
Surveillance Video Parsing with Single Frame Supervision

Si Liu1, Changhu Wang2, Ruihe Qian1, Han Yu1, Renda Bao1, Yao Sun1∗

1State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences,Beijing 100093,China
2Toutiao AI Lab

{liusi, qianruihe, yuhan, sunyao}@iie.ac.cn, wangchanghu@toutiao.com

Abstract

Surveillance video parsing, which segments the video

frames into several labels, e.g., face, pants, left-leg, has

wide applications [41, 8]. However, pixel-wisely annotat-

ing all frames is tedious and inefficient. In this paper, we

develop a Single frame Video Parsing (SVP) method which

requires only one labeled frame per video in training stage.

To parse one particular frame, the video segment preceding

the frame is jointly considered. SVP (i) roughly parses the

frames within the video segment, (ii) estimates the optical

flow between frames and (iii) fuses the rough parsing re-

sults warped by optical flow to produce the refined parsing

result. The three components of SVP, namely frame pars-

ing, optical flow estimation and temporal fusion are inte-

grated in an end-to-end manner. Experimental results on

two surveillance video datasets show the superiority of SVP

over state-of-the-arts. The collected video parsing datasets

can be downloaded via http://liusi-group.com/

projects/SVP for the further studies.

1. Introduction

In recent years, human parsing [16] is receiving increas-

ing owning to its wide applications, such as person re-

identification [41] and person attribute prediction [19, 38].

Most existing human parsing methods [15, 16, 37] target at

segmenting the human-centric images in the fashion blogs.

Different from fashion images, parsing surveillance videos

is much more challenging due to the lack of labeled data.

It is very tedious and time-consuming to annotate all the

frames of a video, for a surveillance video usually contains

tens of thousands of frames per second.

In this paper, we target at an important, practically ap-

plicable yet rarely studied problem: how to leverage the

very limited labels to obtain a robust surveillance video

parsor? More specifically, we mainly consider an extreme
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Figure 1. During training, only a single frame per video (red check

mark) is labeled, while others (blue x mark) are unlabeled. A SVP

network is learned from the extremely sparsely labeled videos.

During testing, a parsing window is slided along the video. The

parsing result of testing frame It (orange box) is determined by

itself, the long-range frame It−l (green box) and the short-range

frame frame It−s (blue box). For better viewing of all figures in

this paper, please see original zoomed-in color pdf file.

situation, i.e., only one frame in each training video is an-

notated. Note that labeling is unnecessary in testing phase.

As shown in Figure 1, the labeled frame per training video

(red bounding box) is fed into the proposed Single frame

supervised Video Parsing (SVP) network. Insufficient la-

beled data always lead to over-fitting, especially in the deep

learning based method. The rich temporal context among

video frames can partially solve this problem. By build-

ing the dense correspondences, i.e., optical flow, among

video frames, the single labeled frame can be viewed as the

seed to indirectly expand (propagate) to the whole video.

Most state-of-the-art optical flow estimation methods, such

as EpicFlow [29] etc, suffer from relatively slow speed. Be-

cause the video parsing task requires extensive online op-

tical flow computation, a real-time, accurate optical flow

estimation is essential. Thus, it is a challenging but essen-

tial problem to build an end-to-end, efficient video parsing

framework by only utilizing the limited (e.g, only one) la-

beled images and large amount of unlabeled images with

online estimated dense correspondences among them.

To tackle these challenges, we propose the SVP network.

As shown in Figure 1, to parse a test frame It, a parsing
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window which contains It and several frames preceding it

{It−k, k = 0, ..., l}, is slided along the video. Consider-

ing the computation burden and cross-frame redundancies,

a triplet {It−l, It−s, It} is selected to represent the sliding

window. The long-range frame It−l lies l frames ahead of

It while short-range frame It−s lies s frames ahead of It.
Usually, l > s. They complement each other in that the

short-range optical flows are more accurate, while the long-

range frames bring more diversities. The triplet is fed into

SVP to collaboratively produce the parsing result.

SVP contains three sub-networks. The image parsing

sub-network parses the three frames respectively, while the

optical flow estimation sub-network builds the cross-frame

pixel-wise correspondences. In order to decrease the inter-

ference of imperfect optical flow, a pixel-wise confidence

map is calculated based on the appearance differences be-

tween one image and its counterpart wrapped from the other

image. Based on the mined correspondences and their con-

fidences, the temporal fusion sub-network fuses the parsing

results of the each frame, and then outputs the final parsing

result. Extensive experiments in the newly collected indoor

and outdoor datasets show the superior performance of SVP

than the state-of-the-arts.

The contributions of this work are summarized as fol-

lows. (i) To the best of our knowledge, it is the first at-

tempt to segment the human parts in the surveillance video

by labeling single frame per training video. It has extensive

application prospect. (ii) The proposed SVP framework is

end-to-end and thus very applicable for real usage. More-

over, the feature learning, pixelwise classification, corre-

spondence mining and the temporal fusion are updated in a

unified optimization process and collaboratively contribute

to the parsing results.

2. Related Work

Image, video and part semantic segmentation: Long

et al. [22] build a FCN that take input of arbitrary size and

produce correspondingly-sized output. Chen et al. [4] intro-

duce atrous convolution in dense prediction tasks to effec-

tively enlarge the field of view of filters to incorporate larger

context without increasing the number of parameters. Dai et

al. [7] exploit shape information via masking convolutional

features. Hyeonwoo et al. [25] propose Deconvolution Net-

work for Semantic Segmentation to identify detailed struc-

tures and handles objects in multiple scales naturally.

For human parsing, Yamaguchi et al. [37] tackle the

clothing parsing problem using a retrieval based approach.

Luo et al. [23] propose a Deep Decompositional Network

for parsing pedestrian images into semantic regions. Liang

et al. [16] propose a Contextualized Convolutional Neural

Network to tackle the problem and achieve very impress-

ing results. Xia et al. [35] propose the “Auto-Zoom Net”

for human paring. Some other works explore how to jointly

object and part segmentation using deep learned potentials

[32]. Although great success achieved, these methods can

not be directly applied in our setting where only one labeled

frame per training video is available.

Weakly/semi-supervised semantic segmentation:

Chen et al. [26] develop Expectation-Maximization (EM)

methods to solve the semantic image segmentation from

either weakly annotated training data or a combination of

few strongly labeled and many weakly labeled images. Dai

et al. [6] propose a method called “Boxsup” which only

requires easily obtained bounding box annotations. Xu

et al. [36] propose a unified approach that incorporates

image level tags, bounding boxes, and partial labels to

produce a pixel-wise labeling. Liu et al. [17] address the

problem of automatically parsing the fashion images with

weak supervision from the user-generated color-category

tags. Wei et al. extend the weakly supervised classification

solution [34] and propose a simple to complex frame-

work for weakly-supervised semantic segmentation [33].

These methods have achieved competitive accuracy in

weakly/semi supervised semantic segmentation but are not

designed for video parsing task.

Optical flow v.s. semantic segmentation: Sevilla-Lara

et al. [30] segment a scene into things, planes, and stuff

and then pose the flow estimation problem using localized

layers. Bai et al. [2] estimate the traffic participants us-

ing instance-level segmentation. The epipolar constraints is

then used on each participant to govern each independent

motion. In these methods, optical flow estimation benefits

from semantic segmentation. However, SVP utilizes optical

flow for better video parsing.

Pfister et al. [27] investigate a video pose estimation ar-

chitecture that is able to benefit from temporal context by

combining information across the multiple frames using op-

tical flow. The key differences is that the optical flow is es-

timated offlined using dense optical flow while SVP is an

end-to-end framework.

3. Approach

3.1. Framework

Suppose that we have a video V = {I1, · · · , IN}, where

N is the number of frames. The single labeled frame is It,
and its corresponding groundtruth is Gt. The pixel j of the

labelmap Pt is denoted as P j
t and takes the value within

the range [1,K], where K is the number of labels, such as

“face”, “bag” and “background”.

The SVP network is shown in Figure 2. The input is

a triplet {It−l, It−s, It}, among which only It is labeled.

l and s are set empirically. The output is the parsing re-

sult Pt. SVP contains three sub-networks. As a pre-

processing step, we use Faster R-CNN [28] to extract the

human region. Then, the triplet are fed into Conv1∼Conv5
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Figure 2. The proposed single frame supervised video paring (SVP) network. The network is trained end-to-end.

for discriminative feature extraction. The frame parsing

sub-network (Section 3.2) produces the rough labelmaps

for the triplet, denoted as {P̃t−l, P̃t−s, P̃t}. The optical

flow estimation sub-network aims to estimate the dense cor-

respondence between adjacent frames (Section 3.3). The

temporal fusion sub-network (Section 3.4) applies the ob-

tained optical flow Ft,t−l and Ft,t−s to P̃t−l and P̃t−s,

producing P̂t−l,t and P̂t−s,t. To alleviate the influence

of imperfect optical flow, the pixel-wise flow confidences

Ct−l,t and Ct−s,t are estimated. The quintet including
{

P̃t, P̂t−l,t, P̂t−s,t,Ct−l,t,Ct−s,t

}

are fused to produce the

final Pt, upon which the softmax loss are defined. Extra

supervision is also applied on P̂t−l,t and P̂t−s,t for better

performance.

The image parsing and optical flow estimation sub-

networks share first several convolution layers because the

two tasks are implicitly correlated. More specifically, only

pixels with the same labels can be matched by optical

flow. Besides, both sub-networks make per pixel predic-

tions. Frame parsing classifies each pixel while optical flow

is the offset/shift of each pixel. Therefore, the optimal re-

ceptive fields of the two tasks are similar, which provides a

prerequisite for feature sharing. The other benefit is to save

a lot of computation.

3.2. Frame Parsing Sub-network

As shown in Figure 2, the frame parsing sub-network has

three duplications with shared weights to deal with It−l,

It−s and It respectively. The input is the 3-channel RGB

image, and the output is the K channel confidence maps

of the same resolution. In our experiments, DeepLab [4] is

used. Our SVP framework is quite generic and is not lim-

ited to any specific image parsing method, other semantic

segmentation methods [7, 21, 21, 1, 22] can also be used.

3.3. Optical Flow Estimation Sub-network

We resort to optical flow Fa,b : R2 → R2 to build the

pixel-wise correspondences between frames. The flow field

F p
a,b = (qx − px, qy − py) computes the relative offsets

from each point p in image Ia to a corresponding point q
in image Ib. The optical flow estimation sub-network es-

timates the flow Ft,t−l = o (It, It−l), where o (a, b) is the

operation of predicting the optical flow from a to b. Ft,t−s

is estimated similarly. One feasible approach is to off-line

calculate the optical flow via the state-of-the-art methods

[3, 3] and load them into the network during optimization.

It makes training and testing be a multi-stage pipeline, and

thus very expensive in space and time. However, SVP com-

putes the optical flow on the fly.

Network architecture: After the shared Conv1∼Conv5

layers, a “correlation layer” [10, 24] (denoted as “Corr”

in Figure 2) performs multiplicative patch comparisons be-

tween two feature maps. After that, several “upconvolu-

tional” layers are introduced to obtain the optical flow with

the same resolution as the input image pairs. Since our

surveillance dataset has no groundtruth optical flow, we use

flying chairs dataset for training.

3.4. Temporal Fusion Sub-network

Optical flow confidence estimation: The optical flow

estimated via the above mentioned method is imperfect. To
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suppress noisy P̂t−l, we estimate the confidence of the es-

timated optical flow Ft,t−l of each pixel. The flow Ft,t−s

can be handled in similar manners.

The flow confidence is defined based on the appearance

reconstruction criterion [3]. Mathematically, for each pixel

i in the optical flow Ft,t−l, its confidence Ci
t−l,t is:

Ci
t−l,t =

∥

∥

∥
Iit − Îit

∥

∥

∥

1

=
∥

∥Iit − wi (It−l, Ft,t−l)
∥

∥

1
, (1)

‖·‖
1

denoted the L1 norm. Îit is the wrapped counterpart

of Iit . w (a, b) is the operation of applying the estimated

optical flow b to warp image a. The coordinates of pixel

i in It is
(

xi, yi
)

, while the mapped coordinates in It−l is
(

xi′ , yi
′

)

=
(

xi, yi
)

+ F i
t,t−l. When

(

xi′ , yi
′

)

falls into

sub-pixel coordinate, we rewrite the Îit of Equation 1 via

bilinear interpolation:

Îit = wi (It−l, Ft,t−l)

=
∑

q∈{neighbors of (xi′ ,yi′ )}

I
q

t−l(1−
∣

∣

∣
xi′

− xq
∣

∣

∣
)(1−

∣

∣

∣
yi′

− yq
∣

∣

∣
),

(2)

where q denotes the 4-pixel neighbors (top-left, top-right,

bottom-left, bottom-right) of
(

xi, yi
)

.

The confidence defined in Equation 1 is the distance be-

tween the orignal image and its warped counterpart. The

similaritiy is calcualted via:

Ci
t−l,t = exp(−Ci

t−l,t/2σ
2), (3)

where σ is the mean value of Ct−l,t. Higher value indicates

more confident optical flow estimation.

Temporal fusion: As shown in Figure 2, the estimated

parsing results P̃t−l and P̃t−s are warped according to the

optical flow Ft,t−l and Ft,t−s via:

P̂t−l,t = w(P̃t−l, Ft,t−l),

P̂t−s,t = w(P̃t−s, Ft,t−s).
(4)

They are further weighted by the confidence map of

Equation 1 to reduce the influence of inaccurate optical flow

by: P̂t−l,t · Ct−l,t and P̂t−s,t · Ct−s,t, where · denotes dot

product. They are fused with P̃t via a temporal fusion layer

with several 1× 1 filters to produce the final Pt. To enforce

accurate model training, we add extra/deep [14] supervision

to P̂t−l,t, P̂t−s,t and Pt.

3.5. Training Strategies

Like the Faster R-CNN [28], we adopt a 4-step alternat-

ing training algorithm for optimization. (i) we train the op-

tical flow sub-network via the strategies in Section 3.3 with

flying chairs dataset [10]. (ii) we train the frame parsing

sub-network and the temporal fusion sub-network together

using the optical flow estimated in step (i). Both optical flow

and frame parsing sub-networks are initialized with VGG

model [31]. The temporal fusion sub-network is initial-

ized via standard Gaussian distribution (with zero mean and

unit variance). At this point the two networks do not share

convolutional layers. (iii) We fix the Conv1∼Conv5 layers

of optical flow estimation sub-network by those of frames

parsing sub-network, and only fine-tune the layers unique

to optical flow. Now the two sub-networks share convolu-

tional layers. (iv) keeping Conv1∼Conv5 layers fixed, we

fine-tune the unique layers of frame parsing and temporal

fusion sub-networks. As such, all sub-networks form a uni-

fied network.

The major reason of training the optical flow sub-

network at the beginning is that, the temporal fusion sub-

network depends on the optical flow results. Then, we re-

place the conv. layers of the optical flow sub-network by

that of the parsing sub-network for three reasons. First,

the two tasks are essentially correlated: parsing results are

pixel-wise labels while optical flow is pixel-wise offset.

Thus, the optimized conv. layers trained from the parsing

network is expected to perform equally well for the opti-

cal flow network. Second, the optical flow sub-network is

trained by an auxiliary flying chairs dataset, instead of the

surveillance videos. Therefore, the conv. layers of the op-

tical flow sub-network is less discriminative on our surveil-

lance datasets. Third, the convolution layers need to be

shared. Actually, we have attempted to train the whole net-

work in a single phase, but found it hard to converge. We

leave it as an important future work.

3.6. Inference

During inference, we slide a parsing window along the

video to specifically consider the temporal context. The

parsing results of It is jointly determined by the short video

segment preceding it. For calculation simplicity, a triplet of

frames, including long-range frame It−l, short-range frame

It−s as well as It collaboratively contribute to the final pars-

ing results Pt. Note that because the first l frames of a video

do not have enough preceding frames to form a sliding pars-

ing window, we apply the frame parsing sub-network alone

to It and produce its parsing results.

4. Experiments

4.1. Experimental setting

Dataset & Evalutaion Metrics: Since there is no pub-

licly available surveillance video parsing dataset, we man-

ually build two datasets, one for indoor, the other for out-

door. The indoor dataset contains 700 videos, among which

400 videos and 300 videos are used as training set and test

set, respectively. The outdoor dataset contains 198 train-

ing videos, and 109 testing videos. For both datasets, we

randomly select and pixel-wisely label 1 frame from each

training video. For each testing video, we randomly label 5
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Table 1. Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of our model in Indoor dataset. (%).

Methods bk face hair U-

clothes

L-arm R-

arm

pants L-

leg

R-leg Dress L-shoe R-

shoe

bag

PaperDoll [37] 92.62 57.16 58.22 62.52 19.96 14.99 52.47 25.43 20.7 9.92 20.66 24.41 14.32

ATR [15] 93.62 59.08 60.79 81.36 32.54 28.65 75.40 29.19 29.60 70.22 11.68 17.75 48.97

M-CNN [18] 93.40 53.94 59.12 75.53 24.46 20.51 78.46 36.15 21.92 43.61 14.53 18.79 53.43

Co-CNN [16] 94.06 64.64 73.53 81.54 26.82 31.66 77.13 25.47 34.11 76.08 15.42 20.57 46.91

FCN-8s [22] 94.80 71.35 74.90 79.53 33.55 32.29 81.89 36.57 33.98 43.53 33.03 31.50 43.66

DeepLab [4] 93.64 63.01 69.61 81.54 40.97 40.31 81.12 34.25 33.24 64.60 28.39 26.40 56.50

EM-Adapt [26] 93.46 66.54 70.54 77.72 42.95 42.20 82.19 39.42 37.19 63.22 33.18 31.68 53.00

SVP l 94.68 67.28 72.74 82.12 42.96 43.35 81.91 39.26 38.31 67.17 31.47 30.38 58.99

SVP s 94.65 66.27 73.48 83.12 45.17 44.89 82.72 38.62 38.43 66.04 30.93 31.46 58.81

SVP l+c 94.44 67.29 73.76 83.06 43.56 43.56 82.33 41.36 39.46 68.36 31.75 31.73 59.04

SVP s+c 94.64 67.62 74.13 83.48 45.13 45.08 83.21 39.89 40.11 68.17 31.15 32.27 58.75

SVP l+s 94.50 67.08 73.52 83.10 45.51 44.26 82.59 41.82 42.31 69.43 33.71 33.36 58.58

SVP l+s+c 94.89 70.28 76.75 84.18 44.79 43.29 83.59 42.69 40.30 70.76 34.77 35.81 60.43

Table 2. Per-Class Comparison of F-1 scores with state-of-the-arts and several architectural variants of our model in Outdoor dataset. (%).

Methods bk face hair U-

clothes

L-arm R-

arm

pants L-

leg

R-leg L-

shoe

R-shoe bag

FCN-8s [22] 92.00 62.64 65.58 78.64 28.73 28.97 79.69 38.88 9.08 32.04 30.56 29.45

DeepLab [4] 92.19 58.65 66.72 84.31 42.23 35.36 81.12 30.64 6.13 37.89 33.25 52.25

EM-Adapt [26] 92.68 60.84 67.17 84.78 41.28 33.61 81.80 42.39 7.28 39.54 32.20 54.31

SVP l 91.13 62.40 67.73 84.64 45.18 31.40 80.66 30.28 5.86 40.32 33.11 54.96

SVP s 92.51 64.25 67.14 84.99 45.28 32.14 79.71 32.31 18.49 37.24 31.45 51.58

SVP l+c 92.60 63.76 68.77 84.84 45.83 33.75 81.67 31.37 19.06 38.54 33.51 53.57

SVP s+c 92.94 64.40 69.93 85.43 44.44 31.86 81.65 35.88 18.22 37.48 33.36 54.23

SVP l+s 91.90 63.32 69.48 84.84 42.09 28.64 80.45 31.10 13.28 38.52 35.52 46.89

SVP l+s+c 92.27 64.49 70.08 85.38 39.94 35.82 80.83 30.39 13.14 37.95 34.54 50.38

frames for comprehensive testing. The indoor dataset con-

tains 13 categories, namely face, hair, upper-clothes, left-

arm, right-arm, pants, left-leg, right-leg, left-shoe, right-

shoe, bag, dress, and background. The videos in the outdoor

dataset are collected in winter, so the label “dress” is miss-

ing. To obtain human centric video, human are first detected

via Faster R-CNN [28] fine-tuned on VOC dataset [9]. To

speed up, we track the human by KCF[11]. Other track-

ing algorithms [39, 40, 20] can also be used. The obtained

human centric images are fed into SVP.

We use the same metric as PaperDoll [37] to evaluate the

performance. Among all evaluation metrics, the average F-

1 is the most important metric. We train SVP via the Caffe

[13] using Titan X. The initial learning rates for frame pars-

ing and optical flow estimation sub-networks are 1e-8 and

1e-5 respectively. The long range l and short range s are

empirically set as 3 and 1 in the indoor dataset. Because the

outdoor dataset has a lower frame rate and contains more

quick dynamics, l and s are set to 2 and 1.

4.2. Comparison with state-of-the-art

We compare our results with five state-of-the-art meth-

ods. The 1st is PaperDoll [37]. It is the best tradi-

tional method. The 2nd is ATR [15] formulating the hu-

man parsing task as an active template regression prob-

lem. The 3rd baseline method is M-CNN [18], which is

an quasi-Parametric human parsing method. The 4th is

Co-CNN [16] which uses a Contextualized Convolutional

Neural Network to tackle the problem. The 5th is FCN-8s

[22], which achieves competitive results in several seman-

tic segmentation benchmark datasets. The 6th baseline is

DeepLab [4]. The above mentioned three methods are su-

pervised algorithms. Therefore, we only use the labeled set

for training. The 7th baseline method is EM-Adapt1 [26]

which can use both image-level and bounding-box annota-

tion as weak- and semi-Supervised supervision. We also try

another baseline DecoupledNet2. [12]. However, the results

of DecoupledNet in both datasets are much lower than SVP

and other baselines. The reason is that DecoupledNet first

obtains the saliency map of each classified label. Decon-

vlution is then operated upon the map to generate the final

parsing results. However, many labels, e.g., face, appear in

almost every training image, which causes the classification

network less sensitive to the position of these labels.

Table 3 shows the comparisons between SVP and 7 state-

1http://liangchiehchen.com/projects/DeepLab-LargeFOV-Semi-EM-

Fixed.html
2http://cvlab.postech.ac.kr/research/decouplednet/
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of-the-art methods in the Indoor dataset. Different variants

of SVP are generated by gradually adding more compo-

nents, which will be discussed in the next subsection. It

can be seen that our best SVP, namely “SVP l+s+c” reaches

the average F-1 score of 0.6020, which is superior than all

baselines. The 1st to the 6th baselines all use labeled im-

ages. Therefore, the improvements show the advantage of

utilizing the unlabeled dataset. EM-Adapt also uses unla-

beled images, and thus reaches a higher F1-score of 0.5640,

which is better than the six supervised baselines. How-

ever, EM-Adapt is still worse than all the variants of SVP.

It shows that label propagation via optical flow is helpful in

the surveillance video parsing task. The F1-scores of each

category are shown in Table 1. We can observe that “SVP

l+s+c” beats all baselines in all 13 categories, which again

shows the big improvements brought by the proposed SVP.

Table 3. Comparison with state-of-the-arts and several architec-

tural variants of our model in Indoor dataset. (%).

Methods Accu fg accu Avg.pre Avg.rec Avg. F-1

PaperDoll [37] 46.71 78.69 33.55 45.68 36.41

ATR [15] 85.69 71.24 47.39 53.21 49.14

M-CNN [18] 85.19 71.31 42.90 50.11 45.68

Co-CNN [16] 87.58 72.58 53.54 51.87 51.38

FCN-8s [22] 88.33 71.56 55.05 52.15 53.12

DeepLab [4] 86.88 77.45 49.88 64.30 54.89

EM-Adapt [26] 86.63 80.88 53.01 63.64 56.40

SVP l 88.81 74.42 56.28 59.81 57.74

SVP s 88.91 77.12 55.90 61.21 58.04

SVP l+c 88.75 77.28 56.07 61.94 58.43

SVP s+c 89.07 77.06 56.86 61.98 58.73

SVP l+s 88.85 78.68 56.77 62.73 59.21

SVP l+s+c 89.88 76.48 61.52 59.38 60.20

Among all the baselines, we find that FCN-8s, DeepLab

and EM-Adapt show superior performances Therefore, we

only compare with the 3 baselines in the Outdoor dataset.

Table 4 shows the results. It can be seen that our method

reaches the average F-1 score of 0.5294 while FCS-8s,

DeepLab and EM-Adapt only reach 0.4433, 0.4775 and

0.4907. The improves are 0.0861, 0.0519 and 0.0387 re-

spectively. Comparing Table 4 and Table 3, we find that

the performances of all algorithms generally drop. The rea-

son is that the outdoor dataset contains 198 training videos,

while the number is doubled in the indoor dataset, reaching

400. The F1-scores of each category are shown in Table 2.

We can observe that “SVP l+s+c” beats FCN and DeepLab

in all 13 categories and is better than EM-Adapt in most

categories, which again shows the effectiveness.

4.3. Component Analysis

Temporal fusion weights: We visualize the learned

weights for the temporal fusion layers for R-arm and L-shoe

in Figure 3 in the Indoor dataset. The horizontal axis has

Table 4. Comparison with state-of-the-arts and several architec-

tural variants of our model in Outdoor dataset. (%).

Methods Accu fg accu Avg.pre Avg.rec Avg. F-1

FCN-8s [22] 82.46 70.70 43.22 50.09 44.33

DeepLab [4] 85.07 78.44 49.87 51.10 47.75

EM-Adapt [26] 85.82 76.87 50.82 52.98 49.07

SVP l 84.27 81.51 47.46 55.31 48.28

SVP s 85.83 73.48 53.46 50.63 49.01

SVP l+c 85.87 77.37 52.66 52.68 49.79

SVP s+c 86.30 77.13 52.89 52.70 49.99

SVP l+s 85.30 77.03 56.15 49.92 51.17

SVP l+s+c 85.71 79.26 56.95 52.14 52.94

Figure 3. The temporal pooling weight for R-arm and L-shoe.

3×K ticks, corresponding to the K labels for It−l (shown

in black), It−s (shown in green) and It (shown in blue) se-

quentially. The vertical axis illustrates the fusion weights.

By analyzing the sub-figure for R-arm, we have sev-

eral observations. First, the shapes of the weights for It−l,

It−s and It are similar. Second, all maximum values for

the triplet (denoted as red dots) are positive, which demon-

strates that all frames contribute to the final result. Third,

for all the frames, the labels reaching maximum values are

all R-arm. Fourth, the maximum value of It−s is higher

than that of It−l, because it contains less errors in optical

flow. The maximum value of It is the highest, because it is

the frame under consideration. Similar phenomenon can be

found in the L-shoe case.

Long/Short range context: We test the effectiveness of

long and short range frame. “SVP l” means SVP with long-
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Figure 4. Step by step illustration of SVP. 1∼4 columns: the long-range frame, its the parsing result, the warped parsing result and the

confidence map. 5∼8 columns: the short-range frame, its parsing result, the warped parsing result and the confidence map. 9∼12 columns:

test image, the rough parsing result, refined parsing result and ground truth parsing result.

range context only. To implement this SVP variant, an im-

age pair, namely It as well as It−l are fed into SVP during

both training and testing phases. Similarly, “SVP s” is SVP

containing only short-range frame. “SVP l+s” is the com-

bination of them, meaning both long-range and short-range

frames are considered. Table 3 shows the results in indoor

dataset. The Ave.F-1 of “SVP l” and “SVP s” reach 0.5774
and 0.5804 respectively, which are lower than “SVP l+s”

0.5843. It proves the long and short range context are com-

plementary. Similar conclusion can be drawn from outdoor

dataset in Table 4. “SVP l” and “SVP s” achieve 0.4828
and 0.4901, while the combination of them reaches 0.4979.

The per-class F1 score of “SVP l”, “SVP s” and “SVP l+s”

in indoor and outdoor datasets can be found in Table 1 and

Table 2 respectively. They again show that both long and

short range context are necessary.

Optical flow confidence: The flow confidence is de-

signed for filtering/suppressing the noisy optical flow. To

this end, we implement two SVP variants called “SVP l+c”

and “SVP s+c” indicating either long or short-range optical

flow is weighed by its confidence first and then contribute

to the final parsing result. The results in indoor dataset is

shown in Table 3. We find that “SVP l+c” improves “SVP l”

and “SVP s+c” performs better than “SVP s”. This demon-

strates the effectiveness of optical flow confidence. The

same conclusion can be drawn by comparing the F-1 score

of “SVP l+s+c” and “SVP l+s”. We also validate the effec-

tiveness of optical flow confidence in outdoor dataset. As

shown in Table 4, the F-1 score of “SVP l+s+c” is 0.5294,

which is higher than “SVP l+s” 0.5117.

4.4. Qualitative Results

Figure 4 shows the stepwise results of SVP in indoor

dataset. In the first row, the left shoe of the women is pre-

dicted as leg in P̃t. The warped label from the It−s, denoted

as P̂t−s,t does not find left shoe. Thanks to the fusion from

P̂t−l,t, the women’s left shoe is labelled correctly in the fi-

nal prediction Pt. Again in the first row, comparing with

It−s, the women is far from the camera in It, and thus is rel-

atively small. The foreground region shrinks from P̃t−s to

P̂t−s,t, which shows that the estimated optical flow is very

accurate. Inaccurate optical flow may result in the bad prop-

agated parsing result, e.g., the shape of the hair in P̂t−l,t is

too large in the first row. However, the inaccurate hair re-

gion has a low confidence in Ct−l,t. Therefore, the fused

result Pt has precise hair shape. In the second row, the strap

of the bag is almost ignored in P̃t. However, both P̃t−l and

P̃t−s find the strap, and help to distinguish the strap from

the upper-clothes successfully in Pt. In the third row, the

Pt correctly removes the wrongly predicted arm in P̃t. The

It−l is not warped very good, and there is a ghost behind

this man in the labelmap P̂t−l,t. But fortunately it does not

affect the fused prediction Pt, because the confidence of this

ghost is very low in Ct−l,t and hence it is filtered out during

the fusion.

Several qualitative results of both datasets are shown in

Figure 5. The first three rows show paring results of the

indoor dataset while the last two rows demonstrate those

of outdoor dataset. In each group, the test image, the

groundtruth, the parsing results of EM-Adapt and SVP are
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Figure 5. The test image, the groundtruth label, results of the EM-Adapt and SVP are shown sequentially.

shown. It can be seen that SVP is generally better than EM-

Adapt from two aspects. First, SVP correctly estimates the

existence of a label. For example, for the image in the sec-

ond row second column, the region wrongly predicted as

upper clothes by EM-Adapt is correctly predicted as dress

by SVP. Another example is second row first column. EM-

Adapt misses the left shoe. SVP correctly predicts the left

shoe’s existence and location. Second, SVP can better esti-

mate the shape of the labels. For example, in the first image

in top row, the shape of the bag strap is slender, which is

correctly estimated by SVP. Moreover, the shapes of shoes

estimated by SVP are more accurate than EM-Adapt. For

another example, SVP better identifies the shapes of pants

and left/right arms in the third image of the third row.

4.5. Time Complexity

Note that in the inference stage, much computation can

be saved. For example, when parsing frame It, the long-

range frame It−l and short-range frame It−s do not need go

through the frame parsing sub-network because their rough

parsing results Pt−l and Pt−s have already been calculated.

For another example, the extra computation brought by the

optical flow estimation sub-network is small because the

Conv1∼Conv5 features are shared. Moreover, the fusion

layer contains several 1 × 1 convolutions and thus is not

quite time-consuming.

5. Conclusion & Future Works

In this work, we present an end-to-end single frame su-

pervised video parsing network. To parse a testing frame,

SVP processes a video segment preceding it. The rough

frame parsing results and the on-line computed optical

flows among frames are fused to produce refined parsing

results. We demonstrate the effectiveness of SVP on two

newly collected surveillance video parsing datasets.

In future, we will build an online demo to parse any

surveillance video uploaded by users in real time. More-

over, we plan to apply SVP to parse other kinds of videos,

such as urban scene videos [5].
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