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Abstract

We propose an end-to-end architecture for joint 2D and

3D human pose estimation in natural images. Key to our

approach is the generation and scoring of a number of pose

proposals per image, which allows us to predict 2D and

3D pose of multiple people simultaneously. Hence, our ap-

proach does not require an approximate localization of the

humans for initialization. Our architecture, named LCR-

Net, contains 3 main components: 1) the pose proposal gen-

erator that suggests potential poses at different locations in

the image; 2) a classifier that scores the different pose pro-

posals; and 3) a regressor that refines pose proposals both

in 2D and 3D. All three stages share the convolutional fea-

ture layers and are trained jointly. The final pose estimation

is obtained by integrating over neighboring pose hypothe-

ses, which is shown to improve over a standard non max-

imum suppression algorithm. Our approach significantly

outperforms the state of the art in 3D pose estimation on

Human3.6M, a controlled environment. Moreover, it shows

promising results on real images for both single and multi-

person subsets of the MPII 2D pose benchmark.

1. Introduction

State-of-the-art methods for 2D human pose estimation

in real images obtain excellent performance using Convolu-

tional Neural Network (CNN) architectures [4, 19]. How-

ever, occlusion still remains a significant challenge as an-

alyzed in [19]. Numerical evaluations do not clearly re-

flect this fact since occluded joints are often not labeled,

and never evaluated in standard datasets. In many cases of

occlusions, the pose is not ambiguous and can still be es-

timated entirely. One way to recover body part locations

in such cases is to reason about the full-body 3D pose.

Methods for 3D human pose understanding require train-

ing data that is only available through Motion Capture (Mo-

Cap) systems. Even if they show accurate pose estima-

tion results (including occluded joints) in controlled envi-

ronments, these approaches do not generalize well to real

images, with the exception of recent work based on data

∗Thoth team, Inria, Laboratoire Jean Kuntzmann, Grenoble, France.

Figure 1. Examples of joint 2D-3D pose detections in natural im-

ages. Even in case of occlusion or truncation, we estimate the joint

locations by reasoning in term of full-body 2D-3D poses.

synthesis that shows promising results in the wild [5, 23].

In this paper, we propose a method that results in multiple

full-body 2D and 3D pose hypotheses in different regions

of the image. These pose proposals are efficiently sampled,

scored and refined using an end-to-end CNN architecture

inspired by the latest work on object detection [22]. Finally,

the pose proposals are combined to estimate both the loca-

tion and the 2D/3D pose of the individuals present in the

observed scene. Our method recovers full-body poses, even

when the persons are partially occluded or truncated by the

image boundary, see Figure 1.

CNNs have been used for full-body pose estimation both
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Figure 2. Overview of our LCR-Net architecture (poses only shown in 2D for better readability). We first extract candidate regions using a

RPN network and obtain pose proposals by placing a fixed set of anchor-poses into these boxes (top). These pose proposals are then scored

by a classification branch and regressed using a regressor, learned independently for each anchor-pose.

in regression [14, 31] and classification [23] approaches.

Regression networks are trained to directly estimate the 2D

or 3D location of the body joints, whereas a classification

approach defines pose classes and returns the average pose

of the top scoring class. Increasing the number of clus-

ters improves precision of the estimation in classification

approaches but makes discrimination harder. Regression

methods can only predict one pose for a given image and

fail to model multi-modal outputs, e.g. for ambiguous cases.

In this paper, we argue that for full-body human pose esti-

mation, the discriminative power of classification networks

can be combined with the smoothness of regression meth-

ods by a simple yet elegant modification within the learn-

ing procedure. The architecture is similar in spirit to Faster

R-CNN [22] which jointly localizes and classifies objects

while regressing a refined bounding box. The key idea of

our approach is to quantify the space of valid full-body

poses and jointly train a K-way classifier on this partitioned

space as well as local pose regression models. To this end,

we formulate a joint classification-regression loss function

that combines coarse pose classification and class-specific

pose regression. Given a set of K hypothetical pose classes,

we output for each proposed image region a list of K refined

2D/3D poses and the associated classification scores.

