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Abstract

Row-wise exposure delay present in CMOS cameras is

responsible for skew and curvature distortions known as the

rolling shutter (RS) effect while imaging under camera mo-

tion. Existing RS correction methods resort to using multi-

ple images or tailor scene-specific correction schemes. We

propose a convolutional neural network (CNN) architecture

that automatically learns essential scene features from a

single RS image to estimate the row-wise camera motion

and undo RS distortions back to the time of first-row ex-

posure. We employ long rectangular kernels to specifically

learn the effects produced by the row-wise exposure. Ex-

periments reveal that our proposed architecture performs

better than the conventional CNN employing square ker-

nels. Our single-image correction method fares well even

operating in a frame-by-frame manner against video-based

methods and performs better than scene-specific correction

schemes even under challenging situations.

1. Introduction

The delay in the start of the exposure between the first

row and the last row of the sensor array (total line delay) in

CMOS cameras causes rolling shutter (RS) distortions. In

the presence of camera motion, each row experiences differ-

ent camera poses unlike in a global shutter camera, which

causes skew and curvature in the recorded image. Irrespec-

tive of whether an image or a video is captured, the camera

motion inevitably causes distortions; though the type of dis-

tortion varies depending on the exposure duration as com-

pared to the total line delay, and this leads to the need for

different correction methods as shown in Fig. 1 (top). Short

exposure time causes only the RS effect, while medium to

long exposure causes motion blur too. In this work, we

study the short exposure scenario.

While most existing works [8, 14, 3, 10] deal with video

RS correction in short exposure setting, the task is highly

†This work was done when the second author was studying at IIT Madras.

DIFFERENT TYPES OF MOTION DISTORTIONS AND CORRECTION METHODS

TYPE OF INFORMATION THAT CAN BE USED TO ESTIMATE CAMERA MOTION

Figure 1. Overview of correction techniques for various image

capture and exposure settings.

challenging for the data-starved situation comprising of

only a single image. This situation is very much plausible

given the prevalent hand-held on-the-go imaging using mo-

bile phones. Other sources of information in the camera can

be tapped to facilitate such a data-deserted scenario. The

motion information provided by the gyroscope can be used

for RS correction post-capture, but it is heavily limited by

the sparsity of gyro-samples within the short exposure espe-

cially for single-image correction. Electronic image stabi-

lizer (EIS) such as the one present in a Google Pixel phone

camera needs multiple frames making it inapt for single im-

age capture. Optical image stabilizer (OIS) such as in an

iPhone camera can tackle only small motions, and its main

application is in videos and long exposure images.

To handle RS motion distortions, one needs to under-

stand from where the uneasiness of human visualization

comes about. In videos, it is due to the local structural

changes along the temporal axis (through frames); in a

blurred image, it arises due to the unsharpness of edges,

while in a single RS distorted image, it is due to the struc-

tural changes compared to a human preconceived percep-

tion of the scene. Hence, as shown in Fig. 1 (bottom), dif-

ferent types of information can be utilized for these various
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Figure 2. Top: Rolling shutter distorted images captured using mobile phones. Bottom: Corrected images using our CNN-based method.

correction methods. Frame-to-frame correspondences are

used for video correction, while local blur kernels are used

in the blurred case. In our method, for single image RS cor-

rection, with no other extra information available, we have

chosen human perception as our utility.

Video correction methods: In these works, the wobbly

effect between frames are corrected and stabilized for better

visual output. Important works include block-wise optical-

flow-like model of [8], block-wise seven-parameter model

of [6], motion interpolation-based model of [14], homogra-

phy mixture based model of [3] and spline-based model of

[10]. All these models utilize inter-frame correspondences

(based on intensity in [8] and [6], and features in others)

to estimate the camera trajectory and register frames. They

also leverage the continuity and smoothness of camera mo-

tion between video frames.

