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Abstract

This paper addresses the problem of spatio-temporal

alignment of multiple video sequences. We identify and

tackle a novel scenario of this problem referred to as Non-

overlapping Sequences (NOS). NOS are captured by multi-

ple freely panning handheld cameras whose field of views

(FOV) might have no direct spatial overlap. With the pop-

ularity of mobile sensors, NOS rise when multiple cooper-

ative users capture a public event to create a panoramic

video, or when consolidating multiple footages of an in-

cident into a single video. To tackle this novel scenario,

we first spatially align the sequences by reconstructing

the background of each sequence and registering these

backgrounds, even if the backgrounds are not overlapping.

Given the spatial alignment, we temporally synchronize the

sequences, such that the trajectories of moving objects (e.g.,

cars or pedestrians) are consistent across sequences. Ex-

perimental results demonstrate the performance of our al-

gorithm in this novel and challenging scenario, quantita-

tively and qualitatively.

1. Introduction

Spatio-temporal alignment of multiple videos [7–9, 11,

14, 21, 24, 28, 31] is a well-studied vision problem with

a wide range of applications, e.g., human action recogni-

tion [25, 29], video editing [31], markerless motion cap-

ture [14], video mosaicing, change detection [8], and aban-

doned object detection [16]. Previous works study differ-

ent aspects and scenarios of the spatio-temporal alignment.

Some works target sequences from the same scene but dif-

ferent viewpoints [14, 21]. Some can handle sequences

recorded at different times by independent moving cameras

that follow a similar trajectory [9,11,31]. The seminal work

of Caspi and Irani [7] studies spatially non-overlapping se-

quences when two fixed cameras move jointly in space.

Our work covers a novel unexplored aspect of spatio-

temporal alignment of sequences, for non-overlapping se-
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Figure 1. (a) Top view of spatio-temporal FOV of two moving

cameras capturing sequences S1 and S2; Non-overlapping se-

quences (NOS) may not even cover a common spatial region over

the progression of time, i.e, no overall spatial overlap exists. (b)

Spatio-temporal alignment of NOS results in displaying sequences

in a common coordinate and at the correct time shift.

quences (NOS). Targeted NOS are captured by freely

and independently panning cameras, from nearby view-

points, with limited translation, especially in the optical axis

direction. In NOS, sequences might not have any pair of

frames that have spatial overlap and belong to the same

world time instant. More interestingly, sequences might

even not cover some common regions of the same scene

over the progression of time. In other words, if we re-

construct the observed background by these sequences, the

backgrounds may be non-overlapping, i.e., in Fig. 1 (a), the

overall spatial overlap does not exist.

Given the ubiquitousness of smartphones and wearcams,

NOS are increasingly common. When amateur users unsyn-

chronizedly shoot videos of an event, aligning these videos

leads to a single comprehensive video, with greater spatial

and temporal spans (Fig. 1 (b)). This resultant video is es-

sentially a panoramic video, shot by smartphones, without

the need to fix the cameras to each other or use tripods.

Further, when many witnesses capture videos during crime

actions or violations, each sequence may cover part of the

story. Aligning these videos into a unified large-scale 3D

volume provides a better grasp of the full picture.

The existing spatio-temporal alignment algorithms fail

in the case of NOS, since even if there is some overall
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spatial overlap, spatial alignment of apparently overlapping

frames, e.g., frames a and b in Fig. 1 (a), obviously violates

the temporal alignment. However, by decomposing the task

to spatial alignment first and then temporal alignment based

on scene dynamics, the problem can be solved. In general

our proposed algorithm assumes NOS satisfy the following

two assumptions. 1) Although the sequences have no cor-

responding frames that share a common scene at the same

world time stamp, and no overall overlap as in Fig. 1 (a),

they cover nearby parts of a scene from similar view angles.

2) There are moving objects in the scene which move from

the field of view (FOV) of one camera to FOV of other cam-

eras. Note that in panoramic imaging the best results are

obtained if the camera has nodal camera motion, otherwise

parallax-tolerant methods should be used to hide artifacts

from parallax [15, 32]. Similarly, our proposed algorithm

creates the best result if the camera baseline is small, al-

though due to the non-overlapping videos, larger baselines

are handled with minor visual degradation.