In summary, we propose an end-to-end architecture that

detects 2D and 3D poses in natural images, see Figure 2.

The network proceeds by extracting candidate regions for

the person localization. We obtain pose proposals by lo-

cating the set of K hypothetical pose classes, denoted as

anchor-poses, in these candidate boxes. Each pose proposal

is then scored using a classification branch and regressed in-

dependently for each anchor-pose. The localization, i.e., ex-

traction of the pose proposals, classification and per anchor-

pose regression, share layers and can be trained end-to-end.

Our final output consists in a number of 2D/3D poses per

images that are obtained by aggregating similar pose pro-

posals, in terms of location and 3D pose. Our approach

significantly outperforms the state of the art for 3D pose es-

timation in a controlled environment, even when compared

to methods that leverage temporal smoothing and/or rely on

initial localization of the human. We show promising re-

sults in real images, estimating the poses both in 2D and

3D, even in case of occlusions and truncations.

This paper is organized as follows. After reviewing the

related work in Section 2, Section 3 introduces our proposed

LCR-Net for pose detection. We present extensive experi-

mental results, both in 2D and 3D, in Section 4.

2. Related work

Human localization and 2D pose estimation. Most state-

of-the-art approaches for 2D human pose estimation em-

ploy CNNs [4, 6, 8, 14, 15, 19, 20, 30, 31]. They can be

divided into two groups: (a) methods which first search

the image for local body parts and model their dependen-

cies using biologically inspired graphical models [6, 30];

and (b) holistic approaches that directly estimate the full

body [4, 14, 15, 19, 31]. Most of these approaches assume

that the individuals have been localized. Most similar to

our approach are the methods that jointly localize humans

and estimate their 2D pose [10, 11, 21]. They often rely on

multi-stage architectures, whereas our network is trained in

an end-to-end fashion. Importantly, they estimate the 2D lo-

cation of the visible joints while we provide an estimation of

the full-body 2D and 3D poses, even in case of occlusions.

3D human pose from a single image. Due to the lack of

large scale training data, 3D methods are usually trained

(and tested) on 3D MoCap data in constrained environ-

ments [14, 15, 35]. Some recent approaches employ CNNs
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for 3D pose estimation in monocular images [5, 15, 23] or

in videos [29, 37]. Some work also tackles 3D pose estima-

tion from 2D poses assuming that the 2D joints are avail-

able [1, 9] or provided by a 2D pose detector [3, 26, 32].

Most of them reason about geometry. Finally, other meth-

ods solve 2D and 3D pose estimation jointly or itera-

tively [25, 35, 36]. Most similar to us are [5, 23] who train

and compare the performance of 2D/3D pose regressors

and classifiers in real images. They require a well-aligned

bounding box around the subject while we jointly localize

and estimate 2D and 3D pose. Moreover, we combine clas-

sification and regression in an effective manner.

3. LCR-Net

We propose to detect human poses using a Localization-

Classification-Regression Network (LCR-Net). In this pa-

per, a human pose (p, P ) is defined as the 2D pose p, i.e.,

the pixel coordinates of each joint in the image; and the 3D

pose P , i.e., 3D location of each joint relative to the body

center (in meters). We consider poses with 13 joints. We

assume that a fixed set of K 2D/3D anchor-poses is given,

denoted by {(ak, Ak)}k=1..K . In this paper, they are ob-

tained by clustering a large set of poses and using the center

of each cluster as anchor pose, see Section 4 for details.