Image correction methods: Few works indeed study RS

from only a single image. The RS deblurring work of [19]

uses local blur kernels to fit a continuous camera motion. In

the absence of blur, the work of [4] corrects the RS distor-

tions from face images using facial key points as features,

and is restricted to skew-type RS distortion. Using a simi-

lar inspiration for urban scenes, the method of [13] corrects

the RS effect from urban images using curves as features.

These two algorithmic methods are tailored for specific im-

age classes and are thus heavily dependent on the extraction

of their respective scene-specific features.

Proposed method: In this work, we automatically learn

features of scene classes using convolutional neural net-

works (CNN) to estimate the underlying camera motion

from a single RS-affected image and finally correct the

distortions. In contrast to manual selection and extraction

of features in scene-specific methods which can be an un-

fruitful exercise, CNNs can learn desired features essential

to correct distortions for a particular class by themselves.

Camera motion distortions causing motion blur have been

studied using CNNs so far. Apart from the works that per-

form non-blind deblurring [16, 15, 22], the work of [20]

takes a classification approach for blur kernel estimation,

and recently, the work of [2] regresses on the blur kernel

directly. All these methods learn blur information from lo-

cal image patches, while to learn the motion trajectory that

causes the RS effect in the absence of any blur, one needs to

extract and combine information from different parts of the

image. The effect of RS either with or without motion blur

has not been studied using neural networks.

In our work, the interplay between the scene structure

and the row-wise camera motion is learned using a neural

network that employs long kernel features. Our design first

extracts basic image features using square-convolutional

layers, followed by two banks of feature-interactive layers

employing row-kernel and column-kernel convolutions to

extract properties along horizontal and vertical directions,

specifically addressing the nature of the RS effect. Fi-

nally, these directional features are combined using fully-

connected layers to arrive at the RS motion.

We train the network using synthetic RS images regress-

ing for the intra-image camera motion. We do not regress

directly on the image, for example using generative net-

works [12, 9], since we do not seek better or new infor-

mation but only geometric unwarping. Once our trained

network predicts the motion, we correct the RS image us-

ing local warping. Fig. 2 shows our corrected outputs of

distorted images captured using mobile phones. Skew and

curvature distortions are corrected in all these examples.

Main contributions

– A method that rectifies the rolling shutter effect from

a single image without tailored extraction of specific

scene features and the knowledge of camera parame-

ters.

– A new CNN architecture designed specific to the expo-

sure mechanism in rolling shutter cameras that learns

row-oriented and column-oriented features.

We neglect depth-dependent motion and lens distortions.

2. Rolling Shutter Model

A static CMOS rolling shutter camera captures the same

image as that of captured using a global shutter camera.

This is referred to as the global shutter image, IGS . When

the camera moves during exposure, each row of sensors ex-

periences different camera pose due to the row-wise acqui-

sition resulting in local image warping. The observed dis-

torted image is referred to as the rolling shutter image IRS .
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Let [tx(y), ty(y), tz(y), rx(y), ry(y), rz(y)] denote the

camera trajectory vector observed by the row y of the RS

image, where t denotes translations, and r denotes rotations.

To correct the distortion from an RS image having M rows,

we need to estimate 6M parameters corresponding to six

camera poses for each row. The questions that we ask are

what type of motion information can a single image pro-

vide, and what further restrictions does the assumption of

unknown camera intrinsics lead to. To answer these ques-

tions, we observe the RS effects produced by different types

of camera motion on a single image.

RS effects produced by camera motion Fig. 3 illus-

trates the local distortions produced by different types of

RS motion. Although each motion type creates its own kind

of distortion, there are similarities between some of them.

Some prominent effects are noted as follows:

No motion tx [I] ty [II] tz [IV]

No motion rx [II] ry [I] rz [I] [III]

Figure 3. Rolling shutter effects produced by different types of

camera motion.

[I] Vertical curvature: The translation tx (along the hor-

izontal axis) and the rotation ry (around the vertical axis)

produce similar RS effect, translating points on a row hor-

izontally. This manifests as curvature in vertical lines. For

tx, all points on a row move by the same amount, whereas

for ry , it varies slightly depending on the camera focal

length. For high focal lengths, all points on a row move

by almost the same amount.

