
Online Video Object Segmentation via Convolutional Trident Network

Won-Dong Jang

Korea University

wdjang@mcl.korea.ac.kr

Chang-Su Kim

Korea University

changsukim@korea.ac.kr

Abstract

A semi-supervised online video object segmentation al-

gorithm, which accepts user annotations about a target ob-

ject at the first frame, is proposed in this work. We propa-

gate the segmentation labels at the previous frame to the

current frame using optical flow vectors. However, the

propagation is error-prone. Therefore, we develop the con-

volutional trident network (CTN), which has three decod-

ing branches: separative, definite foreground, and definite

background decoders. Then, we perform Markov random

field optimization based on outputs of the three decoders.

We sequentially carry out these processes from the second

to the last frames to extract a segment track of the target ob-

ject. Experimental results demonstrate that the proposed al-

gorithm significantly outperforms the state-of-the-art con-

ventional algorithms on the DAVIS benchmark dataset.

1. Introduction

Video object segmentation aims at clustering pixels in

videos into objects or background. In general, video ob-

ject segmentation algorithms can be grouped into three

categories: unsupervised, semi-supervised, and supervised

ones. Unsupervised algorithms [11, 27, 28, 33, 35, 53] do

not require any annotations about objects. Instead of an-

notations, they discover primary objects in videos using

objectness, saliency, and motion cues. While some algo-

rithms [11, 35, 53] yield a single segment track, the oth-

ers [27, 28, 33] produce multiple segment tracks. Semi-

supervised algorithms [15, 37, 40, 54] track and segment a

target object (or foreground), which is annotated by a user

in the first frame. Supervised algorithms [1, 12, 13] take

user annotations interactively during the segmentation pro-

cess. Although they yield a fine segment track, the annota-

tion tasks can be burdensome for users.

With explosive researches in deep learning, there are re-

markable advances in many vision problems, e.g., object

detection [18], contour detection [57], and semantic seg-

mentation [7]. The encoder-decoder architecture [20] is

widely used in deep learning systems [7,29,32,38,57]. The

encoder extracts features from an input image. The con-

volutional neural networks [18, 25, 45, 47], trained for im-

age classification, are fine-tuned and used as the encoder

in many cases. Since image classification attempts to iden-

tify the class of an object in an image [43], the trained net-

works extract high-level features effectively. The decoder

design varies more according to applications. For exam-

ple, pixel-level classification algorithms (e.g. contour de-

tection [57] and semantic segmentation [32]) adopt convo-

lution layers with unpooling layers in the decoder. On the

contrary, fully connected layers are used for image-level

classification problems (e.g. image classification [45] and

object detection [41]). In this work, we design decoders

for semi-supervised video object segmentation. To the best

of our knowledge, this is the first deep learning-based ap-

proach to semi-supervised video object segmentation.

We propose a semi-supervised online segmentation al-

gorithm, which can separate a target object from the back-

ground sequentially from the first to last frames with mini-

mum user efforts at the first frame only. To track and seg-

ment the target object, we develop the convolutional trident

network (CTN), which has the encoder-decoder architec-

ture. The CTN outputs three probability maps from three

decoding branches: separative, definite foreground, and

definite background decoders. First, we propagate a seg-

mentation label map from the previous frame to the current

frame. We then predict the three probability maps via the

CTN. The three maps are tailored for a two-class Markov

random field (MRF) optimization problem. At the begin-

ning of the MRF optimization, we assign initial pixel la-

bels by thresholding the separative probability map. Also,

we use the definite foreground and background maps to dis-

cover the pixels that should be definitely labeled as the fore-

ground and the background, respectively. By fixing the la-

bels on these definite pixels, the MRF optimizer extracts

the target object more precisely. We perform these pro-

cesses from the second to the last frames. Experimental

results show that the proposed algorithm outperforms the

state-of-the-art conventional algorithms [12, 31, 37, 40] on

the DAVIS dataset [36]. Three major contributions of this

work are:

5849

⊲ Development of the effective CTN, which yields three

tailored probability maps for the MRF optimization.

⊲ Implementation of a fast online algorithm for segment-

ing long videos in practical applications.

⊲ Remarkable performance on the DAVIS benchmark

dataset, which consists of challenging videos.

2. Related Work

2.1. Unsupervised Video Object Segmentation

Unsupervised video object segmentation is a task to ex-

tract segment tracks of primary objects in a video. A pri-

mary object appears frequently across frames in a video.

Inspired by this, early approaches [4, 14, 34, 44] perform

motion segmentation to yield sparse point trajectories, and

transform the sparse trajectories into dense segment tracks

using converting methods such as [14, 33]. Instead of the

point tracking, [27, 28, 30, 59] connect object proposals [9]

across frames in a video.

To discover visually important objects in a video, [11,

35, 53] employ saliency detection techniques. Papazoglou

and Ferrari [35] compute a motion saliency map, called the

inside-outside map, using optical flow boundaries. Fak-

tor and Irani [11] exploit both motion saliency and visual

saliency to separate a segment track from the background.

Wang et al. [53] first compute a spatiotemporal saliency

map using geodesic distances, and then perform energy

minimization based on a global appearance model and a

per-frame location model.

Recently, Jang et al. [23] delineate a primary object

in a video based on the alternate convex optimization of

the foreground and background distributions. Xiao and

Lee [55] first generate box tracks containing objects, and

then apply a pixel-wise segmentation scheme to these

boxes. Bideau and Learned-Miller [2] discover differently

moving objects by considering angles and magnitudes of

optical flow vectors.

