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Abstract

In this paper we propose a framework for spatially and

temporally coherent semantic co-segmentation and recon-

struction of complex dynamic scenes from multiple static

or moving cameras. Semantic co-segmentation exploits the

coherence in semantic class labels both spatially, between

views at a single time instant, and temporally, between

widely spaced time instants of dynamic objects with sim-

ilar shape and appearance. We demonstrate that semantic

coherence results in improved segmentation and reconstruc-

tion for complex scenes. A joint formulation is proposed for

semantically coherent object-based co-segmentation and

reconstruction of scenes by enforcing consistent semantic

labelling between views and over time. Semantic track-

lets are introduced to enforce temporal coherence in seman-

tic labelling and reconstruction between widely spaced in-

stances of dynamic objects. Tracklets of dynamic objects

enable unsupervised learning of appearance and shape pri-

ors that are exploited in joint segmentation and reconstruc-

tion. Evaluation on challenging indoor and outdoor se-

quences with hand-held moving cameras shows improved

accuracy in segmentation, temporally coherent semantic la-

belling and 3D reconstruction of dynamic scenes.

1. Introduction

Advances in visual scene understanding using deep

learning, with convolutional neural network architectures

and large annotated image collections [56, 10, 40], have

achieved excellent performance in per-pixel labelling of se-

mantic categories in complex real-world scenes from im-

ages. Due to the inherent ambiguity in visual segmenta-

tion and classification from a single camera view the output

may include errors in pixel labelling and object boundary

segmentation resulting in a lack of temporal coherence in

semantic labelling. Likewise independent classification for

different views of the same scene may result in inconsistent

per-pixel semantic labelling for the same object.

This paper introduces a framework for semantically co-

herent per-pixel segmentation and reconstruction of dy-

Figure 1. Example of input image from Magician dataset [3]

and standard image classification from fully convolution network

(FCN) [10] on the top. Bottom: Proposed framework resulting in

an accurately labeled segmentation and 3D reconstruction.

namic scenes. The approach enforces semantic coherence

both spatially across different views of the scene and tem-

porally across different observations of the same object. Se-

mantic tracklets are introduced to associate semantic la-

bels between different observations of a dynamic object

with similar shape and appearance over time. This en-

ables improved temporal coherence in semantic labelling

and co-segmentation for monocular video. Joint semantic

co-segmentation and reconstruction across multiple views

of dynamic objects enforces spatial coherence in semantic

labelling resulting in improved performance over previous

approaches which did not exploit semantic information.

Previous research has demonstrated the advantages of

joint segmentation and reconstruction across multiple views

[21, 24, 23, 34, 14, 32], co-segmentation of multiple view

images [11, 31, 13, 12] and temporal coherence in recon-

struction [20, 18, 36, 42]. Our contribution is the intro-

duction of a framework for joint semantic co-segmentation

and reconstruction of complex dynamic scenes to obtain se-

mantically coherent per-view 2D object segmentation and

3D scene reconstruction from wide-baseline camera views.

Semantic coherence refers to spatial and temporal coher-

ence of semantic labels across the sequence. To the best of

our knowledge, this is the first method addressing the prob-

lem of temporally coherent semantic co-segmentation and

reconstruction for dynamic scenes.
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Figure 1 shows an example of semantically coherent co-

segmentation and reconstruction for the publicly available

Magician dataset [3] captured with 5 hand-held unsynchro-

nised moving cameras. An initial semantic class labelling

is obtained independently for each view using fully convo-

lutional networks (FCN) at each frame [10]. Joint semantic

co-segmentation and reconstruction (bottom-row) results in

significant improvement in both 2D segmentation and re-

construction. Contributions include:

• Joint semantic co-segmentation and reconstruction of

dynamic objects in complex scenes

• Semantic tracklets for temporally coherent semantic

labelling of video across wide-timeframes

• Improved segmentation and reconstruction of dynamic

scenes from multiple moving cameras

2. Related work

2.1. Semantic segmentation

Various methods have been proposed in the literature for

semantic segmentation of images. In the first category the

image is initially segmented followed by a per-segment ob-

ject category classification [41, 22]. However, errors in seg-

mentation propagate to the semantic labelling. Several pa-

pers address these issues by proposing deep per-pixel CNN

features followed by classification of each pixel in the im-

age [17, 25]. The per-pixel prediction leads to segmenta-

tions with fuzzy boundaries and spatially disjoint regions.

