.5 48.7 36.0 52.9

Ours (superpixel+) 66.7 34.1 62.8 47.8 35.1 26.4 8.8 19.3 10.9 29.2 68.4 52.1 38.1 54.0

Ours (full model) 60.7 42.2 62.7 47.4 38.6 28.5 7.3 18.8 15.1 31.4 70.1 53.8 40.1 55.7

better performance than recently proposed methods based

on superpixels and CNN[12, 4].

Our superpixel+ model leverages additional unlabeled

data in the training while it only uses the target frame for

test. It obtains 3.4pp, 2.1pp, 1.1pp improvements over the

superpixel model on Mean Acc., Mean IoU and f.w. IoU,

leading to more favorable performance than many state-of-

the-art methods [9, 15, 18, 11, 40, 5, 12, 4]. This highlights

the benefits of leveraging unlabeled data.
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Table 3: Comparison of average and max spatio-temporal

data-driven pooling.

Spatial/Temporal Pixel Acc. Mean Acc. Mean IoU f.w. IoU

AVG / AVG 70.1 53.8 40.1 55.7

AVG / MAX 69.4 51.0 38.0 54.4

MAX / AVG 66.4 45.4 33.8 49.6

MAX / MAX 64.9 44.5 32.1 47.9

Our full model leverages additional unlabeled data both

in the training and test. It achieves a consistent im-

provement over the superpixel+ model and outperforms

all competitors in Mean Acc., Mean IoU and f.w. IoU

by 0.9pp, 0.7pp, 1.0pp respectively. Particularly strong

improvements are observed on challenging object classes

such as dresser(+7.2pp), door(+4.8pp), bed(+4.7pp) and

TV(+3.1pp).

Figure 4 demonstrates that our method is able to produce

smooth predictions with accurate boundaries. We present

the most related methods, which either apply CRF [40, 6]

or incorporate superpixels [12, 4], in the columns 3 to 6

of this figure. According to the qualitative comparison to

these approaches, we can see the benefit of our method. It

captures small objects like chair legs, as well as large areas

like floormat and door. In addition, we also present FCN

and the superpixel model at the 7-th and 8-th column of

Figure 4. The FCN is boosted by introducing superpixels

but not as precise as our full model using unlabeled data.

Average vs. max spatio-temporal data-driven pooling.

Our data-driven pooling aggregates the local information

from multiple observations within a segment and across

multiple views. Average pooling and max pooling are

canonical choices used in many deep neural network archi-

tectures. Here we test average pooling and max pooling

both in the spatial and temporal pooling layer, and show the

results in Table 3. All the models are trained with multi-

ple frames, and tested on multiple frames. Average pooling

turns out to perform best for spatial and temporal pooling.

This result confirms our design choice.

Region vs. pixel correspondences. We compare our full

model, which is built on the region correspondences, to the

model with pixel correspondences. It only uses the per-pixel

correspondences by optical flow and applies average pool-

ing to fuse the information from multiple view. The visual-

ization results of this baseline are presented in column 9 of

Figure 4. Obtaining accurate pixel correspondences is chal-

lenging because the optical flow is not perfect and the error

can accumulate over time. Consequently, the model with

pixel correspondences only improves slightly over the FCN

baseline, as it is also reflected in the numbers in Table 4.

Establishing region correspondences with the proposed re-
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Figure 5: The performance of multi-view prediction with

varying maximum distance. Green lines show the results of

using future and past views. Blue lines show the results of

only using past views.

Table 4: Comparison results with baselines on NYUDv2

40-class task

Methods Pixel Acc. Mean Acc. Mean IoU f.w. IoU

FCN [26] 65.4 46.1 34.0 49.5

Pixel Correspondence 66.2 45.9 34.6 50.2

Superpixel Correspondence 70.1 53.8 40.1 55.7

jection strategy described in section 3.1 seems indeed to be

favorable over pixel correspondences. Our full model shows

a significant improvement over the pixel-correspondence

baseline and FCN in all 4 measures.

Analysis of multi-view prediction. In our multi-view

model, we subsample frames from a whole video for com-

putational considerations. There is a trade-off between

close-by and distant frames to be made. If we select frames

far away from the target frames, they can provide more di-

verse views of an object, while matching is more challeng-

ing and potentially less accurate than for close-by frames.

Hence, we analyze the influence of the distance of selected

frames to target frames, and report the Mean Acc. and Mean

IoU in Figure 5. In results, providing wider views is help-

ful, as the performance is improved with the increase of max

distance. And selecting the data in the future, which is an-

other way to provide wider views, also contributes to the

improvements of performance.

