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Abstract

A number of problems can be formulated as prediction

on graph-structured data. In this work, we generalize the

convolution operator from regular grids to arbitrary graphs

while avoiding the spectral domain, which allows us to han-

dle graphs of varying size and connectivity. To move beyond

a simple diffusion, filter weights are conditioned on the spe-

cific edge labels in the neighborhood of a vertex. Together

with the proper choice of graph coarsening, we explore con-

structing deep neural networks for graph classification. In

particular, we demonstrate the generality of our formula-

tion in point cloud classification, where we set the new state

of the art, and on a graph classification dataset, where we

outperform other deep learning approaches.

1. Introduction

Convolutional Neural Networks (CNNs) have gained

massive popularity in tasks where the underlying data repre-

sentation has a grid structure, such as in speech processing

and natural language understanding (1D, temporal convolu-

tions), in image classification and segmentation (2D, spatial

convolutions), or in video parsing (3D, volumetric convolu-

tions) [21].

On the other hand, in many other tasks the data natu-

rally lie on irregular or generally non-Euclidean domains,

which can be structured as graphs in many cases. These in-

clude problems in 3D modeling, computational chemistry

and biology, geospatial analysis, social networks, or natural

language semantics and knowledge bases, to name a few.

Assuming that the locality, stationarity, and composionality

principles of representation hold to at least some level in the

data, it is meaningful to consider a hierarchical CNN-like

architecture for processing it.

However, a generalization of CNNs from grids to gen-

eral graphs is not straightforward and has recently become

a topic of increased interest. We identify that the current

formulations of graph convolution do not exploit edge la-

bels, which results in an overly homogeneous view of lo-

cal graph neighborhoods, with an effect similar to enforc-

ing rotational invariance of filters in regular convolutions

on images. Hence, in this work we propose a convolution

operation which can make use of this information channel

and show that it leads to an improved graph classification

performance.

This novel formulation also opens up a broader range of

applications; we concentrate here on point clouds specifi-

cally. Point clouds have been mostly ignored by deep learn-

ing so far, their voxelization being the only trend to the best

of our knowledge [25, 18]. To offer a competitive alterna-

tive with a different set of advantages and disadvantages,

we construct graphs in Euclidean space from point clouds

in this work and demonstrate state of the art performance

on Sydney dataset of LiDAR scans [9].

Our contributions are as follows:

• We formulate a convolution-like operation on graph

signals performed in the spatial domain where filter

weights are conditioned on edge labels (discrete or

continuous) and dynamically generated for each spe-

cific input sample. Our networks work on graphs with

arbitrary varying structure throughout a dataset.

• We are the first to apply graph convolutions to point

cloud classification. Our method outperforms volu-

metric approaches and attains the new state of the art

performance on Sydney dataset, with the benefit of

preserving sparsity and presumably fine details.

• We reach a competitive level of performance on graph

classification benchmark NCI1 [38], outperforming

other approaches based on deep learning there.

2. Related Work

The first formulation of a convolutional network analogy

for irregular domains modeled with graphs has been intro-

duced by Bruna et al. [6], who looked into both the spatial

and the spectral domain of representation for performing lo-

calized filtering.
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Figure 1. Illustration of edge-conditioned convolution on a directed subgraph. The feature X
l(1) on vertex 1 in the l-th network layer is

computed as a weighted sum of features Xl−1(.) on the set of its predecessor vertices, assuming self-loops. The particular weight matrices

are dynamically generated by filter-generating network F
l based on the corresponding edge labels L(.), visualized as colors.

Spectral Methods. A mathematically sound definition of

convolution operator makes use of the spectral analysis the-

ory, where it corresponds to multiplication of the signal

on vertices transformed into the spectral domain by graph

Fourier transform. The spatial locality of filters is then

given by smoothness of the spectral filters, in case of [6]

modeled as B-splines. The transform involves very expen-

sive multiplications with the eigenvector matrix. However,

by a parameterization of filters as Chebyshev polynomials

of eigenvalues and their approximate evaluation, computa-

tionally efficient and localized filtering has been recently

achieved by Defferrard et al. [11]. Nevertheless, the fil-

ters are still learned in the context of the spectrum of graph

Laplacian, which therefore has to be the same for all graphs

in a dataset. This means that the graph structure is fixed

and only the signal defined on the vertices may differ. This

precludes applications on problems where the graph struc-

ture varies in the dataset, such as meshes, point clouds, or

diverse biochemical datasets.