Another group of methods pioneered by [38] predict seg-

mentations from the raw pixels. Methods were introduced

to improve the spatial coherence of the semantic segmenta-

tion using conditional random fields (CRF) [33, 57, 9].

Co-segmentation: Co-segmentation was first introduced

by [49] for simultaneous binary segmentation of ob-

ject parts in an image pair. This was extended to co-

segmentation of multiple images [5]. Multi-view co-

segmentation in space and time was introduced in [13]. A

common foreground is obtained from multiple views us-

ing the information from appearance and motion cues. Se-

mantic co-segmentation methods from a single video use

spatio-temporal object proposals [28, 40], segments [31],

motion [49] and foreground propagation [20]. Recently, co-

segmentation methods were introduced to segment common

objects in a collection of videos for a single object [19] or

multiple objects [11, 54].

2.2. Joint segmentation and reconstruction

General multi-view image segmentation methods use ap-

pearance and contrast information which may not be suf-

ficient in the case of complex real world scenes. To im-

prove the results joint optimisation of segmentation with

3D reconstruction has been proposed [21, 42] by including

the multiple view photo-consistency. This concept was ex-

tended to semantic segmentation and reconstruction to ob-

tain additional information from the scene [24, 56]. Meth-

ods were introduced to utilize appearance-based pixel cate-

gories and stereo cues in a joint framework for street scenes

from a monocular camera [34, 55, 18]. These methods used

CRF to perform simultaneous dense reconstruction and seg-

mentation of street scenes captured from a moving camera.

A method to estimate the pose and 3D shape of rigid objects

on street scenes was proposed [14]. Compact shape mani-

folds within an object class were used for joint object seg-

mentation, pose and shape estimation. However these meth-

ods cannot be directly applied to multi-view wide-baseline

scenes. A method for joint estimation of 3D scene geom-

etry and semantic segmentation using multiple images was

proposed for static scenes [23]. Dense semantic reconstruc-

tion of rigid objects was proposed by [4]. However, these

methods are limited to static scenes and rigid objects.

This paper introduces joint semantic co-segmentation

and reconstruction enforcing coherence in both the spa-

tial and temporal domains for scenes, with rigid and non-

rigid dynamic objects, captured with multiple wide-baseline

moving cameras. A key contribution of our work is that we

combine semantics, shape and appearance information in

space and time in a single optimization. Evaluation demon-

strates improved accuracy and completeness of both seg-

mentation and reconstruction for complex dynamic scenes.

3. Semantic Segmentation & Reconstruction

The proposed framework for semantic coherence, illus-

trated in Figure 2, comprises the following stages:

Initial Semantic Segmentation: Initial semantic labels are

estimated for each pixel in the image per-view using fully

convolutional networks (FCNs) [10].

Initial Semantic Reconstruction: Semantic information

for each view is combined with sparse 3D feature corre-

spondence between views to obtain an initial semantic 3D

reconstruction. This initial reconstruction combines seman-

tic information across views but results in inconsistency due

to inaccuracies in the initial per-view segmentation.

Semantic Tracklets: To enforce semantic coherence tem-

porally we propose semantic tracklets that identify a set of

similar frames for each dynamic object. Similarity between

any pair of frames is estimated from the per-view semantic

labels, appearance, and shape. Semantic trackets provide a

prior for the joint space-time semantic co-segmentation and

reconstruction to enforce temporal coherence.

