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Abstract

We address the problem of large scale image geo-

localization where the location of an image is estimated by

identifying geo-tagged reference images depicting the same

place. We propose a novel model for learning image rep-

resentations that integrates context-aware feature reweight-

ing in order to effectively focus on regions that positively

contribute to geo-localization. In particular, we introduce

a Contextual Reweighting Network (CRN) that predicts the

importance of each region in the feature map based on the

image context. Our model is learned end-to-end for the im-

age geo-localization task, and requires no annotation other

than image geo-tags for training. In experimental results,

the proposed approach significantly outperforms the previ-

ous state-of-the-art on the standard geo-localization bench-

mark datasets.We also demonstrate that our CRN discovers

task-relevant contexts without any additional supervision.

1. Introduction

Visual image geo-localization has been an active re-

search area for the past decade [2, 28, 48, 53], owing to

its wide range of applications including augmented reality

[36], autonomous driving [33], adding and refining geo-tags

in image collections [19, 65], large-scale 3D reconstruction

[11], and photo editing [68].

Finding regions of interest has long been of great in-

terest in computer vision. Much research has been done

in the areas of feature selection, attention, and saliency

[20, 63, 37]. Because task-relevant information is not gen-

erally uniformly distributed throughout an image [1], fo-

cusing on “interesting” areas, as opposed to “irrelevant” or

even “distracting” areas, can often achieve better perfor-

mance [51, 28, 13]. This is especially true for image geo-

localization, where challenges come not only from photo-

metric and geometric changes between the query and the

database images, but also from confusing visual elements

[29]. For instance, features extracted from time-varying ob-

jects such as pedestrians and trees, or ubiquitous objects,

like vehicles and fences, can introduce misleading cues into
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Figure 1. Image representation with contextual feature reweight-

ing. (a) A contextual reweighting network takes convolutional fea-

tures of a deep CNN as input to produce a spatial weighting mask

(b) based on the learned contexts. The mask is used for weighted

aggregation of input features to produce the representation of the

input image (c).

the geo-localization process.

To address this problem, there has been a recent push

to intelligently select or reweight local features for image

geo-localization [4, 49, 29, 28]. These methods focus on

features with high distinctiveness in feature space [4] or in

geographical space [49, 29]. Recently, Kim et al. [28] pro-

posed a data-driven notion of “good” features as features

that offer relatively high matching score to correct locations.

However, these approaches focus their analysis on indi-

vidual local features in general. What is often overlooked is

that a feature’s usefulness depends largely on the context in

the scene. For example, signage on buildings is useful for

geo-localization, while signage on buses and t-shirts is mis-

leading. There have been attempts to use top-down infor-

mation such as semantic segmentation to restrict features to

man-made structures [38], or repetitive structure detection

to avoid over-counting of visual words in the bag-of-words

representation [58]. We point out that such supervised pri-

ors are limited and do not capture all relevant contexts about

which regions to focus on for image geo-localization.

Hence, we aim to provide contextual guidance for

reweighting features in an unspervised data-driven manner.

To this end, we propose a novel end-to-end convolutional

neural network (CNN) model for learning image represen-
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tations that adaptively reweight features based on the image

context. In particular, we introduce a Contextual Reweight-

ing Network (CRN) that is sits on the top of the convolu-

tional layers in a standard deep architecture (Fig. 1 (a)).

The CRN takes the feature maps of the base convolutional

layers and estimates a weight for each feature based on its

surrounding region (Fig. 1 (b)). By feature, we mean a

column of activations at each spatial location of the feature

maps. These weights are then applied to each feature as they

are aggregated to produce an overall image representation.

We cast the image geo-localization problem as an image

retrieval task and optimize the network with a triplet rank-

ing loss based on the generated image representations. As a

result, task-relevant contexts are discovered in an unsuper-

vised manner, as the network learns in which context certain

features should be emphasized or suppressed to better pro-

duce the spatial weighting, even though no ground-truth for

the weighting nor the context information is provided. Vi-

sualizations of these learned contexts illustrate that the dis-

covered contextual information contains rich high-level in-

formation that is not restricted to semantic cues, such as dif-

ferent types of buildings, vehicles, vegetation, and ground,

but includes structural cues like lattice structure, different

perspectives of buildings, and architectural styles.