Figure 2 shows an overview of our LCR-Net architec-

ture. Given an image, we first compute convolutional fea-

tures. The Localization component, also called Pose Pro-

posals Network in the context of pose detection, outputs

a list of pose proposals. Pose proposals consist of a set

of candidate locations where the anchor-poses are hypoth-

esized. Next, a Region-of-Interest (RoI) pooling layer ag-

gregates the features inside each candidate region. After

two fully-connected layers, the network is split into two

components. The Classification branch estimates the prob-

ability of anchor-poses to be correct at each location. It

thus jointly learns to localize humans, as well as to esti-

mate which anchor-pose is more probable. The Regression

branch computes an anchor-pose-specific regression that es-

timates the difference between the true human pose and the

pose proposal (Fig. 3). Our loss is the sum of three losses

that we describe in more details in the following:

L = LLoc + LClassif + LReg . (1)

Note that the convolutional features are shared between

the three components and that the classification and regres-

sion branches also share features from two fully-connected

layers. The architecture allows end-to-end training for lo-

calizing humans and estimating their poses, in contrast to

most previous works which run a human detector before es-

timating pose.

3.1. Localization: pose proposals network

The Pose Proposal Network outputs a set of pose propos-

als, i.e., candidate localized poses. To this end, we hypothe-

size a set of anchor-poses into a set of bounding boxes, that

will be scored and refined by the classification and regres-

sion branches respectively. The set of bounding boxes is

obtained using a Region Proposal Network (RPN) [22], see

Figure 2. The loss of the localization component is the loss

of the RPN network:

LLoc = LRPN . (2)

During training, each bounding box B is labeled with a

ground-truth class cB ∈ {0 . . .K} and a pose regression

target tcB . The ground-truth class cB is set to 0 (corre-

sponding to background) if the bounding box has an Inter-

section over Union (IoU) below 0.5 with all ground-truth

poses. The IoU between a box and a pose is computed us-

ing the bounding box around all joints of the pose, with

a fixed additional margin of 10%. If B has a high over-

lap with several poses, let (p, P ) be the ground-truth pose

with the highest IoU with the box. The label cB is set to

cB = argmink D(Ak, P ) where D(., .) is the distance be-

tween oriented 3D poses centered at the torso. This label

will be used by the classification branch (Section 3.2). If the

label cB is non-zero, we also define a pose regression target,

used in the regression branch (Section 3.3), tcB for the box

B as tcB = (p̃− ãcB , P −AcB ) where p̃ and ãcB denote the

2D pose and anchor-pose normalized in the range [0..1] ac-

cording to the box coordinates (see Fig. 3). This normaliza-

tion makes the regression independent of scale and position

of the person and the box in the image.

3.2. Classification

The classification component aims at predicting the clos-

est anchor-pose, i.e., the correct label, for each bounding

box B. In other words, each bounding box is assigned

a probability for each anchor-pose (and the background

class). Let u be the probability distribution estimated by

the network, obtained by three fully-connected layers after

RoI pooling, see Figure 2, followed by a softmax. The clas-

sification loss is defined using the standard log loss of the

true class:

LClassif (u, cB) = −log u(cB) . (3)

3.3. Regression

The regression component aims at refining the coarse

anchor-poses located in the region proposals as depicted in

Figure 3. The specificity of our approach is that the re-

gression is anchor-pose-specific and a regressor is learned

independently for each anchor-pose. The regression out-

puts v are obtained by using a fully-connected layer after
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Figure 3. The regression aims at refining the anchor-pose to match

the ground-truth pose of the individual (poses only shown in 2D

for better readability).

the two fully-connected layers shared with the classifica-

tion branch (see Figure 2). The dimension of v is equal to

(K + 1) × 5 ×#joints, where the factor of 5 reflects the

components of the 2D and 3D coordinates. We denote by

vcB the subvector of v corresponding to the regression for

anchor-pose cB . The regression loss is defined as:

LReg(v, tcB ) = [cB > 1] ‖tcB − vcB‖S , (4)

with ‖.‖S the smooth-L1 loss, a robust version of the L2

loss which is less sensitive to outliers:

‖x‖S =

{

0.5x2 if |x| < 1,

|x| − 0.5 otherwise.
(5)

3.4. Implementation details

Similar to Faster R-CNN, we use an approximate joint

training version, in which boxes are considered as fixed by

the RoI pooling layer. We use the same parameters as [22]

for RPN. For the classification and regression loss, we use

256 boxes per batch, with 32 boxes coming from 8 different

images, i.e., from more images than in the standard version.