Semantic Co-segmentation and Reconstruction: The ini-

tial semantic segmentation and reconstruction is refined per-

view for each dynamic object through joint optimisation

of segmentation and shape across multiple views and over

time using the semantic tracklets. Per-view information is

merged into a single 3D model using Poisson surface recon-

struction [29].

423



Figure 2. Semantically coherent co-segmentation and reconstruction framework.

The process is repeated for the entire sequence to ob-

tain semantically coherent dense co-segmentation and re-

construction for the complete scene. The following sections

include a detailed explanation of the proposed approach and

highlight the novel contributions of this work.

3.1. Initial Segmentation & Reconstruction

Initial Semantic Segmentation: The state-of-the-art in se-

mantic segmentation is currently represented by fully con-

volutional networks (FCNs). To predict semantic unary po-

tentials we employ the DeepLab model, which is a fully

convolutional adaptation of the VGG network [10]. For

each frame in the sequence we perform deep semantic

segmentation which estimates the probabilities of various

classes at each pixel in the image. The network is trained

on MS-COCO[37] dataset with 81 classes and is refined on

PASCAL VOC12 [16] dataset. FCNs use large receptive

fields and many pooling layers, both of which cause blur-

ring and low spatial resolution in the deep layers. As a

result FCNs produce segmentations with poorly localized

object boundaries as illustrated in Figure 3(b).

Initial Semantic Reconstruction: Sparse feature-based re-

construction of the scene is performed using SFD features

[44] and SIFT descriptor[39] with the constraint that each

3D feature should be visible in 3 or more camera views

for robustness [26]. The resulting point-cloud is clustered

in 3D [50]. Clusters are formed between points with the

same class labels across multiple views such that each clus-

ter represents a semantically consistent object. Insufficient

3D features may occur on parts of an object due to lack

of texture or visual ambiguity. To avoid incomplete recon-

struction the sparse 3D object clusters are combined with

the initial semantic segmentation to obtain the initial se-

mantic reconstruction. A mesh is obtained for sparse 3D

point clusters by triangulation to obtain an initial coarse re-

construction for each object. The initial coarse reconstruc-

tion is back-projected in each view onto the initial semantic

segmentation. If the back-projected mask is smaller than

its respective semantic region in 2 or more views then the

initial coarse reconstruction is dilated in volume(3D) by p

to enclose the object: p = 1
Nh

∗
∑Nh

c=1
Bc

s−B
c
r

Bi
s

, where Nh

is the number of views with smaller back-projected mask,

Bis is the area of the semantic segmentation and Bir is the

area of the back-projected mask of the initial coarse recon-

struction. This automatically initializes the reconstruction

of each object in the scene without any strong initial priors.

3.2. Semantic Tracklets

In the case of general dynamic scenes with non-rigid ob-

jects, independent per-frame segmentation and reconstruc-

tion leads to incoherent results, for example failure to re-

construct thin structures such as limbs and poorly localized

object boundaries. Sequential methods for frame-to-frame

temporal coherence are prone to errors due to drift and rapid

motion [6, 46]. Previous work [54] has shown that seman-

tic tracklets improve segmentation for single view video. To

achieve robust temporally coherent reconstruction semantic

tracklets are introduced linking instances of dynamic ob-

jects across wide-timeframes. This provides a prior to con-

strain co-segmentation and reconstruction. Semantic track-

lets for a dynamic object are defined as a set of frames

which have similar semantic labels, appearance and 2D

shape as illustrated in Figure 4. Tracklets are used for long-

term learning of semantic labels, appearance and shape in-

formation for per-view joint semantic co-segmentation and

reconstruction of each object. This improves the seman-

tic coherence in reconstruction and segmentation results as

shown in Figure 5 and 12. Dynamic objects are identified

in the scene using motion information from sparse temporal

SIFT feature correspondences. The semantic, 2D shape and
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Figure 3. The improvement of semantic segmentation using the proposed framework for Odzemok dataset.