Our training pipeline requires no training labels other

than image geo-tags, which are commonly available. We

propose to use geometric verification, that is, the verifica-

tion of a valid two-view relationship of the views, and the

convex hull of matched inlier points to generate positive ref-

erence images for training. In addition, we introduce effi-

cient hard negative mining for image geo-localization which

can be seen as mimicing the image geo-localization process

within a training batch.

To summarize, our innovations are as follows: (1)

We propose a novel end-to-end, fully-convolutional CNN

for learning image representations that integrates context-

aware feature reweighting. In particular, we introduce a

contextual reweighting network that predicts weights for

each region in the feature map based on its context. We ex-

perimentally validate that our pipeline significantly boosts

the performance of the state-of-the-art methods. (2) We also

show that unsupervised context discovery is acheived as a

byproduct of training our network. The visualizations of

these learned contexts illustrate that they capture rich high-

level information. (3) We propose a training pipeline where

only image geo-tags are required to automatically generate

training data, with an efficient hard negative mining solu-

tion for image geo-localization.

2. Related Work

Image geo-localization has been cast as an image re-

trieval task [2, 10, 19, 28, 66], a 2D to 3D registration task

[17, 21, 32, 47, 46], and a per-location classification task

[16, 62]. In this paper, we address image geo-localization

as an instance retrieval task, given an archive of previously

localized images.

Retrieval-based solutions must be robust to a wide range

of variability between the query and the reference dataset.

Building image representations from local invariant features

have been shown to be effective as they provide robustness

to photometric and geometric changes [58, 4, 67, 31, 66].

However, not all content in the image is relevant to geo-

localization [29, 28], requiring the discrimination of un-

informative or misleading information. There have been

attempts that try to address this problem by casting fea-

ture selection as a classification problem [28], reweight-

ing features by computing their distinctiveness in feature

space [4], and discarding features that appear in multiple

geo-locations [29, 9, 45, 49]. There is also much work on

feature selection and weighting for general image retrieval

tasks [41, 55, 59, 69]. In contrast to these methods, which

focus on local features themselves, we propose a model that

adjusts feature weights based on contextual information, as

it provides important cues about a feature’s usefulness.

Recently, approaches were proposed to learn task-

relevant features for image geo-localization and retrieval

using end-to-end CNNs [2, 43, 56, 60, 34]. However, the

contextual content discrimination was not addressed. In our

work, we propose the incorporation of a context-adaptive

feature preponderance into a CNN framework.

Our work is most closely related to the work of Gordo

et al. [15] that uses a region proposal network [44] to learn

which regions should be pooled to form a global image de-

scriptor. Their method uses an explicit region proposal loss

that requires bounding box annotations for training, in addi-

tion to a ranking loss for retrieval. In contrast, components

in our network are optimized under one triplet ranking loss

for image geo-localization. Furthermore, their work outputs

regions of interest as a bounding box, whereas our proposed

CRN produces a weighted mask that provides much more

flexibility for focusing on relevant features.

Contextual information has been widely used for object

recognition [39, 42, 64, 8, 13, 27]. However, the use of

context has received significantly less attention for image

geo-localization. Mousavian et al. [38], used semantic seg-

mentation to filter out local features based on the notion that

reliable features are likely to occur on buildings. Arand-

jelovic and Zisserman [5] also embedded semantic infor-

mation to disambiguate matching between local features.

Torii et al. [58], lowers the weights for features occurring

in repetitive structure, as they violate feature independence

and lead to over counting in bag-of-words representations.

In our model, we learn the relevant contexts and generate

weights for features in a strictly data-driven manner.

There have also been attempts to automatically generate

training data for image retrieval for CNNs. Radenovic et al.
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Figure 2. Overall network architecture. A CRN is a shallow net-

work that takes the feature maps of convolutional layers as input

and outputs a weighted mask indicating the importance of spa-

tial regions in the feature maps. The resulting mask is used for

performing context modulation for feature aggregation to create a

global representation of the input image.