We have more labels and, consequently, we need more di-

versity inside each batch. One quarter of the boxes are on

humans, the remaining ones on background. The network

is based on VGG-16 architecture [27] and the weights are

initialized with ImageNet pretraining.

3.5. Pose proposals integration

Our LCR-Net outputs a set of refined pose proposals

with associated classification scores s(p, P ) = u(cB) from

Equation 3. Multiple proposals cover each person present

in the image. One possibility is to use a non-maximum sup-

pression algorithm (NMS) and return the top scoring pro-

posal for a given region as estimated pose. Instead, we pro-

pose to aggregate proposals which are close in terms of im-

Figure 4. Pose proposal integration (PPI). The pose proposals (a)

are grouped based on 2D overlap and 3D pose to identify the per-

sons and the modes (b). Final pose estimates are obtained by av-

eraging the 2D poses in the selected modes (c).

age location and 3D pose. We refer to this post processing

stage as the pose proposal integration (PPI), see Figure 4.

We start with grouping pose proposals with a sufficient

spatial overlap in the 2D image, i.e., an IoU above a cer-

tain threshold for the bounding boxes around the 2D joints.

We take the top scoring proposal in the image and deter-

mine all the pose proposals that overlap sufficiently with

this top scoring proposal. We repeat this step with the re-

maining pose proposals and their top scoring elements un-

til no pose proposals are left.The resulting groups are co-

herent in terms of spatial overlap but can consist of very

different 3D poses and hence the modes in 3D pose space

need to be identified. Let P = {(p, P )} be the set of pose

proposals in a group, each one with a classification score

s(p, P ). We first pick the proposal with the highest score,

i.e., (p∗, P ∗) = argmax(p,P )∈P s(p, P ) . We then select

the set P ′ of pose proposals in the group P , for which the

3D distance D from P ∗ is below a threshold T3D:

P ′ =
{

(p, P ) ∈ P | D(P ∗, P ) < T3D

}

. (6)

This selection ensures that we do not average poses that be-

long to different modes. We then obtain our final 2D pose

p (and similarly the 3D pose) by averaging the 2D poses in

mode P ′ weighted by their scores:

p =
1

S

∑

(q,Q)∈P′

s(q,Q)× q , (7)

with S the sum of the individual scores, i.e., S =
∑

(q,Q)∈P′ s(q,Q). The score for this pose p is set to S,

which results in a higher score for poses with multiple pose

proposals. We iterate this process, starting from the highest

scored pose among the ones that have not yet been covered

by a mode.
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Number K of anchor-poses 1 50 100 200 500

LCR-Net + NMS 74.2 71.7 70.7 77.0 85.6

LCR-Net + NMS + Align. 64.5 59.3 58.0 63.6 66.1

Table 1. Average 3D pose error (mm) with respect to the number K

of anchor-poses on Human3.6M, protocol 1 (P1), after 100k itera-

tions. Results are reported for NMS with/without rigid alignment.

4. Experimental results

In this paper, we address joint 2D and 3D human pose

detection in natural images. To the best of our knowledge,

there exists no dataset with 3D annotations for real-world

images. To evaluate our method, we thus perform separate

experiments on (a) 3D pose estimation in a controlled en-

vironment on the Human3.6M dataset [12] (Section 4.1),

and (b) 2D and 3D pose estimation in natural images on the

MPII human pose dataset [2] (Section 4.2).