Our algorithm utilizes global motion compensation to

map each frame to a camera-motion-removed video and

reconstruct the background for each sequence, indepen-

dently. With the two assumptions, these potentially non-

overlapping backgrounds are aligned via appearance cues

and also the prediction that where a moving object leav-

ing FOV of a camera will appear in FOV of another cam-

era. Collection of the former mappings and the latter back-

ground alignment, can spatially align each frame of each se-

quence with respect to frames from other sequences. Given

the spatial alignment and the assumption 2, we predict

when a moving object leaving FOV of one camera will ap-

pear in FOV of another. We mathematically formulate this

prediction and estimate the temporal alignment.

In summary, this paper makes these contributions:

⋄ A new scenario in spatio-temporal alignment of se-

quences is identified and studied.

⋄ A spatial alignment algorithm for NOS via alignment

of non-overlapping reconstructed backgrounds and consis-

tency of objects movement is proposed.

⋄ The trajectory of moving objects with smooth path is

used as a clue for temporal alignment of NOS.

2. Previous Work

The prior works in spatio-temporal alignment of se-

quences mostly differ in their assumptions and scenarios,

e.g., the camera movement (static, jointly moving, or mov-

ing), camera view-point (similar or distinct), extent of over-

lap in sequences, and extent of similarity of camera motion

paths. The work of [12] presents an excellent taxonomy of

these assumptions, one of which is that, to align sequences

from the same event captured by freely moving cameras,

coherent scene appearance is assumed. We lift this assump-

tion by handling non-overlapping sequences, although we
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Figure 2. Various scenarios in spatio-temporal alignment of se-

quences: (a) jointly moving cameras, (b) independently moving

cameras at different times following similar trajectories, (c) sta-

tionary cameras with different viewpoints, (d) the proposed inde-

pendently panning cameras with non-overlapping sequences.

do assume negligible camera movement in the optical axis

direction. We now review key scenarios in prior work.

Jointly moving cameras Caspi and Irani align spa-

tially non-overlapping sequences when two closely at-

tached cameras move jointly in space (Fig. 2 (a)) [7]. As-

suming cameras share the same projection center, their rela-

tionship is modeled as a fixed homography H. Esquivel et

al. [10] relax the projection center assumption and calibrate

a multi-camera rig from non-overlapping views, assuming

synchronized sequences. Recently, some works generate

panoramic videos from synchronized sequences of a multi-

camera rig [15,22]. Given that the cameras are fixed relative

to each other and have overlapping FOV, these works con-

centrate on removing the parallax artifacts. In contrast, we

focus on creating video panoramas of unsynchronized se-

quences from independently panning cameras, removing the

requirement of joint cameras and overlapping sequences.

Cameras following similar trajectories The authors of [9,

11,12,31] align sequences recorded at different times by in-

dependent moving cameras that follow a similar trajectory

(Fig. 2 (b)). Assuming one sequence is entirely contained

(temporally) within the other, in [9], the alignment is for-

mulated as an energy minimization alternately solved for

temporal and spatial alignment parameters and is evaluated

on four sets of real videos. In [31] an interactive method for

nonlinear temporal video alignments is proposed for video

editing. All these methods require coherent scene appear-

ance and cannot handle sequences from moving cameras

with no overlap in FOV — the targeted scenario of NOS.

Stationary cameras at different views Padua et al. [21]

target sequences from the same scene but different view-

points (Fig. 2 (c)). The stationary cameras allow the es-

timated camera’s epipolar geometry remain fixed. Motion

trajectories are used as cues for both spatial and temporal

alignment. Experimental results are provided for five se-

quences. For each sequence, the optimal tracker is chosen

based on the application in hand.

Time synchronization Assuming the known 3D object

location and calibrated stationary cameras, [6] synchro-

nizes non-overlapping sequences of these cameras. Gas-

par et al. [13] synchronize sequences from independently

moving cameras, assuming known intrinsic parameters and

visibility of two rigid moving objects in both sequences.
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Figure 3. Flowchart of our spatio-temporal alignment algorithm. First, spatial alignment is performed by background reconstruction for

each sequence (a) and aligning the backgrounds (b). Second, given the spatial alignment parameters, keypoint trajectories (c) are mapped

to the world coordinate and the best temporal alignment in terms of continuity of moving object trajectories is found (d). Finally, spatio-

temporal alignment parameters are used for displaying the sequence in a world coordinate system and at the correct time shift (e).

Lu and Mandal [19] model the video temporal alignment

as a spatio-temporal discrete trajectory alignment problem.