2.2. SemiSupervised Video Object Segmentation

In semi-supervised video object segmentation, a target

object is identified by a user at the first frame, and then

tracked automatically in subsequent frames. Note that semi-

supervised algorithms can be categorized into offline or on-

line ones. Offline algorithms separate the target object from

the background in all frames simultaneously. On the con-

trary, online (or streaming) algorithms perform the task of

tracking and segmentation sequentially from the second to

the last frames. While offline algorithms require a huge

memory space for a long video, online ones use a fixed

space regardless of the video duration.

Offline Algorithm: Tsai et al. [49] construct a volumet-

ric graph whose nodes are pixels in all frames, and perform

Encoder

BearFeatures

Decoder

Figure 1. The encoder-decoder architecture [20] for solving vision

problems. In this particular example, semantic segmentation is

performed by pixel-level classification, and the object class ‘Bear’

is predicted by image-level classification.

MRF optimization using a target appearance model and a

spatiotemporal coherency model. Jain and Grauman [22]

first generate temporal superpixels in a video, and then de-

fine an energy function to be minimized. In the minimiza-

tion, two pixels are encouraged to have the same label (fore-

ground or background) if they belong to the same temporal

superpixel. Perazzi et al. [37] train a support vector ma-

chine classifier by employing bounding boxes of a target

object as training samples, and then select object proposals

that are highly similar to the target object.

Online Algorithm: Chockalingam et al. [6] partition a tar-

get object into fragments and represent it with a Gaussian

mixture model (GMM), which is used to trace the target ob-

ject in subsequent frames. Chang et al. [5] divide a video

into temporal superpixels, and achieve video object seg-

mentation by selecting the superpixels that overlap with the

target object at the first frame. Ramakanth and Babu [40]

propagate labels from the previous frame to the current

frame using video seams. Varas and Marques [51] perform

the co-clustering between partitions in the previous frame

and the current frame to address object deformation. Wen

et al. [54] over-segment each frame into superpixels to con-

struct multi-part models of a target object. They trace the

target object based on the inter-frame matching, and update

the multi-part models iteratively. Märki et al. [31] construct

a grid model using color and location features of a target

object and the background. The grid model at the previous

frame is applied to the current frame to delineate the tar-

get object. Tsai et al. [50] perform semi-supervised video

object segmentation and optical flow refinement jointly.

Instead of an object mask, online tracking-by-segmen-

tation algorithms [8, 15, 52] accept an object box as user

input. In [8,15], the segmentation of a target object in a box

is achieved by a Hough voting. Wang et al. [52] generate a

superpixel-based appearance model to compute confidence

maps, which are then converted into segmentation results

based on adaptive thresholding.

2.3. EncoderDecoder Architecture

Many computer vision problems are addressed based on

the encoder-decoder architecture [20], which is illustrated

in Figure 1. The encoder extracts features from an input

image. Then, for example, the decoder can perform pixel-

5850

Frame

Segmentation label

at frame

Optical flow

Inter-frame propagation MRF optimizationInput at frame

Propagation map

at frame

Inference via convolutional trident network

Encoder

Unary cost

computation

Segmentation label

at frame

MRF optimization

Pairwise cost

computation

Background

propagation patch

Foreground

propagation patch

Image patch

Definite

foreground

decoder

Definite

background

decoder

Separative

decoder

Definite background

probability patch

Definite foreground

probability patch

Separative

probability patch

Figure 2. Overview of the proposed algorithm. We perform this process from the second to the last frames sequentially.

level classification or image-level classification using the

extracted features. Noh et al. [32] perform category-wise

semantic segmentation by constructing a decoder, which is

symmetrical to the VGG-16 net encoder [45]. Inspired by

this, Yang et al. [57] train a decoder to detect object con-

tours using a small number of layers. Liu and Han [29]

propose a saliency detection algorithm, which predicts a

multi-scale saliency map at each layer in a decoder. For

each encoded patch, Pinheiro et al. [38] generate an object

proposal by predicting a segmentation mask and an object-

ness score. Dai et al. [7] develop multi-task decoders, which

share the same encoded features, for instance-aware seman-

tic segmentation.

3. Proposed Algorithm

We propose a semi-supervised online video object seg-

mentation algorithm, which yields a segment track of a tar-

get object, annotated by a user at the first frame. The an-

notation can be performed by employing interactive image

segmentation techniques [16, 42, 56].

Figure 2 is an overview of the proposed algorithm. First,

given the segmentation label map for the previous frame

I(t−1), we propagate it to the current frame I(t) using opti-

cal flows. Then, the proposed CTN, which has the encoder-

decoder architecture, produces three probability maps: sep-

arative, definite foreground, and definite background maps.

These maps are tailored for the next MRF optimization step,

which computes the segmentation label map for the current

frame I(t) using unary and pairwise costs. We execute this

process from the second frame I(2) to the last frame I(T) to

yield a segment track.

3.1. Propagation of Segmentation Labels

We exploit the segmentation label map for I(t−1) to

roughly locate the target object in the current frame I(t).
To this end, we first compute backward optical flow vectors

from I(t) to I(t−1). In implementation, we adopt one of the

two optical flow techniques [19, 26]; whereas [19] provides

(a) S(t−1) (b) Backward motion (c) H(t)

Figure 3. Inter-frame propagation of a segmentation label map.