4.1. 3D pose detection on Human3.6M

The Human3.6M dataset [12] contains 3.6M human

poses from 11 actors performing 17 different scripted ac-

tions. The videos are captured in a controlled environment

from 4 different camera viewpoints while accurate 3D poses

are measured using a MoCap system. Accurate 2D poses

are also available for each camera view. To exhaustively

compare our results with the state of the art, we use three

different protocols. The first one, denoted as P1, is intro-

duced in [13] and employed in [23, 35]: six subjects (S1,

S5, S6, S7, S8 and S9) are used for training and every 64th

frame of subject S11/camera 2, i.e., a total of 928 frames,

are used for testing. We report the 3D pose error (mm),

averaged over the 13 joints. As in [35], we report a 3D

pose error that measures accuracy of pose aligned with a

rigid transformation (Align.), but also report the absolute

error (Abs.). The second protocol, denoted as P2, is used

in [15, 29, 37]. All the frames from subjects S9 and S11 are

used for testing and only S1, S5, S6, S7 and S8 are used for

training. We evaluate only on every 5th frame as in [37] ,

i.e., on a test set of 110,000 images, as we did not observe

a significant impact on performance when evaluating on all

the frames. The last protocol P3, introduced by Bogo et

al. [3], uses the same subjects for training and testing as P2.

However, evaluation is performed only on sequences from

camera 3 / trial 1 after rigid alignment.

Anchor-poses. We select a subset of the training set, i.e.

300,000 images and the corresponding 3D poses, and build

a set of anchor-poses by clustering the 3D poses using K-

means. Table 1 shows performance when varying the num-

ber K of anchor-poses after 100k iterations. We can see that

best performance is obtained for K=100. When K is too

small, for instance if K=1 which corresponds to a standard

regression, the number of anchor-poses is not sufficient to

cover the pose space. When K becomes too large, the error

also increases since the anchor-poses are too similar, result-

Abs. Align. Abs. Align. Align.

P1 P1 P2 P2 P3

Kostrikov & Gall [13] - 115.7 - - -

Iqbal et al. [35] - 108.3 - - -

Rogez & Schmid [23] 126 88.1 121.2 87.3 -

Bogo et al. [3] - - - - 82.3

LCR-Net + NMS 65.9 55.6 89.8 72.3 73.1

LCR-Net + PPI 63.2 53.4 87.7 71.6 72.7

Table 2. Comparison with state-of-the-art results on Human3.6M

for 3 different protocols. The average 3D pose error (mm) is re-

ported before (Abs.) and after rigid 3D alignment (Align.) for

protocols P1 and P2. See text for details. The errors are globally

higher with protocols P2 and P3 that provide less training subjects

and have a larger and more varied test set.

ing in ambiguities in the classification.

Comparison with the state of the art. Table 2 compares

our methods (with K = 100, 150k iterations) to the state

of the art on the three protocols P1, P2 and P3. Many ap-

proach report results only on P2, we compare to them in

Table 3 and also present a per-class comparison. We signif-

icantly outperform other methods for the 3 protocols. This

is despite the fact that we perform also localization, in con-

trast to most methods such as [23, 37] that assume bounding

box annotation of the human. Some of the competing meth-

ods on P2 only evaluate on 6 actions [14, 15, 16, 28], other

leverage temporal information [7, 29, 37]. We can observe

that our proposed postprocessing PPI improves over a sim-

ple NMS for all the 15 actions and that we outperform all

competing methods with an average 3D pose error of 87.7
mm for 15 actions and 83.0 mm for 6 actions. Our method

is state of the art for 9 out of 15 actions but performs lower

than [24] for 4 different actions. The method from [24] re-

lies on 2D joints detected by [34] while our architecture is

trained end-to-end using Human3.6M training set only. For

the “Walk” and “WalkTogether” actions, we perform lower

than [29] who leverages temporal information, an impor-

tant clue for such actions. Our method could be extended

to leverage additional temporal information, which should

further improve the performance.