Moving objects provide the main cue in photo sequencing

as well [4], whereas static objects help to find the relation-

ship between the photos. Our method also relies on exis-

tence of at least one moving object for temporal synchro-

nization. In fact, without spatial overlap between FOVs,

any temporal alignment algorithm has to track moving ob-

jects or egomotion [12]. Our strength is that we can work

with NOS where the same moving object is not visible at

the same time in all sequences, without relying on camera

calibration or known moving object location.

3. Proposed Method

We discussed the assumptions for the proposed spatio-

temporal alignment of NOS in Sec. 1. The intrinsic and

extrinsic camera parameters are not required. Also, the

cameras might start capturing at different times, i.e. un-

synchronizedly, with possibly distinct frame rates, and are

panned freely and independently. However, best results are

achieved by a small camera baseline and limited translation

of cameras, especially in the optical axis direction, as we

rely on global motion compensation and large variations in

scale, degrade the resultant video in its rendering phase.

The proposed algorithm has two stages, (1) spatial

alignment (Fig. 3(b)), which relies on the reconstructed

backgrounds’ appearance and consistency of movement

of objects across the sequences, (2) temporal alignment

(Fig. 3(d)), which uses the continuity of objects’ trajecto-

ries to synchronize the videos.

Notations As shown in Fig. 3, frame coordinate refers to

the pixel coordinate in the input video, sequence coordinate

to the global coordinate of the reconstructed background of

one video, and world coordinate to the global coordinate

of all input videos where the final aligned video is rendered.

We denote the coordinates and time stamps in the frame co-

ordinate with plain letters, in the sequence coordinate with

∼ over the notation, e.g., x̃, and in the world coordinate

with double ∼, e.g., ˜̃x. Accordingly, a transformation from

the frame to sequence coordinate has ∼ over the notation,

and a transformation from the sequence to world coordinate

has double ∼. We use superscript for the sequence num-

ber and subscript for, either the frame number or trajectory

number. E.g., h̃s
i is the transformation of frame i in se-

quence s from the frame coordinate to sequence coordinate.

3.1. Spatial alignment

We break down the spatial alignment to two phases.

First, for each sequence, we map all the frames to

the sequence coordinate, via global motion compensation

(GMC), which also produces a reconstructed background

mosaic (Fig. 3(a)). A crucial assumption for successful

GMC is the camera having small motion in the optical

axis direction. Second, image alignment is conducted on

the reconstructed backgrounds and maps them to the world

coordinate (Fig. 3(b)). However, if the backgrounds are

non-overlapping, common image alignment cannot be used.

Thus, a new alignment scheme is proposed in Sec. 3.1.2.

3.1.1 Global motion compensation

GMC removes intentional or unwanted camera motion in a

sequence, creating a video with static background [26, 27].

Essentially, GMC estimates a per frame transformation to

the sequence coordinate. We utilize the TRGMC algo-

rithm [26] which handles dynamic scenes and estimates

transformations by jointly aligning input frames. TRGMC

detects SURF [5] keypoints in each frame, and matches

keypoints to densely interconnect all frames, regardless of
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their temporal offset. These connections are referred as

links. Then, appropriate transformation is applied to each

frame and its links, such that the spatial coordinates of the

end-points of each link are as similar as possible. Using

TRGMC independently for each sequence s, we estimate

the mapping h̃s
i to map frame i to the sequence coordinate.

TRGMC defines the problem as the congealing of

densely connected keypoints in a stack of frames. For the

convenience of readers, we briefly introduce this algorithm.

Given a stack of frames with indices i ∈ K = {k1, ..., kN},

TRGMC is formulated as an optimization problem,

min
{h̃s

i
}
ǫs =

∑

i∈K

[ei(h̃
s
i )]

⊺Ωs
i [ei(h̃

s
i )], (1)

where h̃s
i is an 8-dim homography transformation parame-

ter from frame i of sequence s to the sequence coordinate,

ei(h̃
s
i ) collects pair-wise alignment errors of frame i rela-

tive to all other frames, and Ωs
i is a weight matrix. Since

TRGMC uses homography transformation, it works best

with nodal camera motion. In the case of camera transla-

tion, TRGMC still works by matching the dominant back-

ground, although the result may downgrade with parallax.

The alignment error of frame i relative to all other frames

is the sum of squared differences (SSD) between the start

and end coordinates of the links connected to frame i, de-

noted for the kth link as (xi,k, yi,k) and (ui,k, vi,k), respec-

tively. Thus, the error ei(h̃
s
i ) is,

ei(h̃
s
i ) = [∆xi(h̃

s
i )

⊺,∆yi(h̃
s
i )

⊺]⊺, (2)

where ∆xi(h̃
s
i ) = w̃

(x)
i − ui and ∆yi(h̃

s
i ) = w̃

(y)
i − vi

are the errors in x and y−axes. The vectors w̃
(x)
i and w̃

(y)
i

denote the x and y−coordinates of (xi,k, yi,k) warped by

the parameter h̃s
i , respectively.