To cover these important cases, we formulate our filter-

ing approach in the spatial domain, where the limited com-

plexity of evaluation and the localization property is pro-

vided by construction. The main challenge here is dealing

with weight sharing among local neighborhoods [6], as the

number of vertices adjacent to a particular vertex varies and

their ordering is often not well definable.

Spatial Methods. Bruna et al. [6] assumed fixed graph

structure and did not share any weights among neighbor-

hoods. Several works have independently dealt with this

problem. Duvenaud et al. [14] sum the signal over neigh-

boring vertices followed by a weight matrix multiplication,

effectively sharing the same weights among all edges. At-

wood and Towsley [2] share weights based on the number

of hops between two vertices. Kipf and Welling [20] fur-

ther approximate the spectral method of [11] and weaken

the dependency on the Laplacian, but ultimately arrive at

center-surround weighting of neighborhoods. None of these

methods captures finer structure of the neighborhood and

thus does not generalize the standard convolution on grids.

In contrast, our method can make use of possible edge la-

bels and is shown to generalize regular convolution (Sec-

tion 3.2).

The approach of Niepert et al. [27] introduces a heuristic

for linearizing selected graph neighborhoods so that a con-

ventional 1D CNN can be used. We share their goal of cap-

turing structure in neighborhoods but approach it in a differ-

ent way. Finally, Graph neural networks [33, 23] propagate

features across a graph until (near) convergence and exploit

edge labels as one of the sources of information as we do.

However, their system is quite different from the current

multilayer feed-forward architectures, making the reuse of

today’s common building blocks not straightforward.

CNNs on Point Clouds and Meshes. There has been lit-

tle work on deep learning on point clouds or meshes. Masci

et al. [24] define convolution over patch descriptors around

every vertex of a 3D mesh using geodesic distances, formu-

lated in a deep learning architecture. The only way of pro-

cessing point clouds using deep learning has been to first
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voxelize them before feeding them to a 3D CNN, be it for

classification [25] or segmentation [18] purposes. Instead,

we regard point cloud as graphs in Euclidean space in this

work.

3. Method

We propose a method for performing convolutions over

local graph neighborhoods exploiting edge labels (Sec-

tion 3.1) and show it to generalize regular convolutions

(Section 3.2). Afterwards, we present deep networks with

our convolution operator (Section 3.3) in the case of point

clouds (Section 3.4) and general graphs (Section 3.5).

3.1. EdgeConditioned Convolution

Let us consider a directed or undirected graph G =
(V,E), where V is a finite set of vertices with |V | = n
and E ⊆ V × V is a set of edges with |E| = m. Let

l ∈ {0, .., lmax} be the layer index in a feed-forward neural

network. We assume the graph is both vertex- and edge-

labeled, i.e. there exists function X l : V 7→ R
dl assign-

ing labels (also called signals or features) to each vertex

and L : E 7→ R
s assigning labels (also called attributes)

to each edge. These functions can be regarded as matrices

X l ∈ R
n×dl and L ∈ R

m×s, X0 then being the input sig-

nal. A neighborhood N(i) = {j; (j, i) ∈ E}∪{i} of vertex

i is defined to contain all adjacent vertices (predecessors in

directed graphs) including i itself (self-loop).

Our approach computes the filtered signal X l(i) ∈ R
dl

at vertex i as a weighted sum of signals X l−1(j) ∈ R
dl−1

in its neighborhood, j ∈ N(i). While such a commutative

aggregation solves the problem of undefined vertex order-

ing and varying neighborhood sizes, it also smooths out any

structural information. To retain it, we propose to condition

each filtering weight on the respective edge label. To this

end, we borrow the idea from Dynamic filter networks [5]

and define a filter-generating network F l : Rs 7→ R
dl×dl−1

which given edge label L(j, i) outputs edge-specific weight

matrix Θl
ji ∈ R

dl×dl−1 , see Figure 1.

The convolution operation, coined Edge-Conditioned

Convolution (ECC), is formalized as follows:

X l(i) =
1

|N(i)|

∑

j∈N(i)

F l(L(j, i);wl)X l−1(j) + bl

=
1

|N(i)|

∑

j∈N(i)

Θl
jiX

l−1(j) + bl
(1)

where bl ∈ R
dl is a learnable bias and F l is parameter-

ized by learnable network weights wl. For clarity, wl and bl

are model parameters updated only during training and Θl
ji

are dynamically generated parameters for an edge label in a

particular input graph. The filter-generating network F l can

be implemented with any differentiable architecture; we use

multi-layer perceptrons in our applications.