Impact of PPI. We experimentally set T3D to 200 mm and

found that the IoU threshold has no influence on the perfor-

mance for this dataset, as only one individual is observed

and all highly scored proposals are localized on the sub-

ject. In most cases, the best scoring pose proposal (NMS)

is already an accurate estimation but, on average, the im-

provement achieved by our PPI over the NMS estimates is

non negligible. In Figure 5, we show some qualitative re-

sults where examples are sorted by increasing 3D pose er-

ror. A green upward peak with respect to the blue curve

corresponding to PPI indicates an important improvement

by the PPI, whereas a red peak downward indicates poses

where the rigid alignment helps correct the most. For the

928 test frames of protocol P1, less than 20 have an error

greater than 130 mm. This occurs in cases of unseen poses

in the training set, see rightmost example in Figure 5.
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Method Im Loc Directions Discussion Eat Greet Phone Pose Purchase Sit SitDown

Tekin et al. [29] X 102.4 147.7 88.8 125.3 118.0 112.3 129.2 138.9 224.9

Zhou et al. [37] 87.4 109.3 87.0 103.2 116.2 106.9 99.8 124.5 199.2

Du et al. [7] X 85.1 112.7 104.9 122.1 139.1 105.9 166.2 117.5 226.9

Li et al. [14] X - 148.8 104.0 127.2 - - - - -

Li et al. [15] X - 134.1 97.4 122.3 - - - - -

Li et al. [16] X - 133.5 97.6 120.4 - - - - -

Tekin et al. [28] X - 129.1 91.4 121.7 - - - - -

Rogez & Schmid [23] X 94.5 110.4 109.3 143.9 125.9 95.5 89.8 134.2 179.2

Sanzari et al. [24] X X 48.8 56.3 96.0 84.8 96.5 66.3 107.4 116.9 129.6

LCR-Net + NMS X X 79.8 84.5 76.4 86.6 94.2 81.6 74.2 106.3 129.4

LCR-Net + PPI X X 76.2 80.2 75.8 83.3 92.2 79.0 71.7 105.9 127.1

Method Im Loc Smoke Photo Wait Walk WalkDog WalkTogether Avg. (All) Avg. (6)

Tekin et al. [29] X 118.4 182.7 138.7 55.1 126.3 65.8 125.0 121.0

Zhou et al. [37] 107.4 143.3 118.1 79.4 114.2 97.7 113.0 106.1

Du et al. [7] X 120.0 135.9 117.6 99.3 137.4 106.5 126.5 118.7

Li et al. [14] X - 189.1 - 77.6 146.6 - - 132.2

Li et al. [15] X - 166.2 - 68.5 132.5 - - 121.3

Li et al. [16] X - 163.3 - 73.7 135.2 - - 121.6

Tekin et al. [28] X - 162.2 - 65.7 130.5 - - 116.8

Rogez & Schmid [23] X 123.8 160.3 133.0 77.4 129.5 91.3 121.2 119.5

Sanzari et al. [24] X 97.8 105.6 65.9 92.6 130.5 102.2 93.1 -

LCR-Net + NMS X X 90.5 106.5 86.5 64.8 92.5 84.2 89.8 85.2

LCR-Net + PPI X X 88.0 105.7 83.7 64.9 86.6 84.0 87.7 83.0

Table 3. Per-class results on Human3.6M with protocol P2 without pose alignment. Im refers to image-based approaches working at the

frame level, i.e., that do not leverage temporal information. Loc refers to methods that also perform localization of the person, i.e., do not

assume that a bounding box around the human is given. Note that Du et al. [7] only evaluate on camera 2.

Figure 5. Average 3D pose error on Human3.6M test images (protocol P1). We order the examples by increasing error of PPI results (blue)

and also report the performance with a simple NMS (green) and after rigid alignment of the PPI estimation (red). We show qualitative

results for 4 particular cases, from left to right: 1) an image where NMS estimation is already accurate, thus PPI and alignment do not

further improve, 2) a case in which the PPI achieves an accurate pose estimate, 3) a case where PPI does not improve over NMS but the

alignment helps to correct the pose estimate and 4) a failure case where the pose is not satisfactory, even after rigid alignment. For each

case, we show the image with the estimated 2D pose (with PPI). We also show the 3D poses estimated by NMS, PPI and after alignment

overlaid with the ground-truth 3D pose.
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4.2. 2D and 3D pose detection on MPII

We now present experimental results for 2D and 3D pose

detection in real-world images. We use the challenging

MPII human pose dataset [2] that consists of around 40k

annotated 2D poses in around 25k images (17,400 for train-

ing and 7k for testing). It contains a large variety of camera

viewpoints and poses, originating from around 400 different

actions. Each scene can contain multiple people, that are

often occluded or truncated by the image boundary. This

makes the dataset challenging for human pose estimation.

