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Abstract

Short-term tracking is an open and challenging prob-

lem for which discriminative correlation filters (DCF) have

shown excellent performance.We introduce the channel and

spatial reliability concepts to DCF tracking and provide a

novel learning algorithm for its efficient and seamless in-

tegration in the filter update and the tracking process. The

spatial reliability map adjusts the filter support to the part of

the object suitable for tracking. This both allows to enlarge

the search region and improves tracking of non-rectangular

objects. Reliability scores reflect channel-wise quality of

the learned filters and are used as feature weighting coeffi-

cients in localization. Experimentally, with only two simple

standard features, HoGs and Colornames, the novel CSR-

DCF method – DCF with Channel and Spatial Reliability

– achieves state-of-the-art results on VOT 2016, VOT 2015

and OTB100. The CSR-DCF runs in real-time on a CPU.

1. Introduction

Short-term visual object tracking is the problem of con-

tinuously localizing a target in a video-sequence given a

single example of its appearance. It has received signifi-

cant attention of the computer vision community which is

reflected in the number of papers published on the topic and

the existence of multiple performance evaluation bench-

marks [42, 28, 29, 26, 27, 32, 37, 35]. Diverse factors –

occlusion, illumination change, fast object or camera mo-

tion, appearance changes due to rigid or non-rigid deforma-

tions and similarity to the background – make short-term

tracking challenging.

Recent short-term tracking evaluations [42, 28, 29, 26]

consistently confirm the advantages of semi-supervised dis-

criminative tracking approaches [16, 1, 17, 4]. In partic-

ular, trackers based on the discriminative correlation filter

method (DCF) [4, 8, 19, 30, 10] have shown state-of-the-

art performance in all standard benchmarks. Discrimina-

tive correlation methods learn a filter with a pre-defined re-
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Figure 1: Overview of the proposed CSR-DCF approach.

An automatically estimated spatial reliability map restricts

the correlation filter to the parts suitable for tracking (top)

improving the search range and performance for irregularly

shaped objects. Channel reliability weights calculated in

the constrained optimization step of the correlation filter

learning reduce the noise of the weight-averaged filter re-

sponse (bottom).

sponse on the training image.

The standard formulation of DCF uses circular correla-

tion which allows to implement learning efficiently by Fast

Fourier transform (FFT). However, the FFT requires the fil-

ter and the patch size to be equal which limits the detection

range. Due to the circularity, the filter is trained on many ex-

amples that contain unrealistic, wrapped-around circularly-

shifted versions of the target. These windowing problems

were recently addressed by state-of-the-art approaches of

Galoogahi et al. [23] who propose zero-padding the filter

during learning and by Danneljan et al. [10] who introduce
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spatial regularization to penalize filter values outside the ob-

ject boundaries. Both approaches train from image patches

larger than the object and thus increase the detection range.

Another limitation of the published DCF methods is the

assumption that the target shape is well approximated by

an axis-aligned rectangle. For irregularly shaped objects or

those with a hollow center, the filter eventually learns the

background, which may lead to drift and failure. The same

problem appears for approximately rectangular objects in

the case of occlusion. The Galoogahi et al. [23] and Dan-

neljan et al. [10] methods both suffer from this problem.

In this paper we introduce the CSR-DCF, the Discrim-

inative Correlation Filter with Channel and Spatial Relia-

bility. The spatial reliability map adapts the filter support

to the part of the object suitable for tracking which over-

comes both the problems of circular shift enabling an arbi-

trary search range and the limitations related to the rectan-

gular shape assumption. The spatial reliability map is esti-

mated using the output of a graph labeling problem solved

efficiently in each frame. An efficient novel optimization

procedure is derived for learning a correlation filter with the

support constrained by the spatial reliability map since the

standard closed-form solution cannot be generalized to this

case. Experiments show that the novel filter optimization

procedure outperforms related approaches for constrained

learning in DCFs.

Channel reliability is the second novelty the CSR-DCF

tracker introduces. The reliability is estimated from the

properties of the constrained least-squares solution to filter

design. The channel reliability scores are used for weight-

ing the per-channel filter responses in localization (Fig-

ure 1). The CSR-DCF shows state-of-the-art performance

on standard benchmarks – OTB100 [43], VOT2015 [26]

and VOT2016 [26] while running in real-time on a single

CPU. The spatial and channel reliability formulation is gen-

eral and can be used in most modern correlation filters, e.g.

those using deep features.

2. Related work

The discriminative correlation filters for object detec-

tion date back to the 80’s with seminal work of Hester

and Casasent [20]. They have been popularized only re-

cently in the tracking community, starting with the Bolme

et al. [4] MOSSE tracker published in 2010. Using a gray-

scale template, MOSSE achieved a state-of-the-art perfor-

mance on a tracking benchmark [42] at a remarkable pro-

cessing speed. Significant improvements have been made

since and in 2014 the top-performing trackers on a recent

benchmark [29] were all from this class of trackers. Im-

provements of DCFs fall into two categories, application

of improved features and conceptual improvements in filter

learning.

In the first group, Henriques et al. [19] replaced the

grayscale templates by HoG [7], Danelljan et al. [12]

proposed multi-dimensional color attributes and Li and

Zhu [31] applied feature combination. Recently, the convo-

lutional network features learned for object detection have

been applied [34, 11, 13], leading to a performance boost,

but at a cost of significant speed reduction.

Conceptually, the first successful theoretical extension of

the standard DCF was the kernelized formulation by Hen-

riques et al. [19]. Later, a correlation-filter-based scale

adaptation was proposed by Danelljan et al. [8]. Zhang et

al. [45] introduced spatio-temporal context learning in the

DCFs. Recently, Galoogahi et al. [23] addressed the prob-

lems resulting from learning with circular correlation from

small patches. They proposed a learning framework that

artificially increases the filter size by implicit zero-padding

to the right and down. The non-symmetric padding only

partially reduces the boundary artefacts in filter learning.

Danneljan et al. [10] reformulate the learning cost function

to penalize non-zero filter values outside the object bound-

ing box. Performance better than [23] is reported, but the

learned filter is still a tradeoff between the correlation re-

sponse and regularization, and it does not guarantee that fil-

ter values are zero outside of object bounding box.

3. Spatially constrained correlation filters

Given a set of Nd channel features f = {fd}d=1:Nd
and

corresponding target templates (filters) h = {hd}d=1:Nd
,

where fd ∈ R
dw×dh , hd ∈ R

dw×dh , the object position x

is estimated by maximizing the probability

p(x|h) =
∑Nd

d=1
p(x|fd)p(fd). (1)

The density p(x|fd) = [fd ∗ hd](x) is a convolution of a

feature map with a learned template evaluated at x and p(fd)
is a prior reflecting the channel reliability.

Following [4, 8] we assume independent feature chan-

nels. Optimal filters are obtained at learning stage by

minimizing the sum of squared differences between the

channel-wise correlation outputs and the desired output g ∈
Rdw×dh ,

argmin
h

Nd∑

d=1

‖fd ∗ hd − g‖2 + λ

Nd∑

d=1

‖hd‖
2

= argmin
h

Nd∑

d=1

(‖ĥH
d diag(f̂d)− ĝd‖

2 + λ‖ĥd‖
2). (2)

The equivalence in (2) follows from the Parsevaal’s theo-

rem, the operator â = vec(F [a]) is a Fourier transform

of a reshaped into a column vector, i.e., a ∈ RD×1, with

D = dw ·dh, diag(a) forms a D×D diagonal matrix from a

and (·)H is a Hermitian transpose. Minimization of (2) has

a closed-form solution by equating the complex gradient of
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(2) w.r.t. each channel to zero [4]. Albeit its simplicity, this

solution suffers from boundary defects due to input circu-

larity assumption and from assuming all pixels are equally

reliable for filter learning. In the following we address this

issue by proposing an efficient spatial reliability map con-

struction for correlation filters and propose a new spatially

constrained correlation filter learning framework.

3.1. Constructing spatial reliability map

Spatial reliability map m ∈ [0, 1]dw×dh , with elements

m ∈ {0, 1}, indicates the learning reliability of each pixel.

Probability of pixel x being reliable conditioned on appear-

ance y is specified as

p(m = 1|y,x) ∝ p(y|m = 1,x)p(x|m = 1)p(m = 1).
(3)

The appearance likelihood p(y|m = 1,x) is computed by

Bayes rule from the object foreground/background color

models, which are maintained during tracking as color his-

tograms c = {cf , cb}. The prior p(m = 1) is defined as the

ratio between the region sizes for foreground/background

histogram extraction.

Central pixels in axis-aligned approximations of elon-

gated rotating, articulated or deformable object will likely

contain the object regardless of deformation. On the other

hand, pixels away from the center will equally likely con-

tain object or background. This deformation invariance of

central elements reliability is enforced in our approach by

defining a weak spatial prior

p(x|m = 1) = k(x;σ), (4)

where k(x;σ) is a modified Epanechnikov kernel,

k(r;σ) = 1 − (r/σ)2, with size parameter σ equal to the

minor bounding box axis and clipped to interval [0.5, 0.9]
such that the object prior probability at center is 0.9 and

changes to a uniform prior away from the center (Figure 2).

Spatial consistency of labeling m is enforced by using

(3) as unary terms in a Markov random field. An efficient

solver [24] is applied to compute maximum a posteriori so-

lution of m. To avoid potentially poor classifications at

significant appearance changes, the interior of the object

bounding box is set to a uniform distribution if less than a

very small percentage of pixels αmin are classified as fore-

ground. The reliability map is morphologically dilated by a

small kernel to prevent unwanted masking of object bound-

aries. Figure 2 shows the likelihood and spatial prior in the

unary terms and the final binary reliability map.

3.2. Constrained correlation filter learning

In interest of notation clarity, we assume only a single

channel in the following derivation, i.e., Nd = 1, and drop

the channel index (·)d, since the filter learning is indepen-

dent across the channels.

The spatial reliability map m identifies pixels in the fil-

ter that should be ignored in learning, i.e., introduces a con-

straint h ≡ m ⊙ h, which prohibits a closed-form solution

of (2). In the following we summarize our solution of this

constrained optimization and report the full derivation in the

supplementary material.

We introduce a dual variable hc and the constraint

hc −m⊙ h ≡ 0, which leads to the following augmented

Lagrangian [5]

L(ĥc,h, l̂|m) = ‖ĥH
c diag(f̂)− ĝ‖2 +

λ

2
‖hm‖

2 + (5)

[̂lH(ĥc − ĥm) + l̂H(ĥc − ĥm)] + µ‖ĥc − ĥm‖
2,

where l̂ is a complex Lagrange multiplier, µ > 0, and

we use the following definition hm = (m ⊙ h) for com-

pact notation. The augmented Lagrangian (5) can be it-

eratively minimized by the alternating direction method of

multipliers [5], which sequentially solves the following sub-

problems at each iteration:

ĥi+1
c = argmin

hc

L(ĥc,h
i, l̂i|m), (6)

hi+1 = argmin
h

L(ĥi+1
c ,h, l̂i|m), (7)

and the Lagrange multiplier is updated as

l̂i+1 = l̂i + µ(ĥi+1
c − ĥi+1). (8)

The minimizations in (6) have a closed-form solution:

ĥi+1
c = (f̂ ⊙ ĝ + (µĥi

m − l̂i))⊙−1 (f̂ ⊙ f̂ + µi), (9)

hi+1 = m⊙F−1 [̂li + µiĥi+1
c ]/(

λ

2D
+ µi). (10)

A standard scheme for updating the constraint penalty µ
values [5] is applied, i.e., µi+1 = βµi.

Computations of (9,8) are fully carried out in frequency

domain, the solution for (10) requires a single inverse FFT

and another FFT to compute the ĥi+1. A single optimiza-

tion iteration thus requires only two calls of the Fourier

transform, resulting in a very fast optimization. The com-

putational complexity is that of the Fourier transform, i.e.,

O(D logD). Filter learning is implemented in less than five

lines of Matlab code and is summarized in the Algorithm 1.

3.3. Channel reliability estimation

The channel reliability at target localization stage is com-

puted as the product of a learning channel reliability mea-

sure and a detection reliability measure. These are de-

scribed next.

Minimization of (5) solves a least squares problem aver-

aged over all displacements of the filter on a feature chan-

nel. A discriminative feature channel fd produces a filter hd

6311



Spatial prior Backprojection Posterior Overlayed patchTraining patch

Figure 2: Spatial reliability map construction. From left to right: a training patch with the tracked object bounding box, the

spatial prior used as a unary term in the Markov random field optimization, the object log-likelihood according to foreground-

background color models, the posterior object probability after Markov random field regularization. The training patch

masked with the final binary reliability map.

Algorithm 1 : Constrained filter optimization.

Require:

Image patch features f , ideal correlation response g, bi-

nary mask m.

Ensure:

Optimized filter ĥ.

Procedure:

1: Initialize filter ĥ0 by ht−1.

2: Initialize Lagrangian coefficients: l̂0 ← zeros.
3: repeat

4: Calculate ĥi+1
c from ĥi and l̂i using (9).

5: Calculate hi+1 from ĥi+1
c and l̂i using (10).

6: Update the Lagrangian l̂i+1 from ĥi+1
c and hi+1 (8).

7: until stop condition

whose output fd ∗ hd nearly exactly fits the ideal response

g. On the other hand, the response is highly noisy on the

channel with low discriminative power and a global error

reduction in the least squares significantly reduces the max-

imal response. Thus a straight-forward measure of channel

learning reliability p(fd) in (1) is the maximum response of

a learned channel filter, i.e., wd = ζmax(fd ∗ hd), where

the normalization scalar ζ ensures that
∑

d wd = 1.

At detection stage, the per-channel detection reliability

is reflected in the expressiveness of the major mode in the

response of each channel. Note that Bolme et al. [4] pro-

posed a similar approach to detect target loss. Our mea-

sure is based on the ratio between the second and first ma-

jor mode in the response map, i.e., ρmax2/ρmax1. Note

that this ratio penalizes cases when multiple similar ob-

jects appear in the target vicinity since these result in multi-

ple equally expressed modes, even though the major mode

accurately depict the target position. To prevent such pe-

nalizations, the ratio is clamped by 0.5. Therefore, the

per-channel detection reliability is estimated as w
(det)
d =

1−min(ρmax2/ρmax1,
1
2 ).

3.4. Tracking with channel and spatial reliability

The localization and update steps of the proposed chan-

nel and spatial reliability correlation filter trackers (CSR-

DCF) proceed as follows. Localize. Per-channel responses

and the corresponding detection reliability values are com-

puted (Section 3.3) and multiplied with the learning relia-

bility measures from previous time-step wt−1 into channel

reliability scores. The object is localized by summing the

responses of the learned correlation filters ht−1 weighted by

the estimated channel reliability scores. Scale is estimated

by a single scale-space correlation filter from Danelljan et

al. [8]. Update. Foreground/background histograms c̃ are

extracted at the estimated location and updated by an auto-

regressive scheme with learning rate ηc. The foreground

histogram is extracted by a standard Epanechnikov kernel

within the estimated object bounding box and the back-

ground is extracted from the neighborhood twice the object

size. The spatial reliability map (Section 3.1) is constructed,

the optimal filters h̃ are computed by optimizing (5) and the

per-channel learning reliability w̃ = [w̃1, . . . , w̃Nd
]T is es-

timated from their responses (Section 3.3). For temporal ro-

bustness, the filters and channel learning reliability weights

are updated by an autoregressive model with learning rate η.

A single tracking iteration is summarized in Algorithm 2.

4. Experimental analysis

This section overviews a comprehensive experimental

evaluation of the proposed CSR-DCF tracker. Implemen-

tation details are discussed in Section 4.1, Section 4.2 re-

ports comparison of the proposed constrained learning to

the related state-of-the-art, ablation study is provided in

Section 4.3, performance on three recent benchmarks is re-

ported in Section 4.4, Section 4.5 and Section 4.6. Sec-

tion 4.7 evaluates the tracking speed.

4.1. Implementation details and parameters

Standard HOG [15] and Colornames [38] features

are used in the correlation filter and HSV fore-
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Algorithm 2 : The CSR-DCF tracking algorithm.

Require:

Image It, object position on previous frame pt−1, scale

st−1, filter ht−1, color histograms ct−1, channel relia-

bility wt−1.

Ensure:

Position pt, scale st and updated models.

Localization and scale estimation:

1: New target location pt: position of the maximum in

correlation between ht−1 and image patch features f

extracted on position pt−1 and weighted by the channel

reliability scores (Section 3.3).

2: Using location pt, estimate new scale st.
Update:

3: Extract foreground and background histograms c̃f , c̃b.

4: Update foreground and background histograms

c
f
t = (1− ηc)c

f
t−1 + ηcc̃

f , cbt = (1− ηc)c
b
t−1 + ηcc̃

b.

5: Estimate reliability map m (Section 3.1).

6: Estimate a new filter h̃ using m (Algorithm 1).

7: Estimate channel reliability w̃ from h (Section 3.3).

8: Update filter ht = (1− η)ht−1 + ηh̃.

9: Update channel reliability wt = (1− η)wt−1 + ηw̃.

ground/background color histograms with 16 bins per color

channel are used in reliability map estimation with param-

eter αmin = 0.05. All the parameters are set to values

commonly used in literature [10, 23]. Histogram adaptation

rate is set to ηc = 0.04, correlation filter adaptation rate is

set to η = 0.02, and the regularization parameter is set to

λ = 0.01. The augmented Lagrangian optimization param-

eters are set to µ0 = 5 and β = 3. All parameters have

straight-forward interpretation, do not require fine-tuning,

and were kept constant throughout all experiments. Our

Matlab implementation1 runs at 13 frames per second on

an Intel Core i7 3.4GHz standard desktop.

4.2. Impact of boundary constraint formulation

This section compares our proposed boundary con-

straints formulation (Section 3) with recent state-of-the-art

approaches [10, 23]. In the first experiment, three variants

of the standard single-scale HOG-based correlation filter

were implemented to emphasize the difference in boundary

constraints: the first one uses our spatial reliability bound-

ary constraint formulation from Section 3 (TCR) the sec-

ond one applies the spatial regularization constraint [10]

(TSR) and the third one applies the limited boundaries con-

straint [23] (TLB).

The three variants were compared on the challenging

VOT2015 dataset [26] by applying a standard no-reset one-

pass evaluation (OTB [42]) and computing the AUC on the

success plot. The tracker with our constraint formulation

1The CSR-DCF Matlab source code will be made publicly available.

Figure 3: The number of trajectories with tracking success-

ful up to frame Θfrm (upper left), the OTB success plots (up-

per right) and initialization examples of non-axis-aligned

targets (bottom).

TCR achieved 0.32 AUC, while the alternatives achieved

0.28 (TSR) and 0.16 (TLB). The only difference between

these tackers is in the constraint formulation, which indi-

cates superiority of the proposed spatial-reliability-based

constraints formulation over the recent alternatives [23, 10].

4.2.1 Non-axis-aligned target initialization robustness

The proposed CSR-DCF tracker from Section 3 was

compared to the original recent state-of-the-art trackers

SRDCF [10] and CFLB [23] that apply alternative bound-

ary constraints. The source code was obtained from the au-

thors and only HoG features were used in all three track-

ers for a fair comparison. An experiment was designed to

evaluate initialization and tracking of non axis-aligned tar-

gets, which is the case for most realistic deforming and non-

circular objects. Trackers were initialized on frames with

non-axis aligned targets and left to track until the sequence

end, resulting in a large number of tracking trajectories and

summarized by various performance measures.

The VOT2015 dataset [26] contains non-axis-aligned an-

notations, which allows automatic identification of tracker

initialization frames, i.e., frames in which the ground truth

bounding box significantly deviates from an axis-aligned

approximation. Frames with overlap between ground truth

and axis-aligned approximation lower than 0.5 were iden-

tified and filtered to obtain a set of initialization frames at

least hundred frames apart – this constraint fits half the typ-
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Table 1: Comparison of three most related trackers on

non-axis-aligned initialization experiment: weighted aver-

age tracking length in frames Γfrm and proportions Γprp,

and weighted average overlaps using the original and axis-

aligned ground truth, Φrot and Φaa, respectively.

Tracker Γprp Γfrm Φaa Φrot

CSR-DCF 0.58 221 0.31 0.24

SRDCF (ICCV2015) 0.31 95 0.16 0.12

LBCF (CVPR2015) 0.12 37 0.06 0.04

Figure 4: Qualitative results for trackers CSR-DCF (red)

tracker, SRDCF (blue) and LBCF (green).

ical short-term sequence length [26] and reduces the poten-

tial correlation across the initializations (see Figure 3 for

examples).

Initialization robustness is estimated by counting the

number of trajectories in which the tracker was still track-

ing (overlap with ground truth greater than 0) Θfrm frames

after initialization. Figure 3 shows these values with in-

creasing the threshold Θfrm. The CSR-DCF graph is con-

sistently above the SRDCF and LBCF for all thresholds.

The performance is summarized by the average tracking

length (number of frames before the overlap drops to zero)

weighted by trajectory lengths. The weighted average track-

ing lengths in frames, Γfrm, and proportions of full trajec-

tory lengths, Γprp, are shown in Table 1. The CSR-DCF

by far outperforms SRDCF and LBCF in all measures indi-

cating a significant robustness at initialization of challeng-

ing targets that deviate from axis-aligned templates. This

improvement is further confirmed by Figure 3 (upper right

graph) which shows the OTB success plots [42] calculated

on these trajectories and summarized by the AUC values,

which are equal to the average overlaps [6]. Table 1 shows

the average overlaps computed on the original ground truth

on VOT2015 (Φrot) and on ground truth approximated by

the axis-aligned bounding box (Φaa). Again, the CSR-DCF

by far outperforms the competing alternatives SRDCF and

LBCF. Tracking examples for the three trackers are shown

Table 2: Ablation study of CSR-DCF.

Tracker EAO Rav Aav

CSR-DCF 0.338 0.85 0.51

CuSR-DCF 0.297 1.08 0.51

CSuR-DCF 0.264 1.18 0.49

CuSuR-DCF 0.256 1.33 0.51

DCF 0.152 2.85 0.47

in Figure 4.

4.3. Spatial and channel reliability ablation study

An ablation study on VOT2016 (see Section 4.6 for de-

tails of the evaluation protocol) was conducted to evalu-

ate the contribution of spatial and channel reliability mea-

sures in our CSR-DCF. Results of the VOT primary mea-

sure EAO and two supplementary measures (A,R) are sum-

marized in Table 2. Setting the adaptive channel reliabil-

ity weights to uniform values (CuSR-DCF) results in 12%
performance drop in EAO compared to CSR-DCF. Replac-

ing the adaptive spatial reliability map in CSR-CDF by a

constant map with uniform values within the bounding box

and zeros elsewhere (CSuR-DCF), results in a 21% drop

in EAO. Making both replacements in CSR-DCF (CuSuR-

DCF) results in 24% drop. Removing the channel and spa-

tial reliability map reduces our tracker to a standard DCF

with a large receptive field – the performance drops by over

50%.

4.4. The OTB100 benchmark [43]

The OTB100 [43] benchmark contains results of 29
trackers evaluated on 100 sequences by a no-reset evalua-

tion protocol. Tracking quality is measured by precision

and success plots. Success plot shows portion of frames

with the overlap between predicted and ground truth bound-

ing box greater than a threshold with respect to all threshold

vales. The precision plot shows similar statistics on the cen-

ter error. The results are summarized by areas under these

plots. To reduce clutter in the graphs, we show here only the

results for top-performing recent baselines, i.e., Struck [17],

TLD [22], CXT [14], ASLA [44], SCM [41], LSK [33],

CSK [18] and results for recent top-performing state-of-the-

art trackers SRDCF [10] and MUSTER [21].

The CSR-DCF is ranked top on the benchmark (Fig-

ure 5). It significantly outperforms the best performers

reported in [43] and outperforms the current state-of-the-

art (SRDCF [10] and MUSTER [21]). The average CSR-

DCF performance on success plot is slightly lower than

SRDCF [9] due to poorer scale estimation, but yields better

performance in the average precision (center error). Both,

precision and success plot, show that the CSR-DCF tracks

on average longer than competing methods.
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Figure 5: OTB100 [43] benchmark comparison. The preci-

sion plot (left) and the success plot (right).

4.5. The VOT2015 benchmark [26]

The VOT2015 [26] benchmark contains results of 63

state-of-the-art trackers evaluated on 60 challenging se-

quences. In contrast to related benchmarks, the VOT2015

dataset was constructed from 300 sequences by an advanced

sequence selection methodology that favors objects difficult

to track and maximizes a visual attribute diversity cost func-

tion [26]. This makes it arguably the most challenging se-

quence set available. The VOT methodology [27] resets a

tracker upon failure to fully use the dataset. The basic VOT

measures are the number of failures during tracking (robust-

ness) and average overlap during the periods of successful

tracking (accuracy), while the primary VOT2015 measure

is the expected average overlap (EAO) on short-term se-

quences. The latter can be thought of as the expected no-

reset average overlap (AUC in OTB methodology), but with

reduced bias and the variance as explained in [26].

Figure 7 shows the VOT EAO plots with the CSR-DCF

and the VOT2015 state-of-the-art approaches considering

the VOT2016 rules that do not consider trackers learned

on video sequences related to VOT to prevent over-fitting.

The CSR-DCF outperforms all trackers and achieves a top

rank. The CSR-DCF significantly outperforms the related

correlation filter trackers like SRDCF [9] as well as track-

ers that apply computationally-intesive state-of-the-art deep

features e.g., deepSRDCF [11] and SO-DLT [40].

4.6. The VOT2016 benchmark [25]

Finally, we compare our tracker on the most recent vi-

sual tracking benchmark, VOT2016 [25]. The dataset con-

tains 60 sequences from VOT2015 [26] with improved an-

notations. The benchmark evaluated a set of 70 track-

ers which includes the recently published and yet unpub-

lished state-of-the-art trackers. The set is indeed diverse,

the top-performing trackers come from various classes

e.g., correlation filter methods (CCOT [13], Staple [2],

DDC [25]), deep ConvNets (TCNN [25], SSAT[25, 36],

MLDF [25, 39], FastSiamnet [3]) and different detection-

Overall
(0.27, 0.34)

Camera motion
(0.28, 0.37)

Occlusion
(0.16, 0.29)

Size change
(0.25, 0.38)

Unassigned
(0.10, 0.21)

(0.20, 0.46)

Illumination
change

(0.20, 0.46)

Motion
change

CSR-DCF CCOT TCNN SSAT MLDF Staple
DDC EBT SRBTStaple+ DNT

Figure 6: Expected averaged overlap performance on dif-

ferent visual attributes on the VOT2016 [25] benchmark.

The proposed CSR-DCF and the top 10 performing track-

ers from VOT2016 are shown. The scales of visual attribute

axes are displayed below the attribute labels.

based approaches (EBT [46], SRBT [25]).

Figure 7 shows the EAO performance on the VOT2016.

Our proposed CSR-DCF outperforms all 70 trackers at the

EAO score 0.338. The CSR-DCF significantly outperforms

correlation filter approaches that do not apply deep Con-

vNets. Even though the CSR-DCF applies only simple fea-

tures, it outperforms all trackers that apply computationally

intensive deep features.

The VOT2016 [25] dataset is per-frame annotated with

visual attributes and allows detailed analysis of per-attribute

tracking performance. Figure 6 shows per-attribute plot for

ten top-performing trackers on VOT2016 in EAO. The pro-

posed CSR-DCF is consistently ranked among top three

trackers on five out of six attributes. In four attributes (size

change, occlusion, camera motion, unassigned) the tracker

is ranked number one.

4.7. Tracking speed analysis

Tracking speed is an important factor of many real-world

tracking problems. Table 3 thus compares several related

and well-known trackers (including the best-performing

tracker on the VOT2016 challenge) in terms of speed and

VOT performance measures. Speed measurements on a sin-

gle CPU are computed on Intel Core i7 3.4GHz standard

desktop.

The proposed CSR-DCF performs on par with the

VOT2016 best-performing CCOT [13], which applies deep

ConvNets, with respect to VOT measures, while being 20
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Figure 7: Expected average overlap plot for VOT2015 [26] (left) and VOT2016 [25] (right) benchmarks with the proposed

CSR-DCF tracker. Legends are shown only for top performing trackers. The graphs with full legends are provided in

supplementary materials.

Table 3: Speed in frames per second (fps) of correlation

trackers and Struck – a baseline. The EAO, average accu-

racy (Aav) and average failures (Rav) are shown for refer-

ence.

Tracker Published at EAO Aav Rav fps

CSR-DCF This work. 0.338 0.51 0.85 13.0

CCOT ECCV2016 0.331 0.52 0.85 0.55

CCOT* ECCV2016 0.274 0.52 1.18 1.0

SRDCF ICCV2015 0.247 0.52 1.50 7.3

KCF PAMI2015 0.192 0.48 2.03 115.7

DSST PAMI2016 0.181 0.48 2.52 18.6

Struck ICCV2011 0.142 0.42 3.37 8.5

times faster than the CCOT. The CCOT was modified by

replacing the computationally intensive deep features with

the same simple features used in CSR-DCF. The result-

ing tracker, indicated by CCOT*, is still ten times slower

than CSR-DCF, while the performance drops by over 15%.

The proposed CSR-DCF performs twice as fast as the re-

lated SRDCF [9], while achieving approximately 25% bet-

ter tracking results. The speed of baseline real-time trackers

like DSST [8] and Struck [17] is comparable to CSR-DCF,

but their tracking performance is significantly poorer. The

fastest compared tracker, KCF [19] runs much faster than

real-time, but delivers a significantly poorer performance

than CSR-DCF.

The experiments show that the CSR-DCF performs com-

parably to the state-of-the-art trackers which apply compu-

tationally demanding high-dimensional features, but runs

considerably faster and delivers top tracking performance

among the real-time trackers.

5. Conclusion

The Discriminative Correlation Filter with Channel and

Spatial Reliability (CSR-DCF) was introduced. The spatial

reliability map adapts the filter support to the part of the

object suitable for tracking which overcomes both the prob-

lems of circular shift enabling an arbitrary search range and

the limitations related to the rectangular shape assumption.

A novel efficient spatial map estimation method was pro-

posed and an efficient optimization procedure derived for

learning a correlation filter with the support constrained by

the spatial reliability map. The second novelty of CSR-DCF

is the channel reliability. The reliability is estimated from

the properties of the constrained least-squares solution. The

channel reliability scores were used for weighting the per-

channel filter responses in localization.

Experimental comparison with recent related state-of-

the-art boundary-constraints formulations showed signifi-

cant benefits of using our formulation. The CSR-DCF

has state-of-the-art performance on standard benchmarks –

OTB100 [43], VOT2015 [26] and VOT2016 [26] while run-

ning in real-time on a single CPU. Despite using simple fea-

tures like HoG and Colornames, the CSR-DCF performs on

par with trackers that apply computationally complex deep

ConvNet, but is significantly faster.

To the best of our knowledge, the proposed approach is

the first of its kind to introduce constrained filter learning

with arbitrary spatial reliability map and the use of channel

reliabilities. The spatial and channel reliability formulation

is general and can be used in most modern correlation fil-

ters, e.g. those using deep feature.
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R. Pflugfelder, L. Čehovin, T. Vojir, G. Häger, A. Lukežič,
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