Equation 1 is solved by taking the Taylor expansion

around h̃s
i and finding the increment Δh̃s

i that minimizes,

argmin
∆h̃s

i

[ei(h̃
s

i ) +
∂ei(h̃

s

i )

∂h̃s

i

∆h̃
s

i ]
⊺Ωs

i [ei(h̃
s

i ) +
∂ei(h̃

s

i )

∂h̃s

i

∆h̃
s

i ]

+ γ∆h̃
s

i

⊺

I∆h̃
s

i , (3)

where Δh̃s
i

⊺

IΔh̃s
i is a regularization term. The indicator

matrix I is a diagonal matrix specifying which elements of

Δh̃s
i need a constraint. By setting the first-order derivative

of Eqn. 3 to zero, a closed-form solution for Δh̃s
i is ob-

tained. h̃s
i is estimated after enough iterations.

Spatial alignment of overlapping backgrounds Given

the h̃s
i for all the input videos, we follow [26] to recon-

struct the backgrounds Bs for them. If there exists enough

overlap between the backgrounds, common image align-

ment algorithms may be used. Specifically, we estimate the

transformation
˜̃
hs that maps the background of sequence

s to the world coordinate, by matching SURF keypoints

on background images via the vector field consensus algo-

rithm [20]. In summary, a point with the homogeneous co-

ordinate (x, y, 1) in frame i of sequence s is mapped to the
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Figure 4. Spatial alignment of non-overlapping sequences using

background extrapolation and smoothness of object trajectories.

sequence coordinate of sequence s, denoted as (x̃, ỹ, 1), and

the world coordinate of all sequences, denoted as (˜̃x, ˜̃y, 1),
[

˜̃x, ˜̃y, 1
]⊺

=
˜̃
hs

[

x̃, ỹ, 1
]⊺

=
˜̃
hsh̃s

i

[

x, y, 1
]⊺

. (4)

Thus, the transformation
˜̃
hsh̃s

i conducts spatial alignment

for frame i in sequence s. Given the homography transfor-

mation of
˜̃
hs, as the cameras’ baseline increases, the dom-

inant background plane is aligned, and the foreground may

be affected by parallax in the final composite video.

3.1.2 Spatial alignment of non-overlapping sequences

With freely panning cameras, it is likely that the back-

grounds of sequences have no overlap, or the overall overlap

is too small to reliably estimate the spatial alignment. One

potential solution is to extrapolate the background images,

and align the extrapolated images [23]. However, our ex-

periments reveal that this is not reliable. First, extrapolation

introduces many artifacts [3], or blurred areas [1, 23], lead-

ing to poor keypoint matching. Second, extrapolation in the

horizontal direction, helps with alignment in the vertical di-

rection, but leaves lots of ambiguity in horizontal alignment.

Third, a rigid Euclidean transformation, as in [23], does not

suffice for a proper background alignment.

On the other hand, how objects move across the se-

quences in the spatial world coordinate, irrespective of the

temporal synchronization, provides hints for spatial align-

ment (Fig. 4). There is ambiguity in the exact spatial align-

ment, however, as more objects move across the sequences

and in more diverse directions, the ambiguity is decreased.

To this end, we propose a spatial alignment algorithm

for NOS that combines both aforementioned ideas. We

first extrapolate the background images of all sequences.

Then, we perform motion tracking to obtain trajectories of

all keypoints in each sequence. By transforming the tra-

jectories to the sequence coordinate using h̃s
i and filtering

out static trajectories, we collect moving object trajectories.

We create motion tracks by matching moving object trajec-

tories across sequences. Finally, we incrementally update

the transformation applied to the background images to in-

crease the motion track smoothness in the world coordinate,
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while maintaining the appearance consistency of extrapo-

lated backgrounds in the overlap region. In essence, instead

of relying only on extrapolated appearance, which is blurry

and unreliable, we base our method on the extrapolation that

movement of objects provides across the FOV of sequences.