The segmentation label map S(t−1) for frame t− 1 in (a) is prop-

agated by employing the backward optical flow vectors in (b), to

generate the propagation map H(t) in (c)

more accurate optical flow information, [26] requires much

lower computational complexity. For pixel p = [x, y]T , we

propagate the segmentation label from I(t−1) to I(t) by

H(t)(p) = S(t−1)(x+ u
(t)
b (p), y + v

(t)
b (p)) (1)

where [u
(t)
b (p), v

(t)
b (p)]T is the backward optical flow vec-

tor of p in I(t) to I(t−1), and H(t) is the propagation map

for I(t). S(t−1) is the segmentation label map for I(t−1),

whose element is 1 if the corresponding pixel belongs to the

foreground, and 0 otherwise. Figure 3 illustrates the inter-

frame propagation of segmentation labels. We see that the

target object is roughly estimated.

3.2. Inference via Convolutional Trident Network

The propagation map may be inaccurate due to object

deformation, motion blur, occlusion, and optical flow er-

rors. Hence, we infer segmentation information via the

CTN, which has the encoder-decoder architecture, to con-

sider high-level features of the target object. The inferred

information is effectively used to solve a binary labeling

problem as will be discussed in Section 3.3. Figure 4 shows

the architecture of the proposed network.

Network Architecture: The encoder extracts features from

a 224×224×3 input image patch. We choose the VGG-16

net [45] as the encoder, which consists of 13 convolution

layers, 3 fully connected layers, and 5 max-pooling layers.

5851

Conv1_1

Conv1_2

Pooling

Conv2_1

Conv2_2

Pooling

Conv3_1

Conv3_2

Conv3_3

Pooling

Conv4_1

Conv4_2

Conv4_3

Pooling

Conv5_1

Conv5_2

Conv5_3

SD-Dec2

SD-Dec3

SD-Dec4

SD-Dec5

SD-Pred

DFD-Dec1

Unpooling

DFD-Dec2

Unpooling

DFD-Dec3

Unpooling

DFD-Dec4

Unpooling

DFD-Dec5

DFD-Pred

DBD-Dec1

Unpooling

DBD-Dec2

Unpooling

DBD-Dec3

Unpooling

DBD-Dec4

Unpooling

DBD-Dec5

DBD-Pred

Separative

probability patch

Definite

foreground

probability patch

Definite

background

probability patch

SD-Dec1

Unpooling

Unpooling

Unpooling

Unpooling

Image patch

Foreground

propagation

patch

Background

propagation

patch

Separative decoder

Definite foreground

decoder

Definite background

decoder

Encoder

Concatenation

Figure 4. Architecture of the proposed convolutional trident net-

work (CTN) for semi-supervised online video object segmenta-

tion.

We only use the layers up to the 13 convolution layers, as

in [7,29,41]. While early layers encodes low-level features,

later ones characterize high-level attributes.

We draw segmentation inferences from the encoded fea-

tures using three decoders: separative decoder (SD), def-

inite foreground decoder (DFD), and definite background

decoder (DBD). These three decoders provide functional in-

formation, respectively, for the target object segmentation,

which is the binary labeling problem of the foreground and

the background. The decoders have unpooling layers [58]

and convolution layers. The unpooling layers guide the en-

coded features to be decoded in the original image patch

size. In this work, all unpooling layers enlarge their input

patches by a factor of 2 horizontally and vertically.

The goal of the SD is to separate a target object from the

background. First, we concatenate the encoded 14 × 14 ×
512 feature, ‘Conv5 3,’ and the 14×14 foreground propaga-

tion patch, which is resized from the propagation mapH(t).

Due to the resizing into a rather smaller size, the foreground

propagation patch loses details. This is, however, accept-

able since the inter-frame propagation is prone to errors and

can be misleading. We make the decoder robust to those

errors, by employing the smaller but more reliable patch.

Note that the resizing is a kind of low-pass filtering, which

reduces high-frequency noisy components. Then, we feed

the concatenated data into a convolution layer (‘SD-Dec1’)

and an unpooling layer. Pinheiro et al. [39] showed that the

intermediate outputs of the encoder, ‘Conv1 2,’ ‘Conv2 2,’

‘Conv3 3,’ and ‘Conv4 3,’ can improve segmentation qual-

ities in the decoder. Inspired by this, we concatenate the

output of the unpooling layer and ‘Conv4 3,’ and pass it

through a convolution layer (‘SD-Dec2’) and an unpool-

ing layer again. After repeating this sequential process of

concatenation, convolution, unpooling two more times, we

perform concatenation and convolution (‘SD-Dec5’) once

more and then use a prediction layer (‘SD-Pred’) to yield

the separative probability patch, whose elements have high

probabilities on foreground regions.

In segmentation, fixing labels in definite pixels improves

labeling accuracies. Definite pixels indicate locations that

should be labeled as the foreground or the background in-

dubitably. However, it is hard to decide where to fix the

labels. Hence, we develop the DFD and DBD to discover

definite pixels. The DFD identifies definite foreground pix-

els. We set the concatenated data, which is used in the SD,

as the input again. Then, we feed the concatenated input

data into convolution layers (‘DFD-Dec1∼5’) and unpool-

ing layers alternately. In the definite decoders, it is impor-

tant to determine only indubitable pixels, instead of high

quality object boundaries. Therefore, the definite decoders

do not use the intermediate outputs of the encoder. The last

convolution layer, ‘DFD-Pred,’ produces the definite fore-

ground probability patch that represents the probability of

each pixel to be a definite foreground one. On the contrary,

the DBD finds definite background pixels. We first invert

the foreground propagation patch to compute the 14 × 14
background propagation patch. Then, we concatenate the

encoded feature ‘Conv5 3’ and the background propagation

patch to form the input to the DBD, which has the same ar-

chitecture as the DFD. The DBD yields the definite back-

ground probability patch.

In each decoder, the final prediction layer consists of a

convolution layer and a sigmoid layer. The sigmoid layers

make the decoders to yield normalized outputs within [0, 1].

5852

Table 1. Specification of the network decoders. We use the same

kernel settings and the normalization strategies for all three de-

coders, i.e. i ∈ {SD,DFD,DBD}.

i-Dec1 i-Dec2 i-Dec3 i-Dec4 i-Dec5 i-Pred

Kernel size 5× 5 5× 5 5× 5 5× 5 5× 5 3× 3

of kernels 512 256 128 64 32 1

BN X X X X X

ReLU X X X X X

(a) Input image

(b) Object mask

(e) Degraded

object mask
(c) Image patch

(d) Ground-truth

mask for SD

(f) Foreground

propagation patch

(g) Ground-truth

mask for DFD

(h) Ground-truth

mask for DBD

Figure 5. Preprocessing of training data.

The batch normalization (BN) [21] is applied to all convolu-

tion layers in the decoders except for the prediction layers.

Also, the rectified linear unit (ReLU) activation function is

employed after the batch normalization. We use 5 × 5 ker-

nels in all convolution layers, except for the prediction lay-

ers whose kernel size is 3 × 3. Table 1 details the decoder

parameters. Note that we use the identical kernel sizes and

number of kernels for the three decoders.

Training Phase: Annotating objects in all frames in videos

is an arduous task. While there are several datasets for video

object segmentation [4, 12, 23, 28], each of them consists of

a small number of videos from 12 to 59. They are hence

insufficient for training the network in Figure 4. Therefore,

we instead use the PASCAL VOC 2012 dataset [10], which

is released for object classification, detection, and segmen-

tation. Hariharan et al. [17] annotate 26,844 object masks

on 11,355 images in the PASCAL dataset. Among the ob-

ject masks, we choose 25,093 object masks to compose a

training dataset, by discarding small object masks.

Figure 5 illustrates how to preprocess the training

dataset. By cropping a training image and its object mask,

we extract an image patch and its ground-truth mask for the

SD, respectively. We perform the cropping with margins,

proportional to the object size, as shown in Figure 5(b).

Note that the foreground propagation patch and the ground-

truth masks for the DFD and DBD are not available in the

PASCAL dataset. Hence, we generate them through sim-

ple image processing. First, we degrade the object mask to

yield the foreground propagation patch. We imitate propa-

gation errors, by filling in the masked region with random

pixel intensities within [0.5, 1] and then performing partial

suppression and noise addition with circular masks. In Fig-

ure 5(e), the suppression and noise addition are depicted by

blue and yellow circles, respectively. We adjust the radii of

the circular masks according to the object mask size, and

determine their locations randomly. Then, we resize the

degraded object mask to generate the 14 × 14 foreground

propagation patch in Figure 5(f). Next, we synthesize the

ground-truth masks for the DFD and DBD. We apply Gaus-

sian smoothing to the object mask and then perform thresh-

olding to extract inner regions of the object mask. The ex-

tracted regions are defined as the ground-truth mask for the

DFD, as shown in Figure 5(g). The ground-truth mask for

the DBD is produced in a similar manner, by employing the

inverse of the object mask, as shown in Figure 5(h).

We use the Caffe library [24] to train the proposed net-

work. We compose a minibatch with eight training data.

We fix the weight parameters of the encoder as in [7, 57].

We initialize the convolution layers in the decoders with

random values. We adopt the cross-entropy losses between

ground-truth masks and predicted probability patches. We

train the proposed network via the stochastic gradient de-

scent. We set the learning rate to 0.001 for the first 55

epochs and 0.0001 for the next 35 epochs.

Inference Phase: The proposed CTN takes an image patch,

a foreground propagation patch, and a background propaga-

tion patch as input. First, we extract the image patch and the

foreground propagation patch by cropping the current frame

I(t) and the propagation map H(t), respectively, around the

object pixels inH(t) with margins of 50 pixels. Then, we re-

size the image patch and the foreground propagation patch

to 224 × 224 × 3 and 14 × 14. We obtain the background

propagation patch by inverting the foreground one.

The proposed CTN outputs three probability patches of

size 224 × 224. We restore these patches to the sizes and

locations before the cropping, in order to yield the three

probability maps: separative probability map RS, definite

foreground probability map RF, and definite background

probability map RB. Note that these probability maps have

the same size as the input frame. We classify each pixel

p in the separative probability map as the foreground, if

RS(p) > θsep. Let L be the coordinate set for such fore-

ground pixels. In the two probability maps RF and RB, we

determine the pixels, whose probabilities are higher than

another threshold θdef , as the definite ones. Let F and B
denote the set of the definite foreground and background

pixels, respectively.

3.3. Markov Random Field Optimization

The pooling layers in Figure 4 reduce the number of

parameters and the amount of computations. However,

they also degrade details of a predicted target object. In

other words, the coordinate set L of foreground pixels may

not provide sufficiently detailed segmentation information.

Thus, we further improve the segmentation quality by solv-

ing a two-class (foreground or background) MRF optimiza-

5853

tion problem. For notational simplicity, let us omit the

superscripts for frame indices. First, we define a graph

G = (N,E), whose nodes are pixels in the current frame.

N and E denote sets of nodes and edges, respectively. We

connect each pixel to its four neighbors by edges. By com-

bining unary and pairwise costs, the MRF energy function

E(S) of the segmentation label map S is defined as

E(S) =
∑

p∈N

D(p, S) + γ ×
∑

(p,q)∈E

Z(p,q, S) (2)

where γ controls the balance between the unary cost D and

the pairwise cost Z .

To compute the unary cost, we build the RGB color

GMMs of the foreground and the background, respectively.