4.2. Results on NYUDv2 4class and 13class tasks

To show the effectiveness of our multi-view seman-

tic segmentation approach, we compare our method to

previous state-of-the-art multi-view semantic segmentation

methods [7, 16, 35, 27] on the 4-class and 13-class tasks of

NYUDv2 as shown in Table 5. Besides, we also present pre-

vious state-of-the-art single-view methods [11, 37, 36]. We

observe that our superpixel+ model already outperforms

all the multi-view competitors, and the proposed temporal

pooling scheme further boosts Pixel Acc. and Mean Acc.

by more than 1pp and then outperforms the state-of-the-art
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Image GT CRF-RNN DeepLab-LFOV BI(3000) E2S2 FCN Our full model

Figure 6: Qualititive results of the SUN3D dataset. For each example, the images are arranged from top to bottom, from left

to right as color image, groundtruth, CRF-RNN [40], DeepLab-LFOV [6], BI [12], E2S2 [4], FCN [26] and ours.

Table 5: Performance of the 4-class (left) and 13-class

(right) semantic segmentation tasks on NYUDv2.

Methods Pixel Acc. Mean Acc. Pixel Acc. Mean Acc.

Couprie et al. [7] 64.5 63.5 52.4 36.2

Hermans et al. [16] 69.0 68.1 54.2 48.0

Stückler et al. [35] 70.6 66.8 - -

McCormac et al. [27] - - 69.9 63.6

Wang et al. [36] - 65.3 - 42.2

Wang et al. [37] - 74.7 - 52.7

Eigen et al. [11] 83.2 82.0 75.4 66.9

Ours (superpixel+) 82.7 81.3 74.8 67.0

Ours (full model) 83.6 82.5 75.8 68.4

[11]. In particular, the recent proposed method by McCor-

mac et al. [27] is also built on CNN, however, their perfor-

mance on 13-class task is about 5pp worse than ours.

4.3. Results on SUN3D 33class task

Table 6 shows the results of our method and baselines

on the SUN3D dataset. We follow the experimental set-

tings of [9] to test all the methods [9, 40, 5, 6, 12, 4, 26]

on all 65 labeled frames in SUN3D, which are trained with

the NYUDv2 40-class annotations. After computing the 40-

class prediction, we map 7 unseen semantic classes into 33

classes. Specifically, floormat is merged to floor, dresser is

merged to other furni and five other classes are merged to

other props. Among all the methods, we achieve the best

Mean IoU score that our superpixel+ and full model are

1.2pp and 4.7pp better than [9] and [6] . For Pixel Acc.,

our method is comparable to the previous state of the art

[9]. In addition, we observe that our superpixel+ model

boosts the baseline FCN by 3.7pp, 2.3pp, 3.3pp, 3.9pp on

the four metrics, and applying multi-view information fur-

ther improves 3.0pp, 0.4pp, 3.5pp, 3.7pp, respectively. Be-

sides, we achieve much better performance than DeepLab-

Table 6: Performance of the 33-class semantic segmentation

task on SUN3D. All 65 images are used as the test set.

Methods Pixel Acc. Mean Acc. Mean IoU f.w. IoU

Mutex Constraints [9] 65.7 - 28.2 51.0

CRF-RNN [40] 59.8 - 25.5 43.3

DeepLab [5] 60.9 30.7 24.0 44.1

DeepLab-LFOV [6] 62.3 35.3 28.2 46.2

BI (1000) [12] 53.8 31.1 20.8 37.1

BI (3000) [12] 53.9 31.6 21.1 37.4

E2S2 [4] 56.7 47.7 27.2 43.3

FCN [26] 58.8 38.5 26.1 43.9

Ours (superpixel+) 62.5 40.8 29.4 47.8

Ours (full model) 65.5 41.2 32.9 51.5

LFOV, which is comparable to our model on the NYUDv2

40-class task. This illustrates the generalization capability

of our model, even without finetuning on the new domain

or dataset.

5. Conclusion

We have presented a novel semantic segmentation ap-

proach using image sequences. We design a superpixel-

based multi-view semantic segmentation network with

spatio-temporal data-driven pooling which can receive mul-

tiple images and their correspondence as input. We prop-

agate the information from multiple views to the target

frame, and significantly improve the semantic segmentation

performance on the target frame. Besides, our method can

leverage large scale unlabeled images for training and test,

and we show that using unlabeled data also benefits single

image semantic segmentation.

Acknowledgments

This research was supported by the German Research

Foundation (DFG CRC 1223) and the ERC Starting Grant

VideoLearn.

84844



References
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