[II] Vertical stretch/shrinking: Along the same lines, ty
and rx produce similar kind of RS effect, displacing points

vertically which results in stretching or shrinking of vertical

structures. Note the elongation of the house in the vertical

direction for ty and rx.

[III] Horizontal curvature: The in-plane rotation rz
bends both vertical and horizontal lines. It is important to

note that the same rz affect the points on the same row dif-

ferently based on their distances from the rotation center.

Hence, different vertical lines produce different curvatures

due to rz , which is unlike tx that affects all vertical lines in

the same manner irrespective of their column locations.

[IV] Vertical scale change: The optical axis transla-

tion tz slants the vertical lines located to either side of the

vertical axis only a little, since the camera motion away

from/towards the scene has to be very high within a single

exposure to create pronounced curvatures.

Motions considered for RS correction The disturbance

of straightness is visually unpleasant if it goes against hu-

man preconception. We rank the four distortions as follows

based on their undesirability: [III],[I],[II],[IV]. Humans are

more reactive to vertical and horizontal curvatures [I,III]

than that of vertical stretching/shrinking [II]. Optical axis

translation during a single image capture creates negligi-

ble distortions, and thus, [IV] can be safely ignored. With

unknown camera intrinsics, we also approximate the effect

due to ry as that caused by tx. Therefore, we consider only

the motions tx and rz in our model and ignore the others.

We write the mapping from a 2D point xGS on IGS to the

point xRS on row y of IRS as a 2D point transformation:

xRS =

[

cos rz(y) − sin rz(y)
sin rz(y) cos rz(y)

]

xGS +

[

tx(y)
0

]

,

≡ R(y)xGS + t(y), (1)

where R(y) is the 2D z-axis rotation matrix for row y and

t(y) is the 2D translation vector with zero y-axis motion.

Note that the unit of tx(y) is pixels in (1), and there is no

dependence on the camera intrinsic matrix. From this point

onwards, by translation, we mean tx, and by rotation, we

mean rz . It is important to note that the 2D motion model

in (1) is indeed row-wise, and hence it can model even high

visual distortions and not just a simple affine transformation

as would be the case for global 2D motion.

Motion trajectory model To express the camera tra-

jectory through the row exposures, we define the camera

motion as two vectors, one each for translation and rota-

tion, given by p1 = [tx(1), tx(2), . . . , tx(M)] and p2 =
[rz(1), rz(2), . . . , rz(M)]. For a row y ∈ [1,M ] of the dis-

torted image, the camera pose is [tx(y), rz(y)], and thus,

each distorted image IRS is associated with a camera tra-

jectory tensor P = [p1,p2] having 2M values. To correct

the distortion by undoing the motion, one needs to estimate

2M unknowns, or equivalently M camera poses, from a

single image.

Since estimating M poses from a single image is very

ill-posed, we leverage the short exposure time setting that

we operate on to model the camera motion by a polynomial

trajectory. To verify this assumption, we use the human-

recorded handshake trajectory dataset of [7]. We fit an n-th

degree polynomial to tx and rz motions in [7]. Fig. 4(top)

shows two sample trajectory plots with blue circles denoting

the recorded camera poses during the exposure and red dot-

ted lines representing the fitted polynomial trajectory. We

fit polynomials of different degrees to the recorded pose

samples and observed that the average fitting error almost

converges after n = 3 as shown in Fig. 4(bottom).

Therefore, we model the translation and rotation trajec-

tories as polynomials with respect to the row number. The
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Figure 4. Polynomial trajectory fitting in real camerashake dataset.

camera poses at each row index y ∈ [1,M ], we have

pi(y) = αi0 +

n
∑

j=1

αij((y − 1) /M)j , i = 1, 2, (2)

where p1(y) = tx(y), p2(y) = rz(y), αij is the jth-degree

polynomial coefficient for the ith motion, and n = 3.