In this work, we set the same number of Gaussian compo-

nents, K = 10, for both GMMs. We use the pixels in L to

construct the foreground GMMs, based on the expectation-

maximization algorithm, and those in Lc for the background

GMMs. Let us define a Gaussian cost as

ψ(p, s) = min
k

{− log f(p ; Ms,k)} (3)

where f(· ; Ms,k) denotes the probability distribution func-

tion of Ms,k, which is the kth Gaussian component of the

foreground (s = 1) GMMs or the background (s = 0)

GMMs. A high Gaussian cost is returned when the Gaus-

sian distribution function has a low probability. Then, we

define the unary cost as

D(p, S) =

maxg ψ(g, 0) if p ∈ F and S(p) = 0,
maxg ψ(g, 1) if p ∈ B and S(p) = 1,
ψ(p, S(p)) otherwise.

(4)

Note that D(p, S) yields a very high cost, if p is a fore-

ground definite pixel in F but is labeled as the background

class S(p) = 0. Consequently, the minimization of the

unary cost in the MRF energy function in (2) discourages

the foreground definite pixels in F from being labeled as

the background. Similarly, it discourages the background

definite pixels in B from being labeled as the foreground.

To encourage neighboring pixels to have the same label,

we compute the pairwise cost by

Z(p,q, S) =

{

exp(−d(p,q)) if S(p) 6= S(q),
0 otherwise,

(5)

where d is the distance between the color and motion fea-

tures of pixels p and q. We extract the RGB color features,

and use the backward optical flow vectors as the motion fea-

tures. A high pairwise cost is incurred, if neighboring pixels

with similar features are assigned different labels.

For more reliable estimation of foreground and back-

ground colors at frame t, we employ the GMMs at the first

and (t − 1)th frames, as well as the GMMs at the current

(a) I(t−1) (b) I(t) (c) Reappearing parts

Figure 6. The proposed reappearing object detector discovers reap-

pearing parts of the legs, which are occluded in the previous frame

I(t−1). In (a), the foreground boundaries are in a cyan color.

frame t. We use the sum of the three corresponding unary

costs in the MRF optimization. We adopt the graph-cut al-

gorithm [3] to minimize the MRF energy function and ob-

tain an optimal segmentation label map S∗. Then, we refine

the GMMs at frame t, based on the label map S∗. We iterate

these two processes until the convergence.

3.4. Reappearing Object Detection

A target object may disappear and be occluded by other

objects. If the occluded parts reappear in the current frame,

the inter-frame propagation in Section 3.1 may be ineffec-

tive in the corresponding regions. Thus, we attempt to iden-

tify the reappearing parts. If there is no occlusion and the

optical flow estimation is accurate, the backward flow vec-

tor should be identical to the inverse of the corresponding

forward flow vector. Based on this backward-forward con-

sistency [46], we detect reappearing pixels. Specifically, we

first perform the backward matching from pixel p = [x, y]T

in frame t to pixel p̃ in frame t− 1 using the backward op-

tical flow vector at p. Next, we perform the forward match-

ing of p̃ to p̂ = [x̂, ŷ]T by adopting the forward optical flow

vector from frame t−1 to frame t. Ideally, the restored pixel

p̂ should be equal to the original pixel p = [x, y]T . Thus,

we compute the inconsistency of p by

φ(p) =
√

(x− x̂)2 + (y − ŷ)2/(µheight + µwidth) (6)

where µheight and µwidth are the height and width of the input

video sequence, respectively. If the inconsistency φ(p) is

higher than 1/400, we declare that p is inconsistent.

Next, we should detect reappearing foreground pixels

from the set of inconsistent pixels. To this end, we use the

foreground and background GMMs at the first and (t−1)th
frames. The reappearing parts are more likely to be repre-

sented by the foreground GMMs than by the background

ones. Therefore, we determine that an inconsistent pixel

belongs to the reappearing parts, if its foreground Gaussian

cost is lower than the background Gaussian cost. Note that

the Gaussian costs are defined in (3). Figure 6 shows an

example of the reappearing object detection result. We in-

clude the reappearing pixels into the set L of foreground

pixels before the MRF optimization.

5854

Table 2. Performance comparison of the video object segmentation

algorithms on the DAVIS dataset [36]. The best and the second

best results are boldfaced and underlined, respectively.

Region similarity (RS) Contour accuracy (CA)