appearance similarity of the dynamic object is evaluated for

each frame against all previous frames to identify the set of

similar frames which form a tracklet. Similarity is evalu-

ated as follows:

Semantic Similarity: The semantic region associated with

the object at each frame is identified using sparse wide-

timeframe SIFT feature matches. An affine warp [15] based

on the feature correspondence and region boundary is em-

ployed to transfer the semantic region segmentation to the

current frame. The semantic similarity metric Lci,j is de-

fined as the ratio of the number of pixels with the same class

label zci,j to the total number or pixels in the segmented re-

gion yci,j at frame i and j for view c: Lci,j =
zci,j
yci,j

Appearance Similarity: The appearance metric M c
i,j be-

tween frame i and j for the semantic region segmentation

in view c is based on the ratio of the number of temporal

feature correspondences which are consistent across three

or more views Qci,j to the total number of feature corre-

spondence in the segmented region Rci,j [43]: M c
i,j =

Qc
i,j

Rc
i,j

Shape Similarity: The shape metric gives a measure of the

2D region shape similarity between pairs of frames for each

dynamic object. Semantic region segmentations are aligned

using an affine warp [15]. The 2D shape similarity metric

Ici,j is defined as the ratio of the intersection of the aligned

segmentation hci,j to the union of the area Aci,j : I
c
i,j =

hc
i,j

Ac
i,j

Similarity metric: The metrics defined above are used to

calculate the similarity between frames as follows:

Si,j =
1

3NS

NT
∑

c=1

(M c
i,j + Ici,j + Lci,j) (1)

All frames with similarity > 0.75 are selected as NS simi-

lar frames to form a semantic tracklet Ti for each dynamic

object at the ith frame, Ti = {tr}
NS

r=1, where tr ∈ [0, i− 1].

3.3. Singleview Semantic Segmentation

Temporally coherent semantic segmentation can be op-

timised independently for a single-view video using the se-

mantic tracklets without a requirement for multiple views.

This is extended to spatially and temporally coherent joint

co-segmentation and reconstruction from multiple view

video in section 3.4. The goal of single-view semantic seg-

mentation is to assign a semantic label from a set of seman-

tic classes obtained as an initialization from FCN (section

3.1), L =
{

l1, ..., l|L |

}

, to each pixel p for the initial se-

Figure 4. Example of dynamic tracklet generation (similar frames)

for a dynamic object at current frame 53 based on appearance,

shape and semantic information. The spatial and temporal neigh-

bourhood are shown at the top in green and yellow respectively for

the optimization.

mantic segmentation region S of each object (Section 3.1),

where |L | is the total number of classes in the network.

This is achieved by optimization of a cost function:

Esingle(l) = λsemEsem(l) + λaEa(l) + λcEc(l) (2)

where individual cost terms enforce spatial and temporal

coherence for dynamic objects in semantic labels Esem,

appearance Ea, and region boundary contrast Ec. Opti-

mization is performed using α-expansion across spatial and

temporal neighbourhoods as shown in Figure 4 by iterating

through the set of labels in L [8].

Spatial neighbourhood: The spatial neighbourhood is de-

fined as pairs of spatially close pixels in the image domain.

A standard 8-connected spatial neighbourhood is used de-

noted by ψS ; the set of pixel pairs (p, q) such that p and q

belong to the same frame and are spatially connected.

Temporal neighbourhood: The temporal neighbourhood

is defined based on the set of tracklets Ti generated for any

frame i. For single view optimization the tracklets are es-

timated using the metric: sci,j =
1
3 (M

c
i,j + Ici,j + Lci,j) de-

rived from Eq. 1. In the color similarity metric M c
i,j , Q

c
i,j

is replaced with correspondences obtained using the single

view wide-timeframe matching approach by [45]. Optical

flow is used to compute a dense flow field on the track-

lets, initialized from the sparse temporal SIFT feature cor-

respondences. EpicFlow [47] is used to preserve large dis-

placements as the tracklets are distributed widely in time,

and forward-backward flow consistency is enforced. Opti-

cal flow vectors define the temporal neighbourhood ψT =
{(p, q) | q = p+ di,j}; where j j is the number of a frame

in tracklet Ti = {j = tr}, and di,j is the displacement vec-

tor from image i to j.

Semantic cost: This cost is computed based on the prob-
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ability of the class labels at each pixel for the initial FCN

semantic segmentation [10]. Unlike previous approaches to

achieve semantic coherence we enforce spatial and tempo-

ral consistency using tracklets across the neighbourhoods:

Esem(l) =
∑

p∈ψT

∑

p∈ψS
−logP (Ip|lp)

where Psem(Ip|lp = li) denotes the probability of the layer

li at pixel p in the classification image obtained from FCN.

Contrast cost: The contrast cost [10] is modified to intro-

duce spatial and temporal semantic coherence and ensure

that for dynamic objects the region boundaries have high

contrast. Semantic region boundaries are propagated using

the tracklets as a prior for the optimization:

Ec(l) =
∑

p,q∈ψT

ec(p, q, lp, lq, σ
t
α, ϑ

t
pq, σ

t
β) +

∑

p,q∈ψS

ec(p, q, lp, lq, , σ
s
α, ϑ

s
pq, σ

s
β)

ec(p, q, lp, lq, σα, ϑpq, σβ) = µ (lp, lq)×
(

λcaexp
−

(

‖B(p)−B(q)‖2

2(σα)2(ϑpq)2

)

+ λclexp
−

(

‖L(p)−L(q)‖2

2(σγ)2

)
)

where µ (lp, lq) = 1 if (lp 6= lq) else 0 and ϑpq is the Eu-

clidean distance between pixel p and q. The first Gaussian

kernel is a bilateral kernel which depends on RGB color

(B() is bilateral filtered image) and pixel positions, and the

second kernel only depends on pixel positions L) . The pa-

rameters σα, σβ and σγ control the scale of the Gaussian

kernels. The first kernel forces pixels with similar color

and position to have similar labels, while the second kernel

only considers semantic spatial proximity when enforcing

smoothness. The value of σα =
〈

‖B(p)−B(p)‖2

ϑ2
pq

〉

, with the

operator 〈〉 denoting the mean computed across the neigh-

bourhoods ψS and ψT for spatial and temporally coherent

contrast respectively.

Appearance cost: This cost is computed using the negative

log likelihood [7] of the color models learned from the fore-

ground object and background. In this work the foreground

models are learnt from the sparse features of the dynamic

object in the current frame and foreground regions from

tracklets to improve the consistency of the results. Static

background models are learnt from the sparse features out-

side the initial semantic segmentation of the dynamic object

in the current frame and the region outside the semantic seg-

mentation in the tracklets. Appearance cost is defined as:

Ea(l) =
∑

p∈ψT

∑

p∈ψS
−logP (Ip|lp)

where P (Ip|lp = li) is the probability of pixel p in the refer-

ence image belonging to layer li. Color models use GMMs

with 10 components each for foreground/background.

An example of single-view semantic segmentation is

shown in Figure 3(c). Enforcing temporal coherence with

semantic tracklets for a single monocular video reduces

noise in per-pixel labels. Errors in object segmentation re-

main due to the low spatial resolution of the FCN semantic

boundaries and visual ambiguity in single view segmenta-

tion. In the following section we introduce multi-view joint

semantic co-segmentation and reconstruction which com-

bines information across multiple views to refine the seg-

mentation as illustrated in Figure 3(d).