Motion tracking We perform tracking in consecutive

frames to form the trajectories. We prefer keypoint-based

tracking for two reasons. 1) Object-based tracking requires

detecting generic objects on each frame, which could be

error-prone and inefficient. 2) Our experiments and also

the analysis in [17] reveal that optical flow-based tracking

such as dense trajectories [30] leads to spurious motion tra-

jectories around the motion boundaries. We use SURF [5]

keypoint detection and description. To detect newly emerg-

ing objects, we start tracking all the keypoints on frame i

that have no corresponding matches from frame i− 1.

Denote the jth trajectory in sequence s as P s
j =

[xs
j ,y

s
j , t̃

s
j ], where xs

j and ys
j are the frame coordinates, and

t̃sj is the time stamp. To handle sequences at different frame

rates, t̃sj should be the absolute time unit such as millisec-

onds not frame number. We then compute the trajectory P̃ s
j

in the sequence coordinate via h̃s
i . In this coordinate, trajec-

tories of moving and stationary keypoints are easily distin-

guishable, as sequence coordinates of static objects remain

constant over time (Fig. 3(d), bold vs. dashed lines). Denot-

ing the trajectory length as lsj and width and height of the

sequence as ws and hs, we omit stationary trajectories if,

1

lsj

lsj−1
∑

k=1

(

|x̃s
j,k − x̃s

j,k+1|

ws
+

|ỹs
j,k − ỹs

j,k+1|

hs

)

< τ1, (5)

where τ1 is a threshold for the total displacement of the

tracked object, and x̃s
j,k and ỹs

j,k denote the kth element

in the vectors x̃s
j and ỹs

j , respectively.

Creating motion tracks We describe each moving ob-

ject trajectory j of sequence s with two SURF descriptors,

one for the keypoint starting the trajectory (Ss
j ) and one

for the keypoint ending it (Es
j ). To match two trajecto-

ries j and k from sequences s1 and s2, a classical keypoint

matching algorithm [18] is used to match all 4 combina-

tions of keypoints, i.e., (Ss1
j ,Ss2

k ), (Es1
j , Es2

k ), (Ss1
j , Es2

k )
and (Es1

j ,Ss2
k ) , and the minimum distance decides a match.

This can achieve more robustness against view point varia-

tion, as the nearby keypoints of the trajectories (in the world

coordinate) will be the deciding factor in trajectory match-

ing. We call each set of matched trajectories a track, de-

noted by Πk. For simplicity of notation, we assume that the

trajectories within a track have been re-indexed such that

Πk = { ˜̃P s
k ; s ∈ [1, S]}. For a certain sequence s,

˜̃
P s
k might

be empty, i.e., no trajectories from this sequence is part of

the track Πk. Note that not all the moving object trajectories

should be matched to form tracks, due to noisy trajectories

or objects with non-smooth motion path. Sec. 3.2.2 presents

a method to remove non-smooth trajectories.

Spatial alignment formulation For simplicity, we discuss

the alignment of 2 sequences, as more sequences may be

aligned in the same manner, sequentially. We set
˜̃
h1 = I3×3

and use p for
˜̃
h2 to avoid cluttered equations. Given N

tracks indexed by i, and extrapolated backgrounds B1 and

B2, the goal is to find a transformation p which maps B2

to B1, such that the extrapolated background are similar in

the overlap region O(p) and trajectories of sequence 2 re-

side on the extension of trajectories in sequence 1, in ˜̃x− ˜̃y
coordinate. For image extrapolation, we use PatchMatch al-

gorithm [3]. Then, we formulate the optimization problem

(Fig. 4),

min
p

∑

x̃∈O(p)

[

B2(W(x̃;p))−B1(x̃)
]2
+β

∑

i

ei(p)
⊺ei(p),

(6)
where W(x̃;p) warps x̃ to the world coordinate by trans-

formation p, and ei(p) represents how far trajectory i of

sequence 2 is from spatial extension of matching trajec-

tory in sequence 1. The first term in Eqn. 6 is similar to

Lucas-Kanade algorithm [2], operated only in the overlap-

ping area. To define ei(p), we fit a line, which works better

than fitting polynomials in our experiments, to the ith tra-

jectory in sequence 1 (in the sequence coordinate), denoted

by fi(x). The vector ei(p) collects the y-distance between

each point on the ith trajectory in sequence 2, after warped

by p, and the fitted line,

ei(p) = [ ˜̃w
(y)

i − fi( ˜̃w
(x)

i )], (7)

where ˜̃w
(x)

i = [Wx(x̃i,2, ỹi,2;p)] and ˜̃w
(y)

i =
[Wy(x̃i,2, ỹi,2;p)] are the warped x̃ and ỹ−coordinates of

the ith trajectory in sequence 2 to the world coordinate.