[43] exploit 3D reconstruction for selecting training data,

and Gordo et al. [15] uses landmark graphs obtained from

pairwise matching of images in the dataset. However, both

their methods requires a dense image distribution in order

to construct 3D models or scene graphs. We acquire train-

ing data similarly to the work of Arandjelović et al. [2],

using GPS-tags. As geo-location itself is not sufficient to

determine image overlap due to different camera orienta-

tions and occlusions, they choose positive images based on

the current representation during learning. This depends on

the quality of the learned representation, and does not con-

tribute much to the current network status. On the other

hand, we not only use GPS-tags, but use geometric verifica-

tion to once verify positive images and refine them, thus re-

ducing the memory and compute requirements. Also, while

these methods [43, 2] perform periodic full retrieval for hard

negative mining, we introduce within-batch hard negative

mining for image geo-localization which is computationally

less expensive. This is similar to within-batch hard negative
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Figure 3. Contextual Reweighting Network. For each 1 × 1 × D

convolutional feature, multi-scale contextual information is cap-

tured by P context filters with different window sizes (np × np ×

D). The filter output is then accumulated with learned weights to

produce a reweighting value for the feaure in question.

mining in [61], and stochastic sampling used in [60]. How-

ever, we use GPS-tags to determine negatives.

3. Method

In this section, we first describe our model for learning

image representations that integrate contextual reweighting

of features (Sec. 3.1). We then illustrate our learning objec-

tive and the overall training process (Sec. 3.2).

3.1. Contextual Reweighting Network

In order to integrate a learned contextual reweighting,

we begin with a standard representation approach and add

an auxiliary context reweighting network (CRN). This net-

work takes features produced by the original representation

as input and outputs a spatial weighting over those features.

The overall representation consists of a base network that

generates mid-level features, a CRN, and a feature aggrega-

tion layer, as illustrated in Fig. 2.

Local Feature Representation: We treat activations of

convolutional layers as local features. This has been shown

to be effective for image geo-localization and image re-

trieval [56, 43, 6, 2, 15]. In particular, the W × H × D

dimensional feature maps of the last convolutional layer of

the base network are treated as a set of D-dimensional local

descriptors at W ×H spatial locations. In our experiments,

we used the conv5 output of AlexNet [30] and VGG16 [52]

Contextual Reweighting Mask: The CRN captures con-

text information by using its hidden context filters, denoted

as gp, to explicitly look at np × np spatial windows around

a local feature, as illustrated in Fig. 3. This is implemented

using a convolution layer with kernel size n (Fig. 2). To

obtain multi-scale contextual information, we use context

filters with three different kernel sizes. These filters pro-

duce an activation map of W ×H ×P , where P is the total

number of filters across scale.
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The contextual reweighting mask m is computed as a

weighted sum of these filter outputs, which is implemented

with a 1×1×P convolutional layer (Fig. 2) so that weights

{wp} and the bias c are also learned during the training:

m =
∑

p

wp · gp(d) + c, (1)

where d and gp(d) denote the feature maps and the output

of filter gp, respectively. Convolution layers in CRN are

followed by ReLU non-linearity. The resulting weighting

mask is of size W ×H , and the values in the mask indicate

which spatial regions of the feature maps are important.

As our model is fully convolutional, it is not restricted

by image size. However, it is difficult to train context fil-

ters on different image resolutions. To bypass this issue, we

scale the spatial range of the feature maps to a fixed scale

(e.g., 13 × 13) before applying the filters, and then rescale

the computed contextual reweighting mask to the original

feature map’s spatial size. This provides image-level scale

normalization, and is implemented with a matching down-

sampling (pooling)/upsampling layer pair which is applied

at the beginning and end of the mask computation (Fig. 2).

Feature Aggregation via Contextual Modulation: Hav-

ing a compact, fixed-length, global representation is nec-

essary for efficient searching and limiting memory require-

ments. We utilize the reweighting mask from our CRN to

generate a fixed-length image representation f for the query

and the geo-tagged reference images. The contextual modu-

lation layer (Fig. 2) in the CRN adjusts the impact of a local

feature dl at spatial location l to the global representation f

based on the reweighting mask value ml at that location.

In our experiments, we use the trainable vector of locally

aggregated descriptors (VLAD) layer [2], which has been

shown to be the state-of-the-art for place recognition and

image retrieval tasks. The subvector of v that corresponds

to the visual word k, denoted as vk, is obtained as the ac-

cumulation of differences between local features dl and the

centroid ck, weighted by the soft assignment akl of dl be-

longing to k, such that vk =
∑

l∈R
akl (dl − ck), where R

denotes the set of spatial locations in the feature map.

Applying our context modulation, we obtain the

reweighted VLAD representation f as follows:

f =
[

f1, f2, ..., fK
]

, (2)

where

fk =
∑

l∈R

ml · a
k
l (dl − ck), (3)

and K and R denote the number of visual words and a set

of spatial locations in the feature map, respectively. This

can be seen as a weighted pooling of features dl. Following

[2], f is intra-normalized [3], then L2 normalized. The sim-

ilarity between the two representations is computed as the

inner product of the two. In this case, the contextual layer

is implemented as a simple layer that takes m and performs

element-wise multiplication across all channels of the soft

assignment output a (W ×H ×K).

Note that these local features, when learned end-to-end,

inhibit activations on task-irrelevant visual elements based

on the local appearance. On the other hand, our contextual

modulation produces a spatially varying weighting based on

semi-global context. Therefore, our overall model can be

seen as combining both top-down and bottom-up guidance

to determine on which areas to focus.

3.2. Training

Training Objective: In our setting, the geo-location of

a query image Iq is approximated by finding the nearest

neighbor reference images {Ir} in feature space. Thus, the

objective for learning our image representation f is to en-

sure that matching reference images I+r are closer to the

query image than non-matching ones I−r . To this end, we

use a triplet ranking loss [50, 60, 15]. During training, we

provide image triplets to the network, each consisting of a

training query image It, a positive reference image I+r , and

a negative reference image I−r .

Lf (It, I
+
r , I−r ) =

max(0, ‖f(It)− f(I+r )‖
2
− ‖f(It)− f(I−r )‖

2
+ δ)

(4)

By minimizing the triplet ranking loss (Eqn. (4)), the

network learns in which context certain features should

be emphasized or suppressed to better generate the spa-

tial weighting mask m (Eqn. (1) and (3)), even though no

ground-truth for the mask or the context is provided. The

visualizations for the learned contexts and the masks are

shown in Fig. 8 and Fig. 6, respectively (Sec. 4.3).

Training Data Generation: We used images with GPS-

tags as our training query image set {It}. We collected 6K

Flickr images with GPS-tags, and 17K Google Streetview

Research Dataset images, both covering the same region

as the reference images in the evaluation benchmark [10].

The images collected from Flickr are particularly challeng-

ing as they are unconstrained Internet photos that greatly

vary from the reference images. Images from the Google

Streetview Research Dataset are comparatively less chal-

lenging as they are also street view images taken from a

vehicle, but they still differ significantly from reference im-

ages in terms of illumination, viewing angle, occlusion, and

season. In order to further increase the size of our training

data, we also added a randomly selected subset of {Ir} to

{It}. Standard data augmentation techniques such as ran-

dom cropping and re-lighting [30] were applied.

Given an image set with only GPS-tags, we want to auto-

matically generate image triplets {It, I
+
r , I−r } for training.

To verify positive images, we use geometric verification.

Following Kim et al. [28], for each training query image
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It, we define positive reference images I+r as reference im-

ages that fall within 50m from the given GPS location and

that pass geometric verification with respect to It by fitting

a fundamental matrix [18] using RANSAC [12] over SIFT

[35] matches. We select the top kt images with the high-

est number of inliers. For I−r , we take the top kt reference

images that have the smallest distance to Iq based on the ini-

tialized image representation f (see implementation details)

and are at least 225m away from the given GPS location, in

order to mitigate possible geo-tag errors and lessen the ef-

fect of landmarks being visible from a large distance. The

resulting I+r and I−r are paired randomly to form kt triplets

{It, I
+
r , I−r }. In our experiments, kt was set to 4.

To refine our training data, we perform ROI-based crop-

ping and a scale test in order to account for {It, I
+
r } pairs

with small overlaps and large scale changes. A small over-

lap between It and I+r could make the problem too diffi-

cult by giving the network misleading information that fea-

tures on non-overlapping sides are not useful for image geo-

localization. Therefore, we first perform a scale test using

the area of the convex hull of the feature inliers from the ge-

ometric verification. Then we approximate the scale differ-

ence as the ratio of the areas of the two convex hulls. If they

differ by more than a factor of 2, we exclude the triplet from

the training set. Also, if a pair passes the scale test, but the

difference is more than a factor of 1.5, we crop and rescale

the area around the center of the convex hull of It. In ad-

dition to making our training data more robust, this frame-

work also expands training data by generating more training

triplets. After the refinement, we ended up with 36K train-

ing query images each producing four triplets, giving a total

of 144K training triplets for the San Francisco city area.

Hard Negative Mining: While previous work performed

periodic full retrieval to update hard negatives [2, 43], we

propose an efficient way of mining hard negatives for im-

age geo-localization. We mimic the image geo-localization

process within the training batch. For every iteration, we

perform image retrieval for Iq within the batch. We then se-

lect hard negatives I−r from the top retrieved images that are

at least 225m away from the GPS location of It, similarly to

how we selected initial I−r . As learning only based on the

hardest negatives can lead to a bad local minima [50], we

also select some I−r ’s randomly from the batch. In our ex-

periments we used two each of the hard and the random neg-

atives, and average their triplet losses and the corresponding

gradients. We used the accumulation of gradients as a proxy

for having large batches, averaging gradients of 25 batches.

Implementation Detail: Following [2], we chose the num-

ber of centroids K in the VLAD representation to 64. The

margin δ for the triplet ranking loss was set to 0.25. To

initialize our model, we used Xavier random initialization

[14] for our CRN. For the other layers, we used the param-

eters of NetVLAD models [2] fine-tuned on our data using

the same training procedure. In practice, we found that it

was crucial to train the base convolutional layers, CRN, and

VLAD layer jointly for convergence. We used a learning

rate of 0.005 for the CRN, and 0.0005 for other layers ex-

cept conv1, which we fixed to its pretrained state. We used

a batch size of 24, and trained for approximately 10 epochs.

For VGG16-based models, we fixed accumulation weights

wp to 1. We used images with a resolution of 480×480. For

testing, we averaged the image similarity computed by three

patches (left, center, and right) similar to [30] for both our

approach and NetVLAD, unless otherwise specified. Our

implementation used Caffe [25].

4. Experiments

4.1. Image GeoLocalization

Evaluation Dataset: We used the San Francisco 1.2M

benchmark dataset for image geo-localization from Chen

et al. [10]. It consists of query images taken with differ-

ent mobile cameras in various settings, and reference im-

ages taken from vehicle-mounted wide-angle cameras. The

ground-truth annotations for correct matches for each test

query image are given in the benchmark.

We also evaluated our method on Tokyo 24/7 [57] and

Pittsburgh 250K test [2], where a retrieved image is deemed

to be correct if it is within 25m from the ground-truth posi-

tion of the query. We used the corresponding training and

validation sets for these datasets, namely, Tokyo Time Ma-

chine data [2] and Pittsburgh 250K train/validation set [2].

Evaluation Metric: We follow the evaluation protocol of

[58, 4, 10, 7, 2, 54], where performance is measured by the

recall given the top N candidates in the shortlist. We also

performed PCA whitening (learnt on the reference database

for the San Francisco and on training images for Tokyo and

Pittsburgh) on the obtained image representation f(I) for

both our method and NetVLAD [2], reducing the dimension

by half. In all of our experiments, we did not use post-

processing such as geometric re-ranking.

Results on San Francisco 1.2M benchmark [10]: To

demonstrate the benefits of our context-aware image rep-

resentation, we first compare our result to NetVLAD [2].

The only difference between our architecture and that of

NetVLAD is the existence of our proposed CRN that per-

forms contextual feature reweighting. Fig. 4 depicts the re-

call curves of our method and NetVLAD based on AlexNet

[30] and VGG16 [52]. Our system with contextual feature

reweighting consistently outperforms the systems without

it. Our margin over NetVLAD at the top (N = 1) retrieved

result is 4.8% for the AlexNet-based architecture, and 2.9%
for the VGG16-based architecture. We implemented the

VLAD layer proposed by Arandjelović et al. [2] using Caffe

[25] and used it in both our method and NetVLAD. Both

networks were optimized in the same training pipeline (Sec.

3.2) for a fair comparison.
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Method % Correct

Ours (VGG16) 83.2

ASMK* [54] 80.6

NetVLAD [2] fine-tuned (VGG16) 80.3

Ours (AlexNet) 78.7

DisLoc [4] 74.6

NetVLAD [2] fine-tuned (AlexNet) 73.9

HE-BURST [54] 71.9

Repttile [58] 65.4

NoGPS [10] 41.2

tf-idf [58] 23.2

Table 1. Proportion of correctly localized images at top 1
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Figure 4. Recalls with and without contextual feature reweighting.

In Fig. 5, we compare our performance with other state-

of-the-art methods. Our method achieves the best perfor-

mance with a 83.2% recall at N = 1, exceeding the recall of

the previous state-of-the-art [54] by 2.6%. The full compar-

ison of recalls at the top of the shortlist (N = 1) with base-

line methods is displayed in Table 1. The compared meth-

ods include binarized aggregated selective match kernel

(ASMK*) [54], local distinctiveness based feature weight-

ing (DisLoc) [4], repetitive feature re-weighting (Repttile)

[58], Hamming embedding [24] with burstiness normal-

ization [23] (HE-BURST) [22], vocaburary tree with his-

togram equalization (NoGPS) [10], and tf-idf weighting

[40]. For ASMK*, DisLoc, Repttile, and NoGPS, we use

the recall values reported by the authors. For HE-BURST,

we used the recall reported in [54] using binary signatures

of 128 bits. For tf-idf, we used the recalls reported in [58].

We show examples of our results in Fig. 6, where the top

retrieved images for each query image are displayed for our

method and the NetVLAD [2]. As can be seen, our method

retrieves correct reference images despite the existence of

confusing objects, such as trees and cars (Fig. 6 (a)-(c),(f)),

focuses its attention on signage on stationary objects such as

buildings (Fig. 6 (d)-(e), (j)-(k)), and distinguishes similar

places with different details (Fig. 6 (e), (g)-(i), (l)-(n)).

To demonstrate the benefit of our learnt CRN, we also

compared our method with Crow [26] which performs fea-

ture reweighting in a predefined way. Crow creates a spatial

weighting mask by computing the L2 norms of the features
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Figure 5. Comparison of recalls with the state-of-the-arts methods.

top-1 top-5 top-10 top-25

CRN+NetVLAD (V) 83.2 85.8 86.3 87.7

CroW+NetVLAD (V) 80.1 84.3 85.3 86.5

CRN+NetVLAD (A) 78.7 83.4 84.7 85.8

CroW+NetVLAD (A) 74.1 79.3 80.8 82.3

Table 2. Comparison of our proposed CRN and CroW [26] with

(V)GG16 and (A)lexnet base architectures.

data set method top-1 top-5 top-10

Tokyo all Ours 75.2 83.8 87.3

24/7 [57] NetVLAD 71.8 82.5 86.4

sunset Ours 66.7 76.7 81.9

/night NetVLAD 61.4 75.7 81.0

Pittsburgh test Ours 85.5 93.5 95.5

250K [58] [2] NetVLAD 86.0 93.2 95.1

Table 3. Recalls on Tokyo 24/7 [57] and Pittsburgh 250k test

[2] datasets. All models are based on VGG16 architecture. For

NetVLAD, we used the recalls reported by authors of [2]. We

used the full resolution images for evaluation as in [2].

at each spatial location, which results in emphasizing re-

gions with high activations. Table 2 shows the performance

of NetVLAD when CRN is replaced with CroW for spatial

reweighting, all of which underperform our proposed CRN.

Results on Tokyo 24/7 [57] and Pittsburgh 250K test [2]:

Table 3 displays the results of our method evaluated on the

Tokyo 24/7 and Pittsburgh 250K test datasets. We used

the same training and validation sets as in [2], but with

our training pipeline (Sec. 3.2). Our method consistently

outperforms the state-of-the-art NetVLAD [2] on Tokyo

24/7, with a margin of 3.4% for all test images and 5.3%

for the challenging sunset/night-time images at N = 1.

Our performance on Pittsburgh 250K test data is similar to

that of NetVLAD. We suspect this is due to relatively less

variablity between the query and the reference images, in

which case it may not be beneficial to down weight cer-

tain features. Also, while the query images for Pittsburgh

250K consists of randomly sampled streetviews, our train-

ing pipeline may have introduced a bias to the network by

dropping training query images that do not pass geometric

verification, utilizing only 72% of the training query set.

2141



4.2. Comparison of the Emphasized Features

We qualitatively compare the emphasis on the features

of our context-aware image representation and NetVLAD

[2] in Fig. 7. We visualize the weighted mask generated

by CRN for our method. To measure which regions of

the feature maps were emphasized for NetVLAD, we com-

puted the change in representation in Euclidean distance

when leaving out each 1 × 1 spatial window in the convo-

lutional feature maps. As can be seen, our method focuses

on regions that are useful for image geo-localization while

avoiding confusing visual elements. Moreover, it is capa-

ble of emphasizing the distinctive details on buildings. On

the other hand, the NetVLAD [2] is inherently limited as it

emphasizes local features independently; many features on

confusing scene elements such as vegetation, pedestrians,

and vehicles are emphasized.

4.3. Unsupervised Discovery of Contexts for Image
GeoLocalization

To visualize the learned contexts, we display the im-

age patches with the highest responses. That is, for each

learned context filter gp, we collect the strongest responses

in each sampled image from the database. We crop out the

square image patch from the original image at the center of

the scaled feature map with the width of np
WI

W
, where np,

WI , and W are kernel size of gp, image width, and feature

map width, respectively. Although the network is optimized

only under the loss for image geo-localization, we observe

that interesting contexts were captured by our contextual fil-

ters through the learning process. The results are shown in

Fig. 8, where visualization of the context filters are aligned

based on the sign of the accumulation weights wp. If wp

is positive, it means the context captured contributes to as-

signing positive weights on the feature in question. The re-

verse is true for negative wp. These contexts not only high-

light semantic cues like buildings, vehicles, and pedestrians

(Fig. 8 (a),(i-k),(o)), but also structural information such as

the geometric changes in buildings (Fig. 8 (d-e)), sky lines

(Fig. 8 (h)), architectural styles (Fig. 8 (b-c)), and buildings

with signs (Fig. 8 (f-g)). Notably, even without supervi-

sion, our model assigns negative accumulation weights to

lattice structures (Fig. 8 (n)), which is similar to what has

previously been achieved with supervision [58] that lowers

weights for features occurring in repetitive structures.

4.4. Image Retrieval

To assess generalizability of our approach, we evaluated

our image representation using CRN trained on San Fran-

cisco on standard image retrieval benchmarks [40] without

any fine-tuning. The results are shown in Table 4. We com-

pared with NetVLAD [2] trained in the same pipeline as

ours on San Francisco (SF), and the one that is trained on

Pittsburgh (PGH) as reported in [2]. For all methods, we

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(o)

(i)

(j)

(k)

(l)

(m)

(n)

(p)

Figure 8. Discovered data-driven contexts for image geo-

localization. For each learned context filters gp, we display image

patches with top responses (Sec. 4.3). (Left) Filters assigned pos-

itive weights wp > 0. (Right) Filters assigned negative weights

wp < 0. Results are based on our AlexNet-based model.

Oxford 5K [40] Oxford 105K [40]

Method Ours NetVLAD [2] Ours NetVLAD[2]

Dim
Train SF SF PGH SF SF

16384 0.704 0.683 - 0.685 0.664

8192 0.699 0.682 - 0.680 0.660

4096 0.692 0.672 0.691 0.671 0.651

2048 0.683 0.660 0.677 0.662 0.633

1024 0.667 0.650 0.669 0.644 0.625

512 0.645 0.626 0.656 0.622 0.598

256 0.642 0.608 0.625 0.617 0.579

128 0.615 0.569 0.604 0.586 0.540

Table 4. Retrieval performance of our model trained on San Fran-

cisco on image retrieval benchmarks. No cropping of ROI in the

query, spatial re-ranking, or query expansion was performed. The

accuracy is measured by the mean Average Precision (mAP). All

compared models are based on VGG16 architecture.

did not perform cropping of the ROI in the query, spatial re-

ranking, or query expansion. Our model outperforms both

representations. Especially, it consistently exceeds the mAP

of NetVLAD trained on the same dataset by 2-4% margins.

5. Conclusions

We introduced a novel Contextual Reweighting Network

that learns image representations incorporating context-

aware feature preponderance. We demonstrated that our

CRN-based representation improves upon the existing state-

of-the-art accuracy for geo-localization. The visualization

of the outputs of our CRN shows that the relevant contexts

for image geo-localization are captured as a byproduct of

training our network. We also provide an efficient training

pipeline only using geo-tags. Our proposed CRN can be

combined with other feature aggregation methods, and can

be applied to other problems such as object recognition.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

Query Reweighting Mask Ours NetVLAD Query Reweighting Mask Ours NetVLAD

Figure 6. Example retrieval results on San Francisco benchmark dataset. From left to right: query image, our contextual reweighting mask

in heat map, the top retrieved image using our method, the top retrieved image using NetVLAD [2]. Green and red borders indicate correct

and incorrect retrieved results, respectively. Results are based on our AlexNet-based model.

Figure 7. Comparison of emphasis on features. (top) Our contextual reweighting mask. (bottom) NetVLAD [2] emphasis on features. Both

models are based on AlexNet architecture.
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