3.4. Multiview Joint Semantic Cosegmentation
and Reconstruction

Single view semantic segmentation is extended to multi-

ple views to obtain semantically coherent co-segmentation

and reconstruction. Co-segmentation is achieved by propa-

gating the semantic labels across views and over time us-

ing tracklets in the framework. The initial semantic re-

construction obtained in Section 3.1 is refined for each dy-

namic object per-view. An accurate depth value is jointly

assigned for each pixel p from a set of depth values D =
{

d1, ..., d|D|−1,U
}

along with a semantic label from the

set L for the region R for each object, where di is obtained

by sampling the optical ray from the camera and U is an

unknown depth value to handle occlusions. Formulation of

a cost function for semantically coherent depth estimation

and co-segmentation is based on the following principles:

• Local spatio-temporal coherence: Spatially and tem-

porally neighbouring pixels are likely have the same

semantic labels if they have similar appearance.

• Multi-view coherence: The surface is photo-consistent

and semantically consistent across multiple views.

• Depth variation: The depth at spatially neighbouring

pixels within an object varies smoothly for most of the

surface (except internal depth discontinuities).

The cost function enforces spatial and temporal constraints

on the semantic, appearance and shape. Temporal seman-

tic coherence is enforced using tracklets based on dynamic

object similarity Si,j Eq.1. Joint optimisation of multiple

view co-segmentation and reconstruction minimises:

E(l, d) = Esingle(l) + Emulti(l, d) (3)

Emulti(l, d) = λdEd(d) + λsmEsm(l, d) + λsEs(l, d)

where, d is the depth at each pixel and l is the semantic

label. This is solved subject to a geodesic star-convexity

constraint on the semantic labels l [42]:

min(l,d)
s.t.

E(l, d)
lǫS⋆(C )

⇔ min
(l,d)

E(l, d) + E⋆(l|x,C ) (4)

where S⋆(C ) is the set of all shapes which are geodesic

star-convex wrt the features in C = {c1, ..., cn} within the

initial semantic segmentation R. E⋆(l|x,C ) is the geodesic

star-convexity constraint enforced on the semantic labels l.

α-expansion is used to iterate through the set of labels in

L × D [8] and a solution is obtained using graph-cuts [7].

Semantic Cost: This term enforces multi-view consistency

on the semantic labels of each pixel p. Inconsistent labels

across views are penalised to ensure semantic coherence.
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Esm(l, d) =
∑

p∈ψS
esm(p, dp, lp)

esm(p, dp, lp) =
∑NK

c=1 z(p, r, lp) , if dp 6= U else

a fixed cost SU is assigned. A 3D point P (p, dp)
is assumed along the optical ray passing through pixel

p located at a distance dp from the reference cam-

era. The projection of hypothesized point P (p, dp) in

view c is defined by r = φc(P ). NK is the to-

tal number of views in which point P (p, dp) is visible.

z(p, r, lp) =

{

−logP (Ip|lp) if lp = lr
−log (1− P (Ip|lp)) if lp 6= lr

where lr is the semantic label at pixel r in view c.

Matching cost: The photo-consistency matching cost

across views is defined as:

Ed(d) =
∑

p∈ψS
ed(p, dp)

where ed(p, dp) =
∑

i∈Ok
m(p, r), if dp 6= U else MU .

m(p, r) is inspired from [27]. MU is the fixed cost of la-

belling a pixel unknown and r is as defined above. Ok is the

set of k most photo-consistent pairs with reference camera.

Smoothness cost: The surface smoothness cost introduced

in [42] is extended to spatial and temporal neighbourhoods:

Es(l, d) = λts

∑

p,q∈ψT

es(lp, dp, lq, dq, d
t
max) +

λSs

∑

p,q∈ψS

es(lp, dp, lq, dq, d
s
max)

es(lp, dp, lq, dq, dmax) =






min(|dp − dq| , dmax), if lp = lq and dp, dq 6= U

0, if lp = lq and dp, dq = U

dmax, otherwise

dmax is introduced to avoid over-penalising large disconti-

nuities. dsmax ensures spatial smoothness and dtmax ensures

smoothness over time between the temporal neighbourhood

of the tracklets and is set to twice of dsmax to allow large

movement in the object between tracklet frames.

The importance of the proposed semantically coherent

optimization exploiting the information from semantic la-

bels and tracklets for single and multiple views is shown

in the Figure 5. Comparison is presented against optimiza-

tion with/without semantic label and temporal tracklet in-

formation for single and multiple views. The proposed

approach consistently performs better giving a more accu-

rate segmentation. The final proposed multiple view co-

segmentation and reconstruction using both semantic labels

and tracklets gives a significantly improved segmentation.

4. Results and Evaluation

The proposed single-view approach (section 3.3) is

evaluated on datasets previously used for 2D video co-

segmentation (MOVICS [11] and ObMiC [19]) for com-

parison with state-of-the-art methods. Joint semantic co-

segmentation and reconstruction (section 3.4) is evalu-

Figure 5. Comparison of segmentation of the proposed single and

multi view optimization against optimization with no semantic and

no tracklet information respectively for Odzemok dataset.

Figure 6. Comparison of semantic segmentation for 2D video seg-

mentation datasets against MVC [11] and ObMiC [19].

Figure 7. Comparison of segmentation on dynamic datasets from

[30] and [13] against MVVS [13].

ated on a variety of publically available multi-view in-

door and outdoor dynamic scene datasets: DogJump[1],

HumanEva[53], Odzemok [2], Handshake[30], Breakdance

[58], Magician and Juggler [3].

4.1. Singleview segmentation evaluation

Single-view segmentation is evaluated against state-of-

the-art semantic (MVC) [11] and non-semantic (ObMiC)

[19] video co-segmentation methods. Qualitative compari-

son against ObMiC [19] and MVC [11] on four single view

video co-segmentation datasets (Giraffe,Tiger,Person,Dog)

are shown in Figure 6 and quantitative evaluation against

ground-truth, is shown in the Table 1. Results indicate

that the proposed approach achieves state-of-the-art perfor-

mance for single view segmentation due to the introduction

of semantic tracklets to enforce temporal coherence.

4.2. Multiview evaluation

Segmentation Evaluation: Mutli-view co-segmentation

is evaluated against a variety of state-of-the-art meth-

ods: (a) Non-Semantic methods: Multi-view segmenta-
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Figure 8. Comparison of segmentation on public datasets against state-of-the-art methods: TcMVS [42] (Region in red represents region

missing from ground-truth and green represents region not present in ground-truth), CRF-RNN [57] and SCV [54].

Datasets Multi-view segmentation 2D video segmentation

Methods Bdance HEva Oz Mag Juggler Jump HShake Giraffe Tiger Person Dog

MVC [11] 36.5 42.1 38.2 34.8 39.7 41.6 44.8 59.6 47.0 59.8 48.7

ObMiC [19] 39.4 49.6 45.5 41.4 44.0 45.9 48.1 66.2 71.0 54.3 74.0

CRF-RNN [57] 61.0 71.4 41.0 53.3 70.8 52.3 64.6 69.7 68.1 63.0 77.1

SCV [54] 48.9 51.0 53.3 61.0 56.6 60.2 49.5 59.0 70.9 61.2 76.6

TcMVS [42] 89.1 94.0 91.8 91.2 93.3 89.4 86.5 65.2 64.5 59.7 73.2

Multi-view joint co-segmentation & reconstruction Single-view segmentation

Proposed 93.2 95.6 94.5 93.0 94.7 92.6 91.5 72.5 68.9 66.4 75.8

Table 1. Segmentation result comparisons for all datasets against state-of-the-art methods using the Intersection-over-Union metric. Repre-

sentation of datasets: Bdance(Breakdance), HEva(HumanEva), Oz(Odzemok), Mag(Magician), HShake(Handshake) and Jump(Dogjump).

tion (MVVS) [13], Joint segmentation and reconstruction

(TcMVS) [42], and (b) Semantic methods: Semantic co-

segmentation in videos (SCV) [54] and Conditional random

field as recurrent neural networks (CRF-RNN) [57]. Sin-

gle view methods MVC[11] and ObMiC[19] are also ap-

plied independently on each view for comparison. Compar-

ison against MVVS [13] is shown in Figure 7 and evalu-

ation against TcMVS [42], SCV [54] and CRF-RNN [57]

are shown in Figure 8 for dynamic datasets. Quantita-

tive evaluation against state-of-the-art methods is measured

by Intersection-over-Union with ground-truth, shown in the

Table 1. Ground-truth is available online for most of the

datasets and obtained by manual labelling for other datasets.