The optimization problem is solved by taking the Taylor

expansion around p and finding the increment Δp by,

argmin
∆p

∑

x̃∈O(p)

[

B2(W(x̃;p)) + SBΔp−B1(x̃)
]2

+β
∑

i

[

ei(p) + JeΔp
]⊺[

ei(p) + JeΔp
]

+αΔp⊺IΔp,

(8)

where SB = ∇B2 ∂W
∂p

is the steepest decent image, Je =
∂ei(p)
∂p

, and Δp⊺IΔp is a regularization term penalizing

some special changes on Δp controlled by I and a positive

constant α. By setting I = diag([0, 0, 1, 0, 0, 1, 0, 0]), we

penalize large changes on translation elements of Δp, so

that frames are first aligned by warping them rather than

translating them. Based on our experiments, this leads to

more stable results. The solution to Eqn. 8 is,

∆p = H−1
(

∑

x̃∈O(p)

S
⊺

B

[

B1(x̃)−B2(W(x̃;p))
]

−β
∑

i

J⊺eei(p)
)

,

(9)
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Figure 5. Trajectories, tracks, and fitted space-time curve to the

tracks from three videos.

in which H =
∑

x∈O(p) S
⊺

BSB + β
∑

i Je
⊺Je + αI.

We initialize the algorithm by setting the sequences side

by side (spatially) with the two possible layouts, and use the

alignment result of the layout with lower final cost.

3.2. Temporal alignment

NOS are assumed to have moving objects, without which

the temporal alignment is neither necessary nor possible.

Given moving objects and spatial alignment results, the

temporal alignment of NOS amounts to estimating when an

object will appear in FOV of another camera, after it moves

out of the current FOV. If both cameras observe the object’s

motion at the same time, the problem is easier. For this

purpose, we create motion tracks as discussed in Sec. 3.1.

Then, we estimate the temporal offset between sequences

such that trajectories from the identical object follow a con-

tinuous path in ˜̃x− ˜̃t and ˜̃y − ˜̃t coordinates, i.e., the motion

tracks are smooth. Since not all trajectories are due to mov-

ing objects, we filter motion trajectories with non-smooth

paths, before matching trajectories.

3.2.1 Estimation of temporal offset

Given the collection of tracks, the objective is to make each

track a smooth curve, by shifting the temporal coordinates

of the contributing trajectories appropriately (Fig. 5). For

S sequences, ˜̃x− coordinate of trajectories forming the kth

track is the vector [˜̃x1
k,
˜̃x2
k, ...,

˜̃xS
k ]

⊺. ˜̃y− coordinate of each

track is defined similarly. We assume that by temporally

shifting each sequence s for Δts, the sequences are tempo-

rally aligned. To estimate Δts, we fit a polynomial curve

of degree m to time stamps versus ˜̃x and ˜̃y−coordinates

of each track independently and estimate the time shifts, in

order to achieve the lowest curve fitting error. Here, we dis-

cuss only the ˜̃t− ˜̃x curve, and the ˜̃t− ˜̃y curve is similar.

We denote the trajectory coordinates of sequence s and

all the power terms of the polynomial space-time curve as

˜̃x
s(m)
k = [1s

k,
˜̃xs
k, [˜̃x

s
k]

2, · · · , [˜̃xs
k]

m], (10)

where 1s
k is a lsk-dim vector of all ones, and [.]m denotes

an element-wise power operation. For the track k, all the
required terms of the polynomial space-time curve are col-

lected in a matrix
˜̃
Xk of size

∑

s l
s
k × (m + 1), and all the

time stamps in a vector
˜̃
Tk(Δt) of length

∑

s l
s
k,

˜̃
Xk =













˜̃x
1(m)
k

˜̃x
2(m)
k

...
˜̃x
S(m)
k













,
˜̃
Tk(∆t) =















t̃
1
k +∆t1

t̃
2
k +∆t2

...

t̃
S

k +∆tS















. (11)

We denote the coefficients of the kth polynomial curve

fitting to the kth track as ck = [cq]; q ∈ {0, ...,m}. We

can estimate the coefficients by solving a linear system,

argminck
‖ ˜̃
Tk(Δt)− ˜̃

Xkck ‖. Since all tracks share the

same Δt, we can efficiently solve for all tracks jointly,

c∗,Δt∗ = argmin
c,∆t

‖ ˜̃
T (Δt)− ˜̃

Xc ‖, (12)

in which

˜̃
X =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜̃
X1 0 · · · 0

0 ˜̃
X2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · ·
˜̃
XK

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
˜̃
T (∆t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

˜̃
T1(∆t)
˜̃
T2(∆t)

.

.

.
˜̃
TK(∆t)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, c =

⎡

⎢

⎢

⎢

⎣

c1
c2
.
.
.

cK

⎤

⎥

⎥

⎥

⎦

.

(13)

Here,
˜̃
X is a NK × K(m + 1) matrix where NK =

∑

k

∑

s l
s
k is the count of keypoints in all K tracks. We

alternatively estimate c and Δt, until the change in Δt is

negligible. We first estimate c, with fixed Δt. Since NK �
K(m+ 1), this linear system is over-constrained for c. We

solve c by Orthogonal-triangular decomposition, which is

numerically more accurate than the pseudo inverse of
˜̃
X .

Then, for a given c∗, we set Δts as the average of residuals

from the keypoints in trajectories belonging to sequence s,

Δts = −
1

Ns

( ˜̃T − ˜̃
Xc∗)⊺Is, (14)

where Is is a binary indicator vector with an element equal

to 1 if the corresponding row in
˜̃
T comes from a trajectory

in sequence s, and Ns =‖ Is ‖1 is the count of such rows.

3.2.2 Motion trajectory filtering

As mentioned before, not all trajectories are resulted from

object motion with a smooth path. In other words, some tra-

jectories might be due to noise in keypoint locations while

the camera moves. So, before matching trajectories across

sequences and collecting them to a track, we filter out the

trajectories that cannot be well approximated with a smooth

path, by fitting the order-m polynomial to the trajectory,

cs∗k = argmin
cs
k

‖ t̃sk − ˜̃x
s(m)
k csk ‖2, (15)

and thresholding the total fitting residual to remove non-

smooth trajectories, i.e., 1
ls
k

‖ t̃sk − ˜̃x
s(m)
k cs∗k ‖1< τ2.

4. Experimental results

In this section, we present the experimental setup and

both quantitative and qualitative results. Note that since
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Sequence ID R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 S1 S2 S3 S4 S5

Camera baseline (meter) 1 3 1 1 1 1 1 1 5 10 0 0 0 0 0

Temporal error (sec.) 0.13 0.07 0.07 0.13 0.07 0.07 0.10 0.03 0.07 0.07 0 0.03 0.07 0.03 0.07

Spatial error (pixel) - - - - - - - - - - 2 3 7 2 2

Table 1. Temporal and spatial alignment error in seconds and pixels, respectively, for real (R) and synthetic (S) sequences.

Figure 6. Spatial alignment of non-overlapping sequences. Top to

bottom: reconstructed backgrounds of two sequences with negli-

gible overlap, extrapolated backgrounds, and aligned background

with trajectory of moving objects overlaid on the background.

NOS is a novel scenario for spatio-temporal alignment of

sequences, there is no prior work for comparison. We set

β = 100, α = 103, m = 3 for the temporal curve fitting

step, and τ1 = 0.03 and τ2 = 0.15 for trajectory filtering.

Dataset Given that there is no public dataset in this new

scenario, we collect a NOS dataset including ten real-world

sequence sets, and five synthetic sequence sets. Real sets

are captured by two or three people using handheld smart-

phones with the distance between the cameras, i.e. baseline,

as shown in Table 1. Synthetic sets provide sequences for

which the ground truth result are exactly known, and are

created by taking a sequence and cropping out two spatio-

temporal tubes from the 3D sequence volume. This em-

ulates the case of independently panning cameras with al-

most identical optical centers. To simulate a freely pan-

ning camera and hand shake, the spatial region used for

each tube at each frame has a fixed size of 640 × 360 pix-

els, but the region location has an additive zero-mean Gaus-

sian noise. Also, if the original video is stationary, the re-

gions shift in x−direction to create a pan-like effect. The

dataset is available at http://cvlab.cse.msu.edu/

project-sequence-alignment.html.

Qualitative results Figure 6 presents the reconstructed

backgrounds along with image extrapolation results. Fur-

ther, it is shown how the backgrounds are transformed so

that moving object trajectories have smooth path.

Figure 7 shows the alignment results for five sets of real

sequences. The first two sets include sequences with some

overall spatial overlap while the rest have no/minimal spa-

tial overlap. For each set, two or three sample frames with

moving objects are shown, at the time shift estimated by the

proposed algorithm. Also, keypoint trajectories from both

sequences in the world coordinate after spatio-temporal

alignment are shown. Trajectories of moving objects have

considerable extent in the x−direction, whereas trajectories

of stationary objects are roughly parallel to t−axis. Finally,

the two input frames are warped to the world coordinate to

make a composite image. Although the input frames may

not have direct overlap, perceived continuity of the scene

and also relative location of the moving objects, demon-

strate capabilities of the proposed algorithm and the appli-

cation scenarios. Note that in all test sequences cameras

move freely and independently, as shown by the range of

trajectories in the world coordinate. For the case of “R7” in

Fig. 7, the sequences are non-overlapping, but only a per-

son is tracked moving across the FOVs. Thus, as shown in

this figure, spatial alignment has some error, which conse-

quently affects the accuracy of the temporal alignment.

Figure 8 represents a synthetic set where two sequences

are created from a video of a car accident. The two cropped

frames after spatio-temporal alignment are shown in a com-

posite image and for comparison, the corresponding frame

from the original video is also shown, demonstrating the

accuracy of spatio-temporal alignment.

Quantitative results To quantitatively evaluate the pro-

posed algorithm, we compare the alignment errors with the

ground truth. For the case of synthetic sets, the original

video from which the synthetic sequences are cropped, pro-

vides the ground truth location of the center points of the

cropped frames. We measure the spatial location error of

each aligned frame w.r.t. the ground truth location and re-

port sum of absolute errors in x and y−direction, averaged

over the sum of the length of the sequences, as the spa-

tial alignment error. Also, since we create the synthetic

sequences, the ground truth time shift is known. For real

sets, when the input frames do not have overlap, quantify-

ing the spatial error is not feasible. For quantification of

temporal alignment, we manually align the sequences by

relying on visual cues such as body pose, moving object

location relative to background landmarks, and consistency

of appearance of moving objects in the composite image.

Table 1 provides the quantified temporal and spatial errors.

As may be observed, temporal alignment works well even

when the camera baseline distance increases, although the

final consolidated result may suffer from parallax.
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Figure 7. Each row shows spatio-temporal alignment results on a

set of real NOS. For each sequence, input frames at the estimated

time shift and trajectories of moving objects in the world coordi-

nate are shown. The input frames are transformed to the world

coordinate to make a composite image.
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Figure 8. Results for two synthetic NOS from an accident footage

(S1). Left to right: trajectories of moving objects, aligned input

frames, original frame where the synthetic frames are cropped.

Computational cost The main computational cost of the

proposed algorithm comes from TRGMC. On average, for a

video of 15-second long, we spend 450 seconds on TRGMC

and background reconstruction, using a PC with an Intel i5-

3470@3.2GHz CPU, and 8GB RAM. Spatial alignment is

independent of sequence length and takes ∼162 seconds on

average for NOS. Finally, temporal alignment takes about

13 seconds on average over the dataset.

Limitations The proposed algorithm is a first step for

generating panoramic videos in the challenging scenario

of NOS. While this work relaxes many common assump-

tions of prior works, violation of some assumptions, es-

pecially existence of moving objects with a trajectory that

spans FOVs of multiple cameras, results in alignment fail-

ures. Furthermore, when relying on non-rigid or articu-

lated moving objects for alignment, many keypoints are not

tracked long enough due to change of appearance, making

alignment difficult. Also, in this case, matching trajectories

among different sequences is less reliable. Since our algo-

rithm is independent of the type of tracker, other tracking

algorithms can be investigated in the future. Finally, align-

ment of non-overlapping background images suffers from

ambiguity and is error prone, although the proposed algo-

rithms makes use of available cues to conduct this task.

5. Conclusions

We proposed an algorithm for spatio-temporal alignment

of sequences, referred to as non-overlapping sequences

(NOS), from freely panning cameras whose FOVs might

not even observe a common region over progression of

time. This new scenario of video alignment is useful in

reconstructing events, incidents, or crime scenes from mul-

tiple amateur-captured sequences, or creation of panoramic

videos from cooperative users via handheld cameras. The

spatial alignment of our algorithm relies on reconstruct-

ing background for each sequence and aligning the back-

grounds. When backgrounds are non-overlapping, the spa-

tial alignment uses clues from smoothness of moving ob-

jects’ paths and coherent appearance of background after

image extrapolation. Smoothness of trajectory of moving

objects is also utilized as a clue for temporal alignment.

Our experiments demonstrate capabilities of the proposed

method, despite the challenging scenario of NOS.
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