3. Rolling Shutter Correction

Fig. 5 provides an overview of our method. There are

three modules: a neural network for camera motion estima-

tion, trajectory fitting to get row-wise motion, and image

correction using the estimated camera motion. The input

to our method is a single RGB RS-distorted image, and the

output is the corresponding corrected image.

Figure 5. Overview of rolling shutter correction.

3.1. Camera Motion Estimation using CNN

In this work, we treat the problem of camera motion esti-

mation as one of regression, where we train and use a func-

tion ψ(IRS ;θ) to predict the camera trajectory tensor P∗,

where θ represents the weights (parameters) of the system.

P∗ = ψ(IRS ;θ) (3)

The power and complexity of the proposed method is in

ψ which is based on CNN that extracts information from

images to output the camera motion. CNNs allow us to do

away with the laborious manual design of algorithms to pick

correct features of the scene that are distorted in the image

to aid in the camera motion estimation. For face images,

[4] carefully chooses facial keypoints required for RS cor-

rection, while for correction of urban scenes, [13] chooses

curves and lines as features.

RS correction is essentially local image warping undo-

ing the geometric distortion; no new or better image infor-

mation (in the sense of applications such as denoising and

super-resolution) is sought. Hence, we regress on the cam-

era motion instead of directly on the image. Further, gen-

erative models such as general adversarial networks [12, 9],

which could directly learn to output the undistorted image,

are usually limited by the visual quality of the image output.

In our method, we correct the distorted image geometrically

using the motion estimate from the CNN.

Instead of learning to estimate the camera pose for every

row, we tap only the motion of K equally spaced rows as

CNN outputs since the motion lies in a lower dimensional

space as shown earlier. The size of each sampled ps
1 and

ps
2 is K, making the length of the output camera trajectory

tensor P∗ of the CNN in Fig. 5 as N = 2K. In our CNNs,

the input is a 256× 256× 3 RGB image and the output is a

30-length motion vector (corresponding to K = 15).

VanillaCNN We propose two CNN architectures in this

work: the first one is VanillaCNN as shown in Fig. 6(top).

It uses standard convolutional and pooling layers, in which

square kernels extract and combine local information from

the RS image to deduce the camera motion. Out of the seven

layers, the first four convolutional layers consist of square

filters, the outputs of which are passed on to ReLU units

followed by max-pooling over 2× 2 non-overlapping cells.

The last three are fully connected layers; the first of the

three uses Tanh, the second uses HardTanh, and the final,

none.

RowColCNN Obtaining and combining local informa-

tion from different parts of the image is a crucial aspect to

learn the RS motion. Our motivation for a new architecture

stems from the following observations:

(i) temporal motion information is present along image

columns,

(ii) information from image rows helps to reinforce row-

wise motion constancy, and

(iii) rotation can be better estimated if information from

image rows are extracted earlier since it affects left and

right areas of an image row differently.

Hence, we branch out VanillaCNN after feature extraction

from the initial square-convolutional layers into two banks.

The column kernel bank employs filters whose effective

support spans longer along the column, while the row ker-

nel bank employs row-oriented filters. Both these banks ex-

tract locally oriented information and combine them in their

own fully connected layers, before propagating them to the

final fully connected layers which have the same nonlinear-

ities as those of VanillaCNN. The two 4096-vectors from

the banks are first added, and then passed on to the nonlin-
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VanillaCNN architecture

RowColCNN architecture

Figure 6. Proposed architectures for rolling shutter motion estimation. All convolution layers use valid pixel convolution and all maxpooling

layers use 2x2 window with a stride of 2.

earity leading to the single 4096-vector at the start of the

final fully connected layers. We call this architecture Row-

ColCNN which is shown in Fig. 6(bottom).