Complexity. Computing X l for all vertices requires at

most1 m evaluations of F l and m + n or 2m + n matrix-

vector multiplications for directed, resp. undirected graphs.

Both operations can be carried out efficiently on the GPU in

batch-mode.

3.2. Relationship to Existing Formulations

Our formulation of convolution on graph neighborhoods

retains the key properties of the standard convolution on

regular grids that are useful in the context of CNNs: weight

sharing and locality.

The weights in ECC are tied by edge label, which is in

contrast to tying them by hop distance from a vertex [2],

according to a neighborhood linearization heuristic [27], by

being the central vertex or not [20], indiscriminately [14],

or not at all [6].

In fact, our definition reduces to that of Duvenaud et

al. [14] (up to scaling) in the case of uninformative edge

labels:
∑

j∈N(i) Θ
l
jiX

l−1(j) = Θl
∑

j∈N(i) X
l−1(j) if

Θl
ji = Θl ∀(j, i) ∈ E.

More importantly, the standard discrete convolution on

grids is a special case of ECC, which we demonstrate in

1D for clarity. Consider an ordered set of vertices V form-

ing a path graph (chain). To obtain convolution with a cen-

tered kernel of size s, we form E so that each vertex is con-

nected to its s spatially nearest neighbors including self by

a directed edge labeled with one-hot encoding of the neigh-

bor’s discrete offset δ, see Figure 2. Taking F l as a single-

layer perceptron without bias, we have F l(L(j, i);wl) =
wl(δ), where wl(δ) denotes the respective reshaped col-

umn of the parameter matrix wl ∈ R
(dl×dl−1)×s. With a

slight abuse of notation, we arrive at the equivalence to the

standard convolution: X l(i) =
∑

j∈N(i) Θ
l
jiX

l−1(j) =∑
δ w

l(δ)X l−1(i− δ), ignoring the normalization factor of

1/|N(i)| playing a role only at grid boundaries.

This shows that ECC can retain the same number of pa-

rameteres and computational complexity of the regular con-

volution in the case of grids. Note that such equivalence is

not possible with none of [2, 20, 14] due to their way of

weight tying.

3.3. Deep Networks with ECC

While ECC is in principle applicable to both vertex clas-

sification and graph classification tasks, in this paper we

restrict ourselves only to the latter one, i.e. predicting a

class for the whole input graph. Hence, we follow the com-

mon architectural pattern for feed-forward networks of in-

1If edge labels are represented by s discrete values in a particular graph

and s < m, Xl can be evaluated only s-times.
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Figure 2. Construction of a directed graph with one-hot edge la-

beling where the proposed edge-conditioned convolution is equiv-

alent to the regular 1D convolution with a centered filter of size

s = 3.

terlaced convolutions and poolings topped by global pool-

ing and fully-connected layers, see Figure 3 for an illustra-

tion. This way, information from the local neighborhoods

gets combined over successive layers to gain context (en-

large receptive field). While edge labels are fixed for a par-

ticular graph, their (learned) interpretation by the means of

filter generating networks may change from layer to layer

(weights of F l are not shared among layers). Therefore, the

restriction of ECC to 1-hop neighborhoods N(i) is not a

constraint, akin to using small 3×3 filters in normal CNNs

in exchange for deeper networks, which is known to be ben-

eficial [17].

We use batch normalization [19] after each convolution,

which was necessary for the learning to converge. Inter-

estingly, we had no success with other feature normaliza-

tion techniques such as data-dependent initialization [26] or

layer normalization [3].

Pooling. While (non-strided) convolutional layers and all

point-wise layers do not change the underlying graph and

only evolve the signal on vertices, pooling layers are de-

fined to output aggregated signal on the vertices of a new,

coarsened graph. Therefore, a pyramid of hmax progres-

sively coarser graphs has to be constructed for each in-

put graph. Let us extend here our notation with an addi-

tional superscript h ∈ {0, .., hmax} to distinguish among

different graphs G(h) = (V (h), E(h)) in the pyramid when

necessary. Each G(h) has also its associated labels L(h)

and signal X(h),l. A coarsening typically consists of three

steps: subsampling or merging vertices, creating the new

edge structure E(h) and labeling L(h) (so-called reduction),

and mapping the vertices in the original graph to those in

the coarsