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Abstract

In this paper we propose an approach for articulated

tracking of multiple people in unconstrained videos. Our

starting point is a model that resembles existing architec-

tures for single-frame pose estimation but is substantially

faster. We achieve this in two ways: (1) by simplifying and

sparsifying the body-part relationship graph and leveraging

recent methods for faster inference, and (2) by offloading a

substantial share of computation onto a feed-forward con-

volutional architecture that is able to detect and associate

body joints of the same person even in clutter. We use this

model to generate proposals for body joint locations and

formulate articulated tracking as spatio-temporal grouping

of such proposals. This allows to jointly solve the associ-

ation problem for all people in the scene by propagating

evidence from strong detections through time and enforc-

ing constraints that each proposal can be assigned to one

person only. We report results on a public “MPII Human

Pose” benchmark and on a new “MPII Video Pose” dataset

of image sequences with multiple people. We demonstrate

that our model achieves state-of-the-art results while using

only a fraction of time and is able to leverage temporal in-

formation to improve state-of-the-art for crowded scenes1.

1. Introduction

This paper addresses the task of articulated human pose

tracking in monocular video. We focus on scenes of realistic

complexity that often include fast motions, large variabil-

ity in appearance and clothing, and person-person occlu-

sions. A successful approach must thus identify the number

1The models and the “MPII Video Pose” dataset are available at pose.

mpi-inf.mpg.de/art-track.

Figure 1. Example articulated tracking results of our approach.

of people in each video frame, determine locations of the

joints of each person and associate the joints over time.

One of the key challenges in such scenes is that peo-

ple might overlap and only a subset of joints of the person

might be visible in each frame either due to person-person

occlusion or truncation by image boundaries (c.f . Fig. 1).

Arguably, resolving such cases correctly requires reasoning

beyond purely geometric information on the arrangement

of body joints in the image, and requires incorporation of a

variety of image cues and joint modeling of several persons.

The design of our model is motivated by two factors.

We would like to leverage bottom-up end-to-end learning

to directly capture image information. At the same time we

aim to address a complex multi-person articulated tracking

problem that does not naturally lend itself to an end-to-end

prediction task and for which training data is not available

in the amounts usually required for end-to-end learning.

To leverage the available image information we learn a

model for associating a body joint to a specific person in an

end-to-end fashion relying on a convolutional network. We

then incorporate these part-to-person association responses

into a framework for jointly reasoning about assignment of

body joints within the image and over time. To that end we

use the graph partitioning formulation that has been used for

people tracking and pose estimation in the past [24, 22], but

has not been shown to enable articulated people tracking.

To facilitate efficient inference in video we resort to fast
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inference methods based on local combinatorial optimiza-

tion [19] and aim for a sparse model that keeps the number

of connections between variables to a minimum. As we

demonstrate, in combination with feed-forward reasoning

for joint-to-person association this allows us to achieve sub-

stantial speed-ups compared to state-of-the-art [13] while

maintaining the same level of accuracy.

The main contribution of this work is a new articulated

tracking model that operates by bottom-up assembly of part

detections within each frame and over time. In contrast

to [11, 21] this model is suitable for scenes with an un-

known number of subjects and reasons jointly across multi-

ple people incorporating inter-person exclusion constraints

and propagating strong observations to neighboring frames.

Our second contribution is a formulation for single-

frame pose estimation that relies on a sparse graph between

body parts and a mechanism for generating body-part pro-

posals conditioned on a person’s location. This is in contrast

to state-of-the-art approaches [22, 13] that perform expen-

sive inference in a full graph and rely on generic bottom-up

proposals. We demonstrate that a sparse model with a few

spatial edges performs competitively with a fully-connected

model while being much more efficient. Notably, a sim-

ple model that operates in top-down/bottom-up fashion ex-

ceeds the performance of a fully-connected model while be-

ing 24x faster at inference time (cf. Tab. 3). This is due to

offloading of a large share of the reasoning about body-part

association onto a feed-forward convolutional architecture.

Finally, we contribute a new challenging dataset for eval-

uation of articulated body joint tracking in crowded realistic

environments with multiple overlapping people.

Related work. Convolutional networks have emerged as an

effective approach to localizing body joints of people in im-

ages [27, 28, 20, 13] and have also been extended for joint

estimation of body configurations over time [11], and 3D

pose estimation in outdoor environments in multi-camera

setting [9, 10].

Current approaches are increasingly effective for esti-

mating body configurations of single people [27, 28, 20, 5,

11] achieving high accuracies on this task, but are still fail-

ing on fast moving and articulated limbs. More complex re-

cent models jointly reason about entire scenes [22, 13, 15],

but are too complex and inefficient to directly generalize to

image sequences. Recent feed-forward models are able to

jointly infer body joints of the same person and even op-

erate over time [11] but consider isolated persons only and

do not generalize to the case of multiple overlapping peo-

ple. Similarly, [6, 21] consider a simplified task of tracking

upper body poses of isolated upright individuals.

We build on recent CNN detectors [13] that are effec-

tive in localizing body joints in cluttered scenes and explore

different mechanisms for assembling the joints into multi-

ple person configurations. To that end we rely on a graph

partitioning approach closely related to [24, 22, 13]. In con-

trast to [24] who focus on pedestrian tracking, and [22, 13]

who perform single frame multi-person pose estimation, we

solve a more complex problem of articulated multi-person

pose tracking.

Earlier approaches to articulated pose tracking in monoc-

ular videos rely on hand-crafted image representations and

focus on simplified tasks, such as tracking upper body poses

of frontal isolated people [23, 30, 26, 7], or tracking walk-

ing pedestrians with little degree of articulation [2, 3]. In

contrast, we address a harder problem of multi-person ar-

ticulated pose tracking and do not make assumptions about

the type of body motions or activities of people. Our ap-

proach is closely related to [16] who propose a similar for-

mulation based on graph partitioning. Our approach differs

from [16] primarily in the type of body-part proposals and

the structure of the spatio-temporal graph. In our approach

we introduce a person-conditioned model that is trained to

associate body parts of a specific person already at the de-

tection stage. This is in contrast to the approach of [16] that

relies on the generic body-part detectors [13].

Overview. Our model consists of the two components: (1)

a convolutional network for generating body part propos-

als and (2) an approach to group the proposals into spatio-

temporal clusters. In Sec. 2 we introduce a general formula-

tion for multi-target tracking that follows [24] and allows us

to define pose estimation and articulated tracking in a uni-

fied framework. We then describe the details of our articu-

lated tracking approach in Sec. 3, and introduce two variants

of our formulation: bottom-up (BU) and top-down/bottom-

up (TD/BU). We present experimental results in Sec. 4.

2. Tracking by Spatio-temporal Grouping

Our body part detector generates a set of proposals D =
{di} for each frame of the video. Each proposal is given

by di = (ti, d
pos
i , πi, τi), where ti denotes the index of the

video frame, dposi is the spatial location of the proposal in

image coordinates, πi is the probability of correct detection,

and τi is the type of the body joint (e.g. ankle or shoulder).

Let G = (D,E) be a graph whose nodes D are the joint

detections in a video and whose edges E connect pairs of

detections that hypothetically correspond to the same target.

The output of the tracking algorithm is a subgraph G′ =
(D′, E′) of G, where D′ is a subset of nodes after filtering

redundant and erroneous detections and E′ are edges link-

ing nodes corresponding to the same target. We specify G′

via binary variables x ∈ {0, 1}D and y ∈ {0, 1}E that de-

fine subsets of edges and nodes included in G′. In particular

each track will correspond to a connected component in G′.

As a general way to introduce constraints on edge con-

figurations that correspond to a valid tracking solution we

introduce a set Z ⊆ {0, 1}D∪E and define a combination

of edge and node indicator variables to be feasible if and
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only if (x, y) ∈ Z. An example of a constraint encoded

through Z is that endpoint nodes of an edge included by y
must also be included by x. Note that the variables x and y
are coupled though Z. Moreover, assuming that (x, y) ∈ Z
we are free to set components of x and y independently to

maximize the tracking objective.

Given image observations we compute a set of features

for each node and edge in the graph. We denote such node

and edge features as f and g respectively. Assuming inde-

pendence of the feature vectors the conditional probability

of indicator functions x of nodes and y of edges given fea-

tures f and g and given a feasible set Z is given by

p(x, y|f, g, Z) ∝ p(Z|x, y)
∏

d∈D

p(xd|f
d)

∏

e∈E

p(ye|g
e), (1)

where p(Z|x, y) assigns a constant non-zero probability to

every feasible solution and is equal to zero otherwise. Min-

imizing the negative log-likelihood of Eq. 1 is equivalent to

solving the following integer-linear program:

min
(x,y)∈Z

∑

d∈D

cdxd +
∑

e∈E

deye , (2)

where cd = log p(xd=1|fd)
p(xd=0|fd)

is the cost of retaining d as part

of the solution, and de = log p(ye=1|ge)
p(ye=0|ge) is the cost of as-

signing the detections linked by an edge e to the same track.

We define the set of constraints Z as in [24]:

∀e = vw ∈ E : yvw ≤ xv (3)

∀e = vw ∈ E : yvw ≤ xw (4)

∀C ∈ cycles(G) ∀e ∈ C :

(1− ye) ≤
∑

e′∈C\{e}

(1− ye′) (5)

Jointly with the objective in Eq. 2 the constraints (3)-(5)

define an instance of the minimum cost subgraph multicut

problem [24]. The constraints (3) and (4) ensure that as-

signment of node and edge variables is consistent. The con-

straint (5) ensures that for every two nodes either all or none

of the paths between these nodes in graph G are contained

in one of the connected components of subgraph G′. This

constraint is necessary to unambigously assign person iden-

tity to a body part proposal based on its membership in a

specific connnected component of G′.

3. Articulated Multi-person Tracking

In Sec. 2 we introduced a general framework for multi-

object tracking by solving an instance of the subgraph mul-

ticut problem. The subgraph multicut problem is NP-hard,

but recent work [24, 19] has shown that efficient approxi-

mate inference is possible with local search methods. The

Frame t

Frame t Frame t+1

(a) (b) (c)
Figure 2. Visualization of (a) sparse connectivity, (b) attractive-

repulsive edges and (c) temporal edges in our model. We show

only a subset of attractive/repulsive and temporal edges for clarity.

framework allows for a variety of graphs and connectivity

patterns. Simpler connectivity allows for faster and more ef-

ficient processing at the cost of ignoring some of the poten-

tially informative dependencies between model variables.

Our goal is to design a model that is efficient, with as few

edges as possible, yet effective in crowded scenes, and that

allows us to model temporal continuity and inter-person ex-

clusion. Our articulated tracking approach proceeds by con-

structing a graph G that couples body part proposals within

the same frame and across neighboring frames. In general

the graph G will have three types of edges: (1) cross-type

edges shown in Fig. 2 (a) and Fig. 3 (b) that connect two

parts of different types, (2) same-type edges shown in Fig. 2

(b) that connect two nodes of the same type in the same im-

age, and (3) temporal edges shown in Fig. 2 (c) that connect

nodes in the neighboring frames.

We now define two variants of our model that we denote

as Bottom-Up (BU) and Top-Down/Bottom-Up (TD/BU). In

the BU model the body part proposals are generated with

our publicly available convolutional part detector [13]2. In

the TD/BU model we substitute these generic part detectors

with a new convolutional body-part detector that is trained

to output consistent body configurations conditioned on the

person location. This alows to further reduce the complex-

ity of the model graph since the task of associating body

parts is addressed within the proposal mechanism. As we

show in Sec. 4 this leads to considerable gains in perfor-

mance and allows for faster inference. Note that the BU and

TD/BU models have identical same-type and temporal pair-

wise terms, but differ in the form of cross-type pairwise

terms, and the connectivity of the nodes in G. For both

models we rely on the solver from [19] for inference.

3.1. BottomUp Model (BU).

For each body part proposal di the detector outputs im-

age location, probability of detection πi, and a label τi that

indicates the type of the detected part (e.g. shoulder or an-

kle). We directly use the probability of detection to derive

the unary costs in Eq. 2 as cdi
= log(πi/(1 − πi)). Image

2http://pose.mpi-inf.mpg.de/
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(c)(a)

shoulder proposals

knee proposals

person detection nodes

(b) 

TD/BU PredictionTD/BU graph

Figure 3. (a) Processing stages of the Top-Down model shown for an example with significantly overlapping people. Left: Heatmaps for

the chin (=root part) used to condition the CNN on the location of the person in the back (top) and in the front (bottom). Middle: Output

heatmaps for all body parts, notice the ambiguity in estimates of the arms of the front person. Right: TD predictions for each person. (b)

Example of the Top-Down/Bottom-Up graph. Red dotted line represents the must-cut constraint. Note that body part proposals of different

type are connected to person nodes but not between each other. (c) Top-Down/Bottom-Up predictions. Notice that the TD/BU inference

correctly assigns the forearm joints of the frontal person.

features fd in this case correspond to the image representa-

tion generated by the convolutional network.

We consider two connectivity patterns for nodes in the

graph G. We either define edges for every pair of propos-

als which results in a fully connected graph in each image.

Alternatively we obtain a sparse version of the model by

defining edges for a subset of part types only as is shown

in Fig. 2 (a). The rationale behind the sparse version is to

obtain a simpler and faster version of the model by omitting

edges between parts that carry little information about each

other’s image location (e.g. left ankle and right arm).

Edge costs. In our Bottom-Up model the cost of the edges

de connecting two body part detections di and dj is defined

as a function of the detection types τi and τj . Following [13]

we thus train for each pair of part types a regression function

that predicts relative image location of the parts in the pair.

The cost de is given by the output of the logistic regression

given the features computed from offset and angle of the

predicted and actual location of the other joint in the pair.

We refer to [13] for more details on these pairwise terms.

Note that our model generalizes [24] in that the edge cost

depends on the type of nodes linked by the edge. It also

generalizes [22, 13] by allowing G to be sparse. This is

achieved by reformulating the model with a more general

type of cycle constraint (5), in contrast to simple triangle

inequalities used in [22, 13]3.

3.2. TopDown/Bottomup Model (TD/BU)

We now introduce a version of our model that operates

by first generating body part proposals conditioned on the

locations of people in the image and then performing joint

3See Sec. 2.1 in [22]

reasoning to group these proposals into spatio-temporal

clusters corresponding to different people. We follow the

intuition that it is considerably easier to identify and detect

individual people (e.g. by detecting their heads) compared

to correctly associating body parts such as ankles and wrists

to each person. We select person’s head as a root part that

is responsible for representing the person location, and del-

egate the task of identifying body parts of the person corre-

sponding to a head location to a convolutional network.

The structure of TD/BU model is illustrated in Fig. 3

(b) for the simplified case of two distinct head detections.

Let us denote the set of all root part detections as Droot =
{drooti }. For each pair of the root nodes we explicitly set

the corresponding edge indicator variables ydroot
j

,droot
k

= 0.

This implements a “must-not-link” constraint between these

nodes, and in combination with the cycle inequality (5) im-

plies that each proposal can be connected to one of the “per-

son nodes” only. The cost for an edge connecting detection

proposal dk and a “person node” drooti is based on the con-

ditional distribution pdc
k
(dposk |drooti ) generated by the con-

volutional network. The output of such network is a set

of conditional distributions, one for each node type. We

augment the graph G with attractive/repulsive and tempo-

ral terms as described in Sec. 3.3 and Sec. 3.4 and set the

unary costs for all indicator variables xd to a constant. Any

proposal not connected to any of the root nodes is excluded

from the final solution. We use the solver from [19] for

consistency, but a simpler KL-based solver as in [24, 18]

could be used as well since the TD/BU model effectively

ignores the unary variables xd. The processing stages of

TD/BU model are shown in Fig. 3. Note that the body-part

heatmaps change depending on the person-identity signal
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conv1 - conv4_4 

predict all parts

of all people

root part heatmap

+

merge upstream

Person Condition block

elbows and hips
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conv4_14 conv4_18

Spatial Propagation

knees

final prediction

conv5_3

Spatial Propagation
... ... ...

Figure 4. CNN architecture based on ResNet-101 for computing person conditioned proposals and pairwise terms. SP block for shoulders

at conv 4 8 is omitted for clarity.

provided by the person’s neck, and that the bottom-up step

was able to correct the predictions on the forearms of the

front person.

Implementation details. For head detection, we use a ver-

sion of our model that contains the two head parts (neck and

head top). This makes our TD/BU model related to the hier-

archical model defined in [13] that also uses easier-to-detect

parts to guide the rest of the inference process. However

here we replace all the stages in the hierarchical inference

except the first one with a convolutional network.

The structure of the convolutional network used to gen-

erate person-conditioned proposals is shown on Fig. 4. The

network uses the ResNet-101 from [12] that we modify to

bring the stride of the network down to 8 pixels [13]. The

network generates predictions for all body parts after the

conv4 4 block. We use the cross-entropy binary classifi-

cation loss at this stage to predict the part heatmaps. At

each training iteration we forward pass an image with mul-

tiple people potentially in close proximity to each other.

We select a single person from the image and condition

the network on the person’s neck location by zeroing out

the heatmap of the neck joint outside the ground-truth re-

gion. We then pass the neck heatmap through a convolu-

tional layer to match the dimensionality of the feature chan-

nels and add them to the main stream of the ResNet. We

finally add a joint prediction layer at the end of the network

with a loss that considers predictions to be correct only if

they correspond to the body joints of the selected person.

Spatial propagation (SP). In our network the person iden-

tity signal is provided by the location of the head. In princi-

ple the receptive field size of the network is large enough

to propagate this signal to all body parts. However we

found that it is useful to introduce an additional mecha-

nism to propagate the person identity signal. To that end we

inject intermediate supervision layers for individual body

parts arranged in the order of kinematic proximity to the

root joint (Fig. 4). We place prediction layers for shoulders

at conv4 8, for elbows and hips at conv4 14 and for knees at

conv4 18. We empirically found that such an explicit form

of spatial propagation significantly improves performance

on joints such as ankles, that are typically far from the head

in the image space (see Tab. 2 for details).

Training. We use Caffe’s [17] ResNet implementation and

initialize from the ImageNet-pre-trained models. Networks

are trained on the MPII Human Pose dataset [1] with SGD

for 1M iterations with stepwise learning rate (lr=0.002 for

400k, lr=0.0002 for 300k and lr=0.0001 for 300k).

3.3. Attractive/Repulsive Edges

Attractive/repulsive edges are defined between two pro-

posals of the same type within the same image. The costs of

these edges is inversely-proportional to distance [13]. The

decision to group two nodes is made based on the evidence

from the entire image, which is in contrast to typical non-

maximum suppression based on the state of just two detec-

tions. Inversely, these edges prevent grouping of multiple

distant hypothesis of the same type, e.g. prevent merging

two heads of different people.

3.4. Temporal Model

Regardless of the type of within frame model (BU

or TD/BU) we rely on the same type of temporal edges

that connect nodes of the same type in adjacent frames.

We derive the costs for such temporal edges via logis-

tic regression. Given the feature vector gij the prob-

ability that the two proposals di and dj in adjacent

frames correspond to the same body part is given by:

p(yij = 1|gij) = 1/(1 + exp(−〈ωt, gij〉)), where gij =

(∆L2
ij ,∆Sift

ij ,∆DM
ij , ∆̃DM

ij ), and ∆L2
ij = ‖dposi - dposj ‖2,

∆Sift
ij is Euclidean distance between the SIFT descriptors

computed at dposi and dposj , and ∆DM
ij and ∆̃DM

ij measure

the agreement with the dense motion field computed with

the DeepMatching approach of [29].

For SIFT features we specify the location of the detec-

tion proposal, but rely on SIFT to identify the local orien-

tation. In cases with multiple local maxima in orientation

estimation we compute SIFT descriptor for each orientation

and set ∆Sift
ij to the minimal distance among all pairs of de-

scriptors. We found that this makes the SIFT distance more

robust in the presence of rotations of the body limbs.

We define the features ∆DM
ij and ∆̃DM

ij as in [25]. Let

Ri = R(di) be an squared image region centered on the

part proposal di. We define ∆DM
ij as a ratio of the number
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of point correspondences between the regions Ri and Rj

and the total number of point correspondences in either of

them. Specifically, let C = {ck|k = 1, . . . ,K} be a set of

point correspondences between the two images computed

with DeepMatching, where ck = (ck1 , c
k
2) and ck1 and ck2 de-

note the corresponding points in the first and second image

respectively. Using this notation we define:

∆DM
ij =

|{ck|c
k
1 ∈ Ri ∧ ck2 ∈ Rj}|

|{ck|ck1 ∈ Ri}|+ |{ck|ck2 ∈ Rj}|
. (6)

The rationale behind computing ∆DM
ij by aggregating

across multiple correspondences is to make the feature ro-

bust to outliers and to inaccuracies in body part detection.

∆̃DM
ij is defined analogously, but using the DeepMatching

correspondences obtained by inverting the order of images.

Discussion. As we demonstrate in Sec. 4, we found the set

of features described above to be complementary to each

other. Euclidean distance between proposals is informa-

tive for finding correspondences for slow motions, but fails

for faster motions and in the presence of multiple people.

DeepMatching is usually effective in finding corresponding

regions between the two images, but occasionally fails in

the case of sudden background changes due to fast motion

or large changes in body limb orientation. In these cases

SIFT is often still able to provide a meaningful measure of

similarity due to its rotation invariance.

4. Experiments

4.1. Datasets and evaluation measure

Single frame. We evaluate our single frame models on the

MPII Multi-Person dataset [1]. We report all intermediate

results on a validation set of 200 images sampled uniformly

at random (MPII Multi-Person Val), while major results and

comparison to the state of the art are reported on the test set.

Video. In order to evaluate video-based models we intro-

duce a novel “MPII Video Pose” dataset4. To this end we

manually selected challenging keyframes from MPII Multi-

Person dataset. Selected keyframes represent crowded

scenes with highly articulated people engaging in various

dynamic activities. In addition to each keyframe, we in-

clude +/-10 neighboring frames from the corresponding

publicly available video sequences, and annotate every sec-

ond frame5. Each body pose was annotated following

the standard annotation procedure [1], while maintaining

person identity throughout the sequence. In contrast to

MPII Multi-Person where some frames may contain non-

annotated people, we annotate all people participating in

the activity captured in the video, and add ignore regions

for areas that contain dense crowds (e.g. static spectators in

4Dataset is available at pose.mpi-inf.mpg.de/art-track.
5The annotations in the original key-frame are kept unchanged.

Setting Head Sho Elb Wri Hip Knee Ank AP τCNN τgraph

BU-full, label 90.0 84.9 71.1 58.4 69.7 64.7 54.7 70.5 0.18 3.06

BU-full 91.2 86.0 72.9 61.5 70.4 65.4 55.5 71.9 0.18 0.38

BU-sparse 91.1 86.5 70.7 58.1 69.7 64.7 53.8 70.6 0.18 0.22

TD/BU + SP 92.2 86.1 72.8 63.0 74.0 66.2 58.4 73.3 0.947 0.08

Table 1. Effects of various variants of BU model on pose estima-

tion performance (AP) on MPII Multi-Person Val and comparison

to the best variant of TD/BUmodel.

the dancing sequences). In total, our dataset consists of 28
sequences with over 2, 000 annotated poses.

Evaluation details. The average precision (AP) mea-

sure [22] is used for evaluation of pose estimation accu-

racy. For each algorithm we also report run time τCNN of

the proposal generation and τgraph of the graph partitioning

stages. All time measurements were conducted on a single

core Intel Xeon 2.70GHz. Finally we also evaluate tracking

perfomance using standard MOTA metric [4].

Evaluation on our “MPII Video Pose” dataset is per-

formed on the full frames using the publicly available eval-

uation kit of [1]. On MPII Multi-Person we follow the of-

ficial evaluation protocol6 and evaluate on groups using the

provided rough group location and scale.

4.2. Singleframe models

We compare the performance of different variants of our

Bottom-Up (BU) and Top-Down/Bottom-Up (TD/BU) mod-

els introduced in Sec. 3.1 and Sec. 3.2. For BU we consider

a model that (1) uses a fully-connected graph with up to

1, 000 detection proposals and jointly performs partitioning

and body-part labeling similar to [13] (BU-full, label); (2)

is same as (1), but labeling of detection proposals is done

based on detection score (BU-full); (3) is same as (2), but

uses a sparsely-connected graph (BU-sparse). The results

are shown in Tab. 17. BU-full, label achieves 70.5% AP

with a median inference run-time τgraph of 3.06 s/f. BU-full

achieves 8× run-time reduction (0.38 vs. 3.06 s/f): pre-

labeling detection candidates based on detection score sig-

nificantly reduces the number of variables in the problem

graph. Interestingly, pre-labeling also improves the perfor-

mance (71.9 vs. 70.5% AP): some of the low-scoring de-

tections may complicate the search for an optimal labeling.

BU-sparse further reduces run-time (0.22 vs. 0.38 s/f), as

6http://human-pose.mpi-inf.mpg.de/#evaluation
7Our current implementation of TD/BU operates on the whole image

when computing person-conditioned proposals and computes the propos-

als sequentially for each person. More efficient implementation would only

compute the proposals for a region surrounding the person and run multiple

people in a single batch. Clearly in cases when two people are close in the

image this would still process the same image region multiple times. How-

ever the image regions far from any person would be excluded from pro-

cessing entirely. On average we expect similar image area to be processed

during proposal generation stage in both TD/BU and BU-sparse, and ex-

pect the runtimes τCNN to be comparable for both models.
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Setting Head Sho Elb Wri Hip Knee Ank AP

TD 91.6 84.7 72.9 63.2 72.3 64.7 52.8 71.7

TD + SP 90.7 85.0 72.0 63.1 73.1 65.0 58.3 72.5

TD/BU + SP 92.2 86.1 72.8 63.0 74.0 66.2 58.4 73.3

Table 2. Effects of various versions of TD/BU model on pose esti-

mation performance (AP) on MPII Multi-Person Val.

Setting Head Sho Elb Wri Hip Knee Ank AP τgraph

BU-full 91.5 87.8 74.6 62.5 72.2 65.3 56.7 72.9 0.12

TD/BU+ SP 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 0.005

DeeperCut [13] 79.1 72.2 59.7 50.0 56.0 51.0 44.6 59.4 485

DeeperCut [14] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0 485

Iqbal&Gall [15] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10

Table 3. Pose estimation results (AP) on MPII Multi-Person Test.

it reduces the complexity of the initial problem by sparsify-

ing the graph, at a price of a drop in performance (70.6 vs.

71.9% AP).

In Tab. 2 we compare the variants of the TD/BU model.

Our TD approach achieves 71.7% AP, performing on par

with a more complex BU-full. Explicit spatial propaga-

tion (TD+SP) further improves the results (72.5 vs. 71.7%

AP). The largest improvement is observed for ankles: pro-

gressive prediction that conditions on the close-by parts in

the tree hierarchy reduces the distance between the condi-

tioning signal and the location of the predicted body part

and simplifies the prediction task. Performing inference

(TD/BU+SP) improves the performance to 73.3% AP, due

to more optimal assignment of part detection candidates to

corresponding persons. Graph simplification in TD/BU al-

lows to further reduce the inference time for graph parti-

tioning (0.08 vs. 0.22 for BU-sparse).

Comparison to the State of the Art. We compare the

proposed single-frame approaches to the state of the art on

MPII Multi-Person Test and WAF [8] datasets. Compari-

son on MPII is shown in Tab. 3. Both BU-full and TD/BU

improve over the best published result of DeeperCut [14],

achieving 72.9 and 74.3% AP respectively vs. 70.0% AP

by DeeperCut. For the TD/BU the improvements on artic-

ulated parts (elbows, wrists, ankles, knees) are particularly

pronounced. We argue that this is due to using the network

that is directly trained to disambiguate body parts of dif-

ferent people, instead of using explicit geometric pairwise

terms that only serve as a proxy to person’s identity. Over-

all, the performance of our best TD/BU method is notice-

ably higher (74.3 vs. 70.0% AP). Remarkably, its run-time

τgraph of graph partitioning stage is 5 orders of magnitude

faster compared to DeeperCut. This speed-up is due to two

factors. First, TD/BU relies on a faster solver [19] that tack-

les the graph-partitioning problem via local search, in con-

trast to the exact solver used in [13]. Second, in the case of

TD/BU model the graph is sparse and a large portion of the

computation is performed by the feed-forward CNN intro-

duced in Sec. 3.2. On WAF [8] dataset TD/BU substantially

Setting Head Sho Elb Wri Hip Knee Ank AP

BU-full 84.0 83.8 73.0 61.3 74.3 67.5 58.8 71.8

+ temporal 84.9 83.7 72.6 61.6 74.3 68.3 59.8 72.2

BU-sparse 84.5 84.0 71.8 59.5 74.4 68.1 59.2 71.6

+ temporal 85.6 84.5 73.4 62.1 73.9 68.9 63.1 73.1

TD/BU+ SP 82.2 85.0 75.7 64.6 74.0 69.8 62.9 73.5

+ temporal 82.6 85.1 76.3 65.5 74.1 70.7 64.7 74.2

Table 4. Pose estimation results (AP) on “MPII Video Pose”.

improves over the best published result (87.7 vs. 82.0% AP

by [14]). We refer to supplemental material for details.

4.3. Multiframe models

Comparison of video-based models. Performance of the

proposed video-based models is compared in Tab. 4. Video-

based models outperform single-frame models in each case.

BU-full+temporal slightly outperforms BU-full, where im-

provements are noticeable for ankle, knee and head.

BU-sparse+temporal noticeably improves over BU-sparse

(73.1 vs. 71.6% AP). We observe significant improve-

ments on the most difficult parts such as ankles (+3.9% AP)

and wrists (+2.6% AP). Interestingly, BU-sparse+temporal

outperforms BU-full + temporal: longer-range connections

such as, e.g., head to ankle, may introduce additional con-

fusion when information is propagated over time. Finally,

TD/BU+temporal improves over TD/BU (+0.7% AP). Sim-

ilarly to BU-sparse+temporal, improvement is most promi-

nent on ankles (+1.8% AP) and wrists (+0.9% AP). Note

that even the single-frame TD/BU outperforms the best tem-

poral BU model. We show examples of articulated tracking

on “MPII Video Pose” in Fig. 5. Temporal reasoning helps

in cases when image information is ambiguous due to close

proximity of multiple people. For example the video-based

approach succeeds in correctly localizing legs of the person

in Fig. 5 (d) and (h).

Temporal features. We perform an ablative experiment

on the “MPII Video Pose” dataset to evaluate the indi-

vidual contribution of the temporal features introduced in

Sec. 3.4. The Euclidean distance alone achieves 72.1 AP,

adding DeepMatching features improves the resuls to 72.5
AP, whereas the combination of all features achieves the

best result of 73.1 AP (details in supplemental material).

Tracking evaluation. In Tab. 5 we present results of the

evaluation of multi-person articulated body tracking. We

treat each body joint of each person as a tracking target

and measure tracking performance using a standard mul-

tiple object tracking accuracy (MOTA) metric [4] that in-

corporates identity switches, false positives and false neg-

atives8. We experimentally compare to a baseline model

8Note that MOTA metric does not take the confidence scores of detec-

tion or track hypotheses into account. To compensate for that in the exper-

iment in Tab. 5 we remove all body part detections with a score ≤ 0.65 for

BU-sparse and ≤ 0.7 for TD/BU prior to evaluation.
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Figure 5. Qualitative comparison of results using single frame based model (BU-sparse) vs. articulated tracking (BU-sparse+temporal).

See http://youtube.com/watch?v=eYtn13fzGGo for the supplemental material showcasing our results.

that first tracks people across frames and then performs per-

frame pose estimation. To track a person we use a reduced

version of our algorithm that operates on the two head joints

only. This allows to achieve near perfect person tracking

results in most cases. Our tracker still fails when the per-

son head is occluded for multiple frames as it does not in-

corporate long-range connectivity between target hypothe-

sis. We leave handling of long-term occlusions for the fu-

ture work. For full-body tracking we use the same inital

head tracks and add them to the set of body part propos-

als, while also adding must-link and must-cut constraints

for the temporal edges corresponding to the head parts de-

tections. The rest of the graph remains unchanged so that

at inference time the body parts can be freely assigned to

different person tracks. For the BU-sparse the full body

tracking improves performance by +5.9 and +5.8 MOTA

on wrists and ankles, and by +5.0 and +2.4 MOTA on el-

bows and knees respectively. TD/BU benefits from adding

temporal connections between body parts as well, but to a

lesser extent than BU-sparse. The most significant improve-

ment is for ankles (+1.4 MOTA). BU-sparse also achieves

the best overall score of 58.5 compared to 55.9 by TD/BU.

This is surprising since TD/BU outperformed BU-sparse on

the pose estimation task (see Tab. 1 and 3). We hypothesize

that limited improvement of TD/BU could be due to balanc-

Setting Head Sho Elb Wri Hip Knee Ank Average

Head track + BU-sparse 70.5 71.7 53.0 41.7 57.0 52.4 41.9 55.5

+ temporal 70.6 72.7 58.0 47.6 57.6 54.8 47.7 58.5

Head track + TD/BU 64.8 69.4 55.4 43.4 56.4 52.2 44.8 55.2

+ temporal 65.0 69.9 56.3 44.2 56.7 53.2 46.1 55.9

Table 5. Tracking results (MOTA) on the “MPII Video Pose”.

ing issues between the temporal and spatial pairwise terms

that are estimated independently of each other.

5. Conclusion

In this paper we introduced an efficient and effective ap-

proach to articulated body tracking in monocular video. Our

approach defines a model that jointly groups body part pro-

posals within each video frame and across time. Group-

ing is formulated as a graph partitioning problem that lends

itself to efficient inference with recent local search tech-

niques. Our approach improves over state-of-the-art while

being substantially faster compared to other related work.
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