Algorithm Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

A. Unsupervised algorithms

NLC [11] 0.641 0.731 0.086 0.593 0.658 0.086

CVOS [48] 0.514 0.581 0.127 0.490 0.578 0.138

TRC [14] 0.501 0.560 0.050 0.478 0.519 0.066

MSG [33] 0.543 0.636 0.028 0.525 0.613 0.057

KEY [27] 0.569 0.671 0.075 0.503 0.534 0.079

SAL [53] 0.426 0.386 0.084 0.383 0.264 0.072

FST [35] 0.575 0.652 0.044 0.536 0.579 0.065

ACO [23] 0.531 0.611 0.093 0.504 0.558 0.088

B. Semi-supervised algorithms

TSP [5] 0.358 0.388 0.385 0.346 0.329 0.388

SEA [40] 0.556 0.606 0.355 0.533 0.559 0.339

JMP [12] 0.607 0.693 0.372 0.586 0.656 0.373

FCP [37] 0.631 0.778 0.031 0.546 0.604 0.039

BVS [31] 0.665 0.764 0.260 0.656 0.774 0.236

Prop-Q 0.755 0.890 0.144 0.714 0.848 0.140

Prop-F 0.734 0.865 0.123 0.680 0.799 0.123

Table 3. Jaccard indices on the SegTrack dataset [49]. Higher val-

ues are better. The best and the second best results are boldfaced

and underlined, respectively.
Sequence [15] [52] [40] [54] [50] [31] Prop-Q

Girl 0.54 0.52 0.62 0.84 0.88 0.89 0.86

Birdfall 0.56 0.33 0.09 0.78 0.57 0.66 0.61

Parachute 0.86 0.70 0.93 0.94 0.95 0.94 0.94

Cheetah 0.46 0.33 0.18 0.63 0.34 0.10 0.40

Monkeydog 0.61 0.22 0.05 0.82 0.54 0.41 0.57

Average 0.60 0.42 0.37 0.80 0.66 0.60 0.68

4. Experimental Results

We evaluate the proposed algorithm on the state-of-the-

art DAVIS benchmark dataset [36], composed of 30 training

videos, 20 validation videos, and the corresponding ground-

truth label maps. We use all 50 videos for the evaluation,

since they are not used for training the proposed algorithm.

The spatial resolutions of these videos are 854 × 480, and

the number of frames in each video is from 25 to 104. The

videos are very challenging due to fast motion, occlusion,

and object deformation.

We use the performance measures introduced in [36].

To quantify the region similarity (RS), we use the Jaccard

index, which is the intersection-over-union ratio of a pre-

dicted segmentation label map and the ground-truth mask.

Also, the contour accuracy (CA) is reported in terms of an

F-measure, which is the combination of the precision and

recall rates of contour pixels. For these metrics, we report

the three statistics: mean, recall, and decay. The mean av-

erages the scores over all frames. The recall computes the

proportion of frames, the segmentation scores of which are

higher than 0.5. The decay first divides all frames into four

Table 4. Segmentation scores of the proposed algorithm in various

settings.

Region similarity (RS) Contour accuracy (CA)

Setting Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

A. Ablation studies

w/o DDs 0.684 0.756 0.185 0.677 0.790 0.159

w/o SD 0.663 0.797 0.248 0.665 0.792 0.216

B. Efficacy of MRF optimization

Before MRF 0.715 0.857 0.131 0.663 0.791 0.142

After MRF 0.755 0.890 0.144 0.714 0.848 0.140

clips, and then computes the score difference between the

last quarter and the first quarter.

Table 2 compares the proposed algorithm with 13 con-

ventional algorithms: unsupervised ones [11, 14, 23, 27, 33,

35,48,53] and semi-supervised ones [5,12,31,37,40]. Note

that [12] is a supervised algorithm, but it operates as a semi-

supervised one when user annotations are given at the first

frame only. The scores of the conventional algorithms are

from [31, 36] except for ACO [23]. For ACO, we use the

source codes, which are available online. We report the

scores of two versions of the proposed algorithm: ‘Prop-

Q’ uses the state-of-the-art optical flow technique [19],

whereas ‘Prop-F’ adopts a much faster optical flow tech-

nique [26]. Both Prop-Q and Prop-F surpass all conven-

tional algorithms. Especially, in terms of the RS recall,

Prop-Q outperforms the second best algorithm FCP [37] by

a considerable margin, about 14.4%. Also, Prop-Q is supe-

rior to BVS [31] in terms of the RS mean by about 13.5%.

FCP yields better decay scores than the proposed algorithm.

This is because, while the proposed algorithm performs the

segmentation sequentially from the first to last frames, FCP

discovers a target object by considering object proposals in

all frames simultaneously.

Figure 7 shows that the proposed algorithm yields spa-

tially accurate and temporally coherent segment tracks,

even when the target objects undergo fast motion (“Dog-

agility”), occlusion (“Dog-agility” and “Motorbike”), and

deformation (“Dance-twirl” and “Dog-agility”).

For the sake of complete evaluation, we test the semi-

supervised algorithms on SegTrack dataset [49], which is

widely used to assess video object segmentation techniques.

Table 3 lists the Jaccard indices of the segmentation results.

In average, the proposed algorithm outperforms the conven-

tional algorithms except for [54]. However, [54] uses man-

ually tuned parameters for each sequence, while the others

use fixed parameters.

Ablation Study: We perform two ablation studies. Prop-

Q is used in these studies. First, we remove the DFD and

DBD, and thus F = B = ∅ in (4). Second, we use the

propagation map H(t) to select initial foreground pixels in

the MRF optimization, instead of employing the set L of

foreground pixels that are detected by the SD. Let us refer

to the first and the second settings as ‘w/o DDs’ and ‘w/o

5855

(a) (b) (c) (d) (e) (f)

Figure 7. Segmentation results of the proposed algorithm. (a) shows the user-annotated target objects at the first frame. (b)∼(f) are the

segmentation results at subsequent frames. From top to bottom, the frames are from “Dance-twirl,” “Dog-agility,” and “Motorbike” in the

DAVIS dataset [36].

Table 5. Comparison of computational times. The fastest and the

second fast algorithms are boldfaced and underlined, respectively.

NLC [11] SEA [40] JMP [12] BVS [31] Prop-Q Prop-F

Time (SPF) 45.62 13.69 27.37 0.84 29.95 1.33

SD,’ respectively. Table 4 lists the RS and CA scores for

each ablation setting. In both settings, the performance is

degraded severely, which indicates that all three decoders

are necessary for accurate video object segmentation.

Efficacy of MRF Optimization: Table 4 also measures the

qualities of segmentation maps of the proposed algorithm

before and after the MRF optimization. It is observable that

the MRF optimization further refines segmentation maps.

Notice that the reappearing object detection technique is

adopted after the CTN to augment the set of initial fore-

ground pixels in the MRF optimization. Since many objects

in the DAVIS dataset [36] suffer from occlusion and reap-

pearance, the MRF optimization improves the performance

considerably.