Training Given a set of S labeled images {(Ii,Pi)}, the

parameters θ of the model in (3) are estimated by minimiz-

ing the loss between the predicted trajectory vector P∗ and

the ground truth trajectory vector P as given in (4). We use

mean square error as our loss function and sampling from a

uniform distribution for initialization of weights during our

training. We train using stochastic gradient descent with a

learning rate of 0.05.

θ
∗ = argmin

θ

1

S

S
∑

i=1

‖ψ(Ii;θ)−Pi‖
2
2 (4)

3.2. Prediction and Correction

During the motion prediction phase, the input RS im-

age is forwarded through the trained network to output K-

length translation and rotation vectors (N values). These

two vectors are then fit using a third-degree polynomial to

obtain the estimated motion values for each row p∗

1 and p∗

2

as in (2). The estimated trajectory tensor is then given by

P∗ = [p∗

1,p
∗

2].
Once the full camera trajectory is estimated, the RS im-

age must be corrected back in time to the first-row exposure

(i.e. the global shutter image). We first subtract the pose of

the first row from those of all rows, leading to an identity

transformation for the first row and all the remaining rows

having warps with respect to it. The dewarping or distortion

correction is done using a forward mapping where for each

pixel coordinate of the corrected (GS) image, we pick an in-

tensity from the distorted (RS) image. For every pixel xGS ,

we find a y∗ for which warping xGS using P∗(y∗) takes it

to an xRS having a row coordinate closest to y∗ [13]:

y∗ = argmin
y

‖ [xRS ]row− [R∗(y)xGS + t∗(y)]row ‖22 (5)

where R∗(y) is the rotation matrix corresponding to

r∗z(y) and t∗(y) = [t∗x(y), 0]
T . Finally, the intensity at

pixel xGS on the GS image is copied from the location

R∗T (y∗)(xRS − t∗(y∗)) of the RS image.

4. Experiments

The experiments section is arranged as follows: (i) de-

scription of comparison methods, (ii) creation of training

and testing datasets, (iii) quantitative results and compar-

isons, and (iv) visual results and comparisons.

4.1. Comparison Methods

CNN models We perform comparisons between the two

proposed network architectures – VanillaCNN and RowCol-

CNN. We evaluate the effectiveness of both the architec-

tures on different datasets using various metrics.

Video models In non-learning based methods, we first

compare with two contemporary RS video correction meth-

ods of [14] and [3]. Since our method is single-image based,

we cannot directly use these video methods for comparison.

Therefore, for quantitative comparisons, we feed both the

reference undistorted GS and distorted RS images as inputs

to them. We then use our own two-image implementation

of their frameworks to correct the RS image. These two

reference-based correction schemes are used as the baseline

in our experiments. For visual video comparisons, we em-

ploy our method frame-by-frame on the videos used in their

works and compare with their outputs.
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Single-image models We also compare with [13] and

[4], which address RS correction of urban scenes and faces,

respectively. We sent our images to the authors of [13] and

got back their results. We used our own implementation

for [4]. We gauge the outputs of these two methods and

our method against the reference-based baseline outputs as

described in the previous paragraph.

4.2. Dataset Creation

We use 256 × 256 as the size of both the input and out-

put images. We describe below the generation of synthetic

RS camera motion and the creation of training and testing

datasets for three classes of images. For each of the classes,

our CNNs are trained separately.

Camera motion We use random third-degree polynomi-

als as synthetic camera trajectories to generate training and

testing data. Each trajectory is a set of two 256-length vec-

tors (for row-wise motion), one each for translation and ro-

tation. We limit the translation to the range [−40, 40] pixels,

and rotation to the range [−π
8 ,

π
8 ] radians.

Chessboard class We take different horizontally and/or

vertically translated versions of a 16-square chessboard im-

age as our basic data. We then apply synthetic RS motions

over these images to populate our full training set. To aid

in quantitative analysis, only for the chessboard class, we

train for three motion models: translation-only (T-only),

rotation-only (R-only), and combined translation and rota-

tion (T+R). For each of these three models, we generate a

training set of size 7014 (14 basic images × 500 random

motions + 14 basic images without motion). The CNN out-

put vector length is N=15 for the translation and rotation-

only models, and it is N=30 for the combined model (15

each for translations and rotations). We train both Vanil-

laCNN and RowColCNN for each of these three models.

Urban scene class We build the clean urban scene data

by combining the building images in Sun [21], Oxford [11]

and Zurich [18, 17] datasets. Each clean image is distorted

with 150 random camera trajectories giving us approxi-

mately 300,000 labeled images. We also randomly flip the

original images left-right before applying motion distortion.

For testing, we pick new images from the combined dataset

of [21], [11] and [18, 17] not used for training, and syntheti-

cally apply random motion to generate 200 test images. We

also create a separate test set from Caltech building dataset

[1] (from which none of the images are used in training at

all) generating RS effect in a similar manner.

Face class We use face images from the Labeled Faces in

the Wild (LFW) face dataset [5] for both training and test-

ing. The training set consists of faces of 5000 persons at dif-

ferent poses with 50 motions applied on each face, thereby

making the size of training data as 250,000. We choose 200

faces (different from that of training) for testing having dif-

ferent camera motions applied on each of them.

4.3. Quantitative Analysis

We first describe the metrics that we use for quantitative

analysis and then show our results.

Metrics We use the following three metrics: [P1]

PSNR (dB) between the ground-truth and corrected images,

[E2] root mean squared error (RMSE) between the ground-

truth and predicted motion in pixels for translation and de-

grees for rotation, and [E3] curvature residual in pixels. A

high P1, and low E2 and E3 indicate better performance.

To measure the curvature residual, which is specific to

the chessboard class, we first extract horizontal and verti-

cal curves from the corrected output, and then calculate the

distance between the curves and the ground-truth lines (at

all row and column locations). The RMSE of this distance

value for all curves gives E3.

Synthetic motion We now show the performance of RS

correction for the testing data built up using synthetic cam-

era motion.

Chessboard class: Table 1 shows the performance of dif-

ferent methods on the chessboard dataset based on P1, E2,

and E3. It is very clear that both our CNNs perform on

par with the baseline video correction methods (which use

a reference frame for motion estimation). The performance

of our single image method matches to that of these base-

line methods. Our use of long kernels in RowColCNN re-

sults in better performance as against the traditional square

kernel-based VanillaCNN. In all the cases, the PSNR (P1)1

of RowColCNN is higher than that of VanillaCNN in all

cases, and E2 and E3 are lower in most cases.

The urban-specific method [13] puts a hard constraint

of forcing curves into horizontal and vertical lines, and it

provides an advantage for the chessboard class. For the T-

only motion, [13] performs better than our method; but in

the presence of rotations, it is not able to correct curvatures

properly. It fares poorly even compared to VanillaCNN in

R-only and T+R cases.

Urban scene class: The correction performance of our

networks in comparison to other methods on both the com-

bined building and testing-exclusive Caltech urban datasets

are shown in Table 2. We observe that RowColCNN per-

forms better than VanillaCNN in both the datasets and on

par with the baseline methods. It performs better than

the urban-specific RS correction method of [13] in which

proper curve detection to aid in motion estimation is a cru-

cial step, and false curve detection might lead to wrong so-

lutions. And hence, it performs worse on urban scenes com-

pared to the chessboard class.

Face class: Table 2 also summarizes the correction per-

formance for the face class. We observe that the CNNs

1The range of PSNR (36–40dB) is generally higher than the typical

values observed in correction tasks. This is due to the nature of chessboard

having only two values – black and white, which results in most of the

entries attaining 0 value in the MSE image, thus leading to higher PSNR.
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Table 1. Quantitative comparisons on the synthetic chessboard dataset.

Uses T-only R-only T+R

Method Type reference? P1 E2t E3h E3v P1 E2r E3h E3v P1 E2t E2r E3h E3v

Ringaby [14] Baseline Yes 40.84 0.65 0.68 0.89 36.84 1.31 0.74 1.85 36.91 1.86 1.32 0.69 2.05

Grundmann [3] Baseline Yes 38.76 0.92 0.76 1.12 36.99 1.18 1.12 2.19 37.03 1.63 1.41 0.72 1.93

RowColCNN Testing No 38.01 1.78 0.81 1.97 37.83 0.42 0.88 1.16 37.41 1.52 0.43 0.88 1.60

VanillaCNN Testing No 37.52 1.85 1.32 2.04 37.77 0.53 0.99 1.12 37.30 1.48 0.92 1.33 1.86

Rengarajan [13] Testing No 39.75 1.75 0.72 2.02 35.58 2.90 3.81 2.05 33.64 12.40 2.68 3.32 3.18

T: Translation, R: Rotation, P1: PSNR (dB), E2t: Motion RMSE (pixels), E2r: Motion RMSE (degrees), E3h: Horizontal Curve Residual, E3v: Vertical Curve Residual

Table 2. Quantitative comparisons on urban scene and face datasets.

Uses Combined building dataset Caltech building dataset LFW face dataset

Method Type reference? P1 E2t E2r P1 E2t E2r P1 E2t E2r

Ringaby [14] Baseline Yes 32.86 3.03 1.07 32.67 4.32 1.39 34.75 1.87 1.43

Grundmann [3] Baseline Yes 32.57 3.34 1.17 32.07 4.76 1.82 34.57 1.92 1.53

RowColCNN Testing No 32.25 3.76 1.15 32.50 5.07 1.41 34.14 2.17 1.67

VanillaCNN Testing No 32.19 3.84 1.29 32.36 6.22 1.68 34.01 2.96 1.82

Rengarajan [13] Testing No 29.82 11.89 3.58 29.15 15.76 3.26 – – –

Heflin [4] Testing No – – – – – – 29.32 18.03 –

P1: PSNR (dB), E2t: Motion RMSE (pixels), E2r: Motion RMSE (degrees)

achieve good performance here too. Even though the base-

line methods perform better than ours, they outperform us

only by a small margin. The performance of RowCNN is

better than the face-specific correction method of [4] due to

its limitations of working only on almost-frontal face poses.

Also, [4] estimates only a skew parameter, and hence we

have calculated only the PSNR (P1) and translation error

(E2t) values in the last row of Table 2.

Human camerashake dataset To test the capabilities of

our trained network on real camera motion, we employ the

dataset of [7], which contains 40 trajectories of real camera

shake by humans who were asked to take photographs with

relatively long exposure times. Since long exposure leads

to motion blur which is not within the scope of this work,

we use a short segment of the recorded trajectory to intro-

duce the RS effect (with 38.4ms top to bottom row delay).

We generated 200 such RS images for both chessboard and

urban scene classes by randomly clipping motion segments

from the 40 trajectories. We corrected them using the pre-

dicted motion from RowColCNN.

Table 3 shows the RMSE for both translation and rota-

tion, and the PSNR between the clean and corrected images.

The error is low and PSNR is high for both the classes sig-

nifying good RS correction by RowColCNN due to human

handshake. This confirms the validity of our third degree

polynomial assumption for camera motion during the expo-

sure of interest.

4.4. Visual Comparisons

We first compare the outputs of the two proposed CNNs

for a distorted chessboard image, and then show other visual

comparisons with existing methods.

CNN models Fig. 7(a) shows an RS image with heavy

rotations and translations. Both vertical and horizontal lines

are curved. The corrections by VanillaCNN and RowCol-

CNN are shown in Figs. 7(b) and (d), respectively. Vanil-

Table 3. RowColCNN performance on camerashake dataset [7].
PSNR (dB) Translation RMSE Rotation RMSE

Class P1 E2t (pixels) E2r (degrees)

Chessboard 37.23 2.8074 0.35

Urban scene 32.19 3.9677 0.76

laCNN corrects distortions to a good extent; however, it has

more residual errors compared to RowColCNN. The devi-

ation of the edges in the corrected image from the original

grid is shown in Figs. 7(c) and (e).

(a) RS (b,c) VanillaCNN and residual (d,e) RowColCNN and residual

Figure 7. Distortion correction of a chessboard image.

In RowColCNN, the initial square-convolutional layers

provide low-level information to the subsequent directional

banks which extract the required bidirectional information.

Fig. 8 shows the square filters of the first layer trained for

urban scenes which are mainly directed gradients at differ-

ent angles (not only horizontal and vertical). Row and col-

umn kernel banks combine these different directional fea-

ture maps in their respective directions to extract motion.

Figure 8. Trained filters for the first layer of RowColCNN.
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(a) RS video frames

(b) Video correction by [14]

(c) Video correction by [3]

(d) Frame-by-frame correction by RowColCNN

Figure 9. Visual comparisons of our RowColCNN with existing

video correction algorithms.

Video methods We show a comparison of our frame-by-

frame RS correction against the video rectification methods

of [14] and [3]. The video methods employ a batch of neigh-

boring frames to estimate the camera trajectory, while our

method uses only one frame. We also do a global inplane

motion registration between our frame-by-frame corrected

outputs with respect to the corrected first frame (which in no

way could correct skew and curves by itself). Fig. 9 shows

some frames from the RS video of a sign pole taken from

[14], and the corresponding output frames of our method

and the two video correction methods. Our method restores

the straightness of the pole in almost all frames similar to

the correction by [14]. The correction by [3] is not as per-

fect for this heavy motion. The video is provided as a sup-

plementary material.

Single-image methods In Fig. 10, we show visual com-

parisons against scene-specific correction methods. The

motion estimation scheme for urban scenes in [13] heavily

depends on the selection of suitable curvatures in the image,

and hence, it fails to correct distortions when there are false

detections or natural curvatures. In the second column, [13]

tries to make the slanted step handles vertical, and it fails

in the third and fourth examples due to the presence of tree

branches. Similarly, [4] estimates only skew type distortion

from eye and nostril feature points extracted from almost-

frontal faces, and hence it fails on faces that are not frontal

(fifth) and badly illuminated (sixth). In all these varied ex-

amples, RowColCNN corrects distortions properly.

Human perception rating We surveyed 50 users to pro-

vide preferences for 30 image sets, consisting of clean GS,

RS, RowColCNN corrected, and [13] or [4] corrected im-

ages, based on their visual perception. The sets include

a variety of RS images ranging from no to heavy motion.

Fig. 11 shows the performance of RowColCNN against

competing methods. The participants rate our outputs as

equal or better than those of comparison methods at least

RS distorted images

Urban method [13] Face method [4]

Correction by RowColCNN

Figure 10. Visual comparisons with existing scene-specific single-

image methods of [13] (urban scenes) and [4] (faces).

Figure 11. Human rating for CNN outputs against [13] and [4].

75% of the time for both urban and face corrections (left

bar in both plots). Our method is equally or better preferred

at least 90% of the time compared to the RS image. More

information is provided in the supplementary material.

Captured real data In Fig. 2, we show the correction

results of our captured images using RowColCNN. These

are taken using a Motorola MotoG2 mobile phone camera

either with a handshake or from a moving vehicle. The cap-

tured images are resized and cropped to 256× 256 (without

any image rotation that would affect the row-wise exposure

property), and then are corrected by our method. Skew and

curvature disortions in these varied scenes are properly re-

moved by our method.

More examples are provided in the supplementary mate-

rial.

5. Conclusions

We proposed a new CNN architecture based on long rect-

angular kernels to aid in correcting rolling shutter distor-

tions from single-images. We modeled the camera motion

as translation+rotation polynomials sans any camera cali-

bration, and it was shown to work for real images captured

with mobile phones. Our single image method performs

on par with existing video correction algorithms which use

multiple images. The learning power of CNNs removes the

difficulty of manual feature choice and extraction as em-

ployed by existing nonlearning-based single-image works.
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