While most other papers on 3D pose estimation only show

qualitative examples on real images, we analyze our results

on a validation set of 1000 images that we used for both

single (1088 poses) and multi-person (209 groups) proto-

cols. This set is obtained by randomly splitting the training

dataset to create a training set of 16k images and a valida-

tion set of 1000 images, making sure that images from the

same video all belong to the same set. For training, we also

use the annotated images from LSPE as in [21, 23] and a

subset of 17k images from Human3.6M. After mirroring,

we obtain a training set of 90k images.

Pseudo ground-truth 3D pose. To train our network, we

need 3D ground-truth poses associated with each training

image but MPII and LSPE only provide 2D joint locations.

We infer ground-truth 3D poses from 2D annotations us-

ing a simple nearest neighbor (NN) search on the annotated

joints. MoCap 3D poses are projected orthographically on

multiple random virtual views to generate a very large set

of 2D poses and a search is performed on the normalized

2D poses to estimate the closest match, i.e., 3D pose + cam-

era view. As in [23, 35], we consider the CMU MoCap

dataset as 3D pose source. However, both MPII and LSPE

datasets present rare poses (e.g. gymnastic) that are absent

from this dataset. To cover a wider set of poses, we merge

several MoCap datasets available on the internet, such as

Pose Prior [1] and HDM05 [18], and observed a 13% reduc-

tion in the matching error, i.e., distance between query 2D

pose and best match, when using this augmented dataset.

These recovered 2D poses are also used to complete the

missing 2D annotations (due to occlusions or truncations)

so that each training instance is associated with full-body

2D and 3D annotations. The set of anchor-poses is ob-

tained by running K-means on the 3D poses of the extended

MoCap dataset. Compared to Human3.6M, the diversity in

pose is significantly higher but we found that K = 100 was

still performing well.

Dealing with truncation. To deal with truncations by the

image boundaries, we double the number of clusters by con-

sidering also upper-body region proposals. More precisely,

for the K anchor-poses, we adjust the full-body anchor-pose

such that only the upper-body covers the candidate box. At

training, we define an upper-body ground-truth box for each

annotated pose plus a fully-body ground-truth box when at

Figure 6. Average PCKh on MPII validation set. Left: Detection rate

with respect to the normalized distance. Right: “Per-pose” PCKh@0.5

when ordering the poses with respect to“pose rarity”. See text for details.

For both plots, we show the effect of adding Coco [17] to the training set.

least one joint from the lower limbs is visible.

Single person pose estimation. In this setting, most meth-

ods use person localization information before computing

the pose. In our case, we detect the poses over the whole

image and use the localization information only for evalua-

tion, i.e., to select the pose that corresponds to each ground-

truth. We report the results using the PCKh metric that mea-

sures the ratio of estimated joints for which the distance to

the ground-truth is below a threshold. The standard thresh-

old is set to half the size of the head. In Figure 6 left, we

show the PCK while varying the ratio δ of the size of the

head between 0 and 1, denoted as PCKh@δ. On our valida-

tion set, we obtain around 75% for a standard PCKh@0.5

and around 90% for a PCKh@1. We can see that PPI, with

T3D = 100mm and IoU = 0.08, improves with respect to

NMS. We made further experiments to understand the in-

fluence of the training data on the performance and added

annotated images from Coco [17] to approximately double

the size of our training set. We observed a significant im-

provement in performance reaching PCKh@0.5 = 78.5%
(Figure 6 left) on our validation set. This indicates that our

method requires a significant amount of training data that

could be generated by synthesis in future work. When in-

creasing the training data, we observed that performance

is slightly better for K=200 (rather than K=100), meaning

that we better populate the pose clusters. We also observed

a correlation between performance and rarity of the pose

measured as the distance to the closest cluster (Figure 6

right). Since our approach is holistic and reasons about the

full-body pose, our architecture can interpolate new full-

body poses but does not extrapolate well unseen body con-

figurations. This is a drawback of learning-based 3D pose

estimation methods that rely on a pose prior. In future work,

we will study how images of rare poses could be synthe-

sized to uniformly populate the space.