Running Time Analysis: We measure the running times of

the segmentation algorithms in seconds per frame (SPF).

We test the proposed algorithm on the “Blackswan” se-

quence in the DAVIS dataset [36] using a PC with a Titan X

GPU and a 3.0 GHz CPU. Table 5 shows that the faster ver-

sion of the proposed algorithm, Prop-F, is faster than most

algorithms, while providing superior performance.

Parameter Selection: For balancing the unary and pair-

wise costs, we set γ to 25 in (2). The proposed algorithm

has two controllable parameters θsep and θdef . θsep thresh-

olds the separative map of the SD, while θdef binarizes the

two definite maps of the DFD and DBD. Figure 8 shows

the RS and CA scores for various combinations of θsep and

θdef . It is observable that the proposed algorithm provides

the best results at θsep = 0.3 and θdef = 0.9. Thus, these

parameters are fixedly used in all experiments.

0.1 0.3 0.5 0.7 0.9

θsep

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o
r
e

Mean RS

Recall RS

Mean CA

Recall CA

(a) θdef = 0.7

0.1 0.3 0.5 0.7 0.9

θsep

0.4

0.5

0.6

0.7

0.8

0.9

1

S
c
o
r
e

Mean RS

Recall RS

Mean CA

Recall CA

(b) θdef = 0.9

Figure 8. Segmentation qualities according to the two parameters,

θsep and θdef .

5. Conclusions

We proposed a semi-supervised online video object seg-

mentation algorithm. First, a segmentation label map is

propagated from the previous frame to the current frame.

Then, the CTN yields three probability maps, tailored for

the binary labeling problem. To delineate a target object,

we performed the MRF optimization by adopting the tai-

lored probability maps. Experimental results demonstrated

that the proposed algorithm significantly outperforms the

state-of-the-art conventional algorithms [12, 31, 37, 40] on

the DAVIS benchmark dataset [36].

Acknowledgements

This work was supported partly by the National Research

Foundation of Korea (NRF) grant funded by the Korea gov-

ernment (MSIP) (No. NRF-2015R1A2A1A10055037), and

partly by the MSIP (Ministry of Science, ICT and Future

Planning), Korea, under the ITRC (Information Technol-

ogy Research Center) support program (IITP-2017-2016-0-

00464) supervised by the IITP (Institute for Information &

communications Technology Promotion).

5856

References

[1] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video SnapCut:

Robust video object cutout using localized classifiers. ACM

Trans. Graphics, 28(3):70, 2009. 1

[2] P. Bideau and E. Learned-Miller. Its moving! A probabilis-

tic model for causal motion segmentation in moving camera

videos. In ECCV, pages 433–449, 2016. 2

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. IEEE Trans. Pattern Anal.

Mach. Intell., 23(11):1222–1239, 2001. 6

[4] T. Brox and J. Malik. Object segmentation by long term anal-

ysis of point trajectories. In ECCV, pages 282–295. 2010. 2,

5

[5] J. Chang, D. Wei, and J. W. Fisher. A video representa-

tion using temporal superpixels. In CVPR, pages 2051–2058,

2013. 2, 7

[6] P. Chockalingam, N. Pradeep, and S. Birchfield. Adaptive

fragments-based tracking of non-rigid objects using level

sets. In ICCV, pages 1530–1537, 2009. 2

[7] J. Dai, K. He, and J. Sun. Instance-aware semantic segmenta-

tion via multi-task network cascades. In CVPR, pages 3150–

3158, 2016. 1, 3, 4, 5

[8] S. Duffner and C. Garcia. PixelTrack: A fast adaptive algo-

rithm for tracking non-rigid objects. In ICCV, pages 2480–

2487, 2013. 2

[9] I. Endres and D. Hoiem. Category independent object pro-

posals. In ECCV, pages 575–588. 2010. 2

[10] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (VOC) chal-

lenge. Int. J. Comput. Vis., 88(2):303–338, 2010. 5

[11] A. Faktor and M. Irani. Video segmentation by non-local

consensus voting. In BMVC, pages 1–12, 2014. 1, 2, 7, 8

[12] Q. Fan, F. Zhong, D. Lischinski, D. Cohen-Or, and B. Chen.

JumpCut: Non-successive mask transfer and interpolation

for video cutout. ACM Trans. Graphics, 34(6):195, 2015.

1, 5, 7, 8

[13] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining

self training and active learning for video segmentation. In

BMVC, pages 1–11, 2011. 1

[14] K. Fragkiadaki, G. Zhang, and J. Shi. Video segmentation by

tracing discontinuities in a trajectory embedding. In CVPR,

pages 1846–1853, 2012. 2, 7

[15] M. Godec, P. M. Roth, and H. Bischof. Hough-based track-

ing of non-rigid objects. In ICCV, pages 81–88, 2011. 1, 2,

7

[16] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zis-

serman. Geodesic star convexity for interactive image seg-

mentation. In CVPR, pages 3129–3136, 2010. 3

[17] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.

Semantic contours from inverse detectors. In ICCV, pages

991–998, 2011. 5

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 1

[19] Y. Hu, R. Song, and Y. Li. Efficient coarse-to-fine Patch-

Match for large displacement optical flow. In CVPR, pages

5704–5712, 2016. 3, 7

[20] F. J. Huang, Y.-L. Boureau, Y. LeCun, et al. Unsupervised

learning of invariant feature hierarchies with applications to

object recognition. In CVPR, pages 1–8, 2007. 1, 2

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, pages 448–456, 2015. 5

[22] S. D. Jain and K. Grauman. Supervoxel-consistent fore-

ground propagation in video. In ECCV, pages 656–671.

2014. 2

[23] W.-D. Jang, C. Lee, and C.-S. Kim. Primary object segmen-

tation in videos via alternate convex optimization of fore-

ground and background distributions. In CVPR, pages 696–

704, 2016. 2, 5, 7

[24] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. In Proc. ACM Mul-

timedia, pages 675–678, 2014. 5

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 1

[26] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool. Fast optical

flow using dense inverse search. In ECCV, pages 471–488,

2016. 3, 7

[27] Y. J. Lee, J. Kim, and K. Grauman. Key-segments for video

object segmentation. In ICCV, pages 1995–2002, 2011. 1, 2,

7

[28] F. Li, T. Kim, A. Humayun, D. Tsai, and J. M. Rehg. Video

segmentation by tracking many figure-ground segments. In

ICCV, pages 2192–2199, 2013. 1, 2, 5

[29] N. Liu and J. Han. DHSNet: Deep hierarchical saliency net-

work for salient object detection. In CVPR, pages 678–686,

2016. 1, 3, 4

[30] T. Ma and L. J. Latecki. Maximum weight cliques with

mutex constraints for video object segmentation. In CVPR,

pages 670–677, 2012. 2

[31] N. Märki, F. Perazzi, O. Wang, and A. Sorkine-Hornung. Bi-

lateral space video segmentation. In CVPR, pages 743–751,

2016. 1, 2, 7, 8

[32] H. Noh, S. Hong, and B. Han. Learning deconvolution net-

work for semantic segmentation. In ICCV, pages 1520–1528,

2015. 1, 3

[33] P. Ochs and T. Brox. Object segmentation in video: A hi-

erarchical variational approach for turning point trajectories

into dense regions. In ICCV, pages 1583–1590, 2011. 1, 2, 7

[34] P. Ochs and T. Brox. Higher order motion models and spec-

tral clustering. In CVPR, pages 614–621, 2012. 2

[35] A. Papazoglou and V. Ferrari. Fast object segmentation in

unconstrained video. In ICCV, pages 1777–1784, 2013. 1,

2, 7

[36] F. Perazzi, J. P.-T. B. McWilliams, L. Van Gool, M. Gross,

and A. Sorkine-Hornung. A benchmark dataset and evalua-

tion methodology for video object segmentation. In CVPR,

pages 724–732, 2016. 1, 7, 8

[37] F. Perazzi, O. Wang, M. Gross, and A. Sorkine-Hornung.

Fully connected object proposals for video segmentation. In

ICCV, pages 3227–3234, 2015. 1, 2, 7, 8

5857

[38] P. O. Pinheiro, R. Collobert, and P. Dollar. Learning to seg-

ment object candidates. In NIPS, pages 1990–1998, 2015. 1,

3

[39] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár. Learn-

ing to refine object segments. In ECCV, pages 75–91, 2016.

4

[40] S. A. Ramakanth and R. V. Babu. SeamSeg: Video object

segmentation using patch seams. In CVPR, pages 376–383,

2014. 1, 2, 7, 8

[41] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, pages 91–99, 2015. 1, 4

[42] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interac-

tive foreground extraction using iterated graph cuts. In ACM

Trans. Graphics, volume 23, pages 309–314, 2004. 3

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. ImageNet large scale visual recognition challenge. Int.

J. Comput. Vis., 115(3):211–252, 2015. 1

[44] J. Shi and J. Malik. Motion segmentation and tracking using

normalized cuts. In ICCV, pages 1154–1160, 1998. 2

[45] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3

[46] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajecto-

ries by GPU-accelerated large displacement optical flow. In

ECCV, pages 438–451, 2010. 6

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, pages 1–9, 2015.

1

[48] B. Taylor, V. Karasev, and S. Soattoc. Causal video ob-

ject segmentation from persistence of occlusions. In CVPR,

pages 4268–4276, 2015. 7

[49] D. Tsai, M. Flagg, A. Nakazawa, and J. M. Rehg. Motion

coherent tracking using multi-label MRF optimization. In

BMVC, pages 1–11, 2010. 2, 7

[50] Y.-H. Tsai, M.-H. Yang, and M. J. Black. Video segmenta-

tion via object flow. In CVPR, pages 3899–3908, 2016. 2,

7

[51] D. Varas and F. Marques. Region-based particle filter for

video object segmentation. In CVPR, pages 3470–3477,

2014. 2

[52] S. Wang, H. Lu, F. Yang, and M.-H. Yang. Superpixel track-

ing. In ICCV, pages 1323–1330, 2011. 2, 7

[53] W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic

video object segmentation. In CVPR, pages 3395–3402,

2015. 1, 2, 7

[54] L. Wen, D. Du, Z. Lei, S. Z. Li, and M.-H. Yang. JOTS: Joint

online tracking and segmentation. In CVPR, pages 2226–

2234, 2015. 1, 2, 7

[55] F. Xiao and Y. J. Lee. Track and segment: An iterative un-

supervised approach for video object proposals. In CVPR,

pages 933–942, 2016. 2

[56] N. Xu, B. Price, S. Cohen, J. Yang, and T. S. Huang. Deep

interactive object selection. In CVPR, pages 373–381, 2016.

3

[57] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang. Object

contour detection with a fully convolutional encoder-decoder

network. In CVPR, pages 193–202, 2016. 1, 3, 5

[58] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833, 2014. 4

[59] D. Zhang, O. Javed, and M. Shah. Video object segmentation

through spatially accurate and temporally dense extraction of

primary object regions. In CVPR, pages 628–635, 2013. 2

5858