The proposed semantically coherent joint multi-view co-

segmentation and reconstruction achieves the best segmen-

tation performance against ground-truth for all datasets

tested. Results presented in Figure 8 indicate that the

proposed approach accurately segments fine detail such as

hands and feet where other approaches are unreliable.

Reconstruction Evaluation: The reconstruction results

obtained from the proposed approach are compared against

state-of-the-art approaches in joint segmentation and re-

construction (TcMVS [42]) and multi-view stereo (Colmap

[51], MVE [52], SMVS [35]). MVE, SMVS and Colmap
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Figure 9. Comparison of reconstruction of dynamic objects against

Colmap [51], MVE [52], SMVS [35] and TcMVS [42]) (Same

semantic labels are assigned to all methods for fair comparison).

Figure 10. Comparison of reconstruction against MBR [48] from

4 views of Falling down [30] dataset.

are state-of-the-art multi-view stereo techniques which do

not refine the segmentation. All the methods are initialized

with the same initial semantic reconstruction (section 3.1)

for fair comparison. Comparison of reconstructions Figure

9 demonstrates that the proposed method gives consistently

more complete and accurate models. Figure 10 presents

a comparison to a statistical model-based approach MBR

[48] which reconstructs a single human body shape from

the whole sequence together with pose at each frame. This

provides a good estimate of the underlying body shape but

does not take into account clothing resulting in inaccurate

silhouette overlap. Comparison of full scene reconstruction

against MVE and SMVS is shown in Figure 11 showing im-

proved completeness and accuracy. To illustrate the seman-

tic wide-timeframe coherence achieved using the proposed

approach unique colors are assigned to human body parts in

one frame and the colors are propagated using the estimated

temporal coherence. The color in different parts of the ob-

ject remains consistent over time as shown in Figure 12.

Limitations: The proposed approach is dependent on an

Figure 11. Comparison of full scene reconstruction against SMVS

[51] and MVE [52] (Same semantic labels are assigned to all the

approaches for fair comparison).

Figure 12. Semantic coherence results using proposed approach on

two datasets. Color-coding: head is red, left-arm is blue, right-arm

is green, left-leg is pink and right-leg is violet

initial semantic labelling of the scene for each view ob-

tained using FCN. Gross errors or mislabeling may be prop-

agated resulting in incorrect semantic reconstruction, such

as the soft-toys labelled as people on the left hand side of the

Odzemok dataset Figure 2. Whilst enforcing semantic co-

herence is demonstrated to improve both segmentation and

reconstruction for a wide-variety of scenes visual ambiguity

in appearance and occlusion may degrade performance.

5. Conclusion

This paper proposes a novel approach to joint semanti-

cally coherent multi-view co-segmentation and reconstruc-

tion of complex dynamic scenes. Temporal semantic co-

herence is enforced by semantic tracklets identifying simi-

lar frames using the semantic label, appearance and shape.

Tracklets are used for long-term learning to constrain co-

segmentation optimization on complex dynamic scenes.

Joint optimization simultaneously improves the semantic

segmentation and reconstruction of the scene by enforc-

ing semantic coherence both spatially across views and

temporal across widely-spaced similar frames. Compara-

tive evaluation demonstrates that enforcing semantic coher-

ence achieves significant improvement in both segmenta-

tion and reconstruction of general dynamic indoor and out-

door scenes captured with multiple hand-held cameras.
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