While we outperform the state of the art in 2D/3D hu-

man pose estimation in controlled environment, our 2D

performance on real images is below the state of the art

as indicated by our performance on the MPII test set re-
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Figure 7. Qualitative examples on the MPII dataset. To visualize multiple 3D poses, which are expressed in a coordinate system centered

on the torso, we find for each one of them the appropriate 3D displacements in front of the camera. This is obtained using a least square

minimization of the reprojection error, defined as the distance between the 2D pose estimated by LCR-Net and the projection of the 3D

pose in the image. When the camera is unknown, simply hypothesizing an orthographic camera leads to acceptable qualitative results.

Method
Human3.6M MPII

2D pose error (pix) % of correct joints (PCKh@0.5)

Wei et al. [33] 10.04 88.5

LCR-Net + PPI 8.50 74.2

Table 4. 2D pose estimation results on Human3.6M and MPII test

sets compared to state-of-the-art 2D method [33].

ported in Table 4. Note that in contrast to most other ap-

proaches, our holistic method also gives an estimation of the

occluded joints that is not evaluated. Although globally cor-

rect (Fig. 7), our pose estimations can lack precision on the

limb extremities resulting in lower PCKh score in 2D . One

explanation is that we use a fully-connected layer for the

regression. This could be improved by using fully convolu-

tional architecture with deconvolution or upsampling [19].

Multi-person pose detection. For multi-person evaluation,

our validation set contains 209 groups of multiple people

in 187 images. We follow the standard protocol and evalu-

ate AP averaged over joints. We obtain around 49% for a

standard mAP@0.5 and near 60% for a mAP@1. Examples

of multi-person pose detection are shown in Figure 7. Our

method is able to detect multiple people even if they over-

lap (second row, second column). It is also robust to un-

usual poses (top right), truncation (top row, third column)

or important occlusions (top row, second column).

5. Conclusion

This paper introduces a Localization-Classification-

Regression network (LCR-Net) for joint 2D and 3D hu-

man pose detection in natural images. We demonstrate the

benefit of an end-to-end architecture which relies on pose

proposals that are hypothesized at different locations in the

image, classified and refined by regression. The final pose

estimation is obtained by integrating over neighboring pose

hypotheses. We outperform the state of the art in 3D pose

estimation on Human3.6M, i.e., a controlled environment

and show promising results on real images. Future work in-

cludes adding rare poses using synthetic training data and a

fully convolutional architecture with deconvolution.
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F. Moreno-Noguer. Single image 3D human pose estimation

from noisy observations. In CVPR, 2012. 3

[27] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

4

[28] B. Tekin, I. Katircioglu, M. Salzmann, V. Lepetit, and P. Fua.

Structured prediction of 3D human pose with deep neural

networks. In BMVC, 2016. 5, 6

[29] B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua. Direct predic-

tion of 3D body poses from motion compensated sequences.

In CVPR, 2016. 3, 5, 6

[30] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-

ing of a convolutional network and a graphical model for

human pose estimation. In NIPS, 2014. 2

[31] A. Toshev and C. Szegedy. DeepPose: Human pose estima-

tion via deep neural networks. In CVPR, 2014. 2

[32] C. Wang, Y. Wang, Z. Lin, A. L. Yuille, and W. Gao. Ro-

bust estimation of 3D human poses from a single image. In

CVPR, 2014. 3

[33] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 8

[34] Y. Yang and D. Ramanan. Articulated pose estimation with

flexible mixtures-of-parts. In CVPR, 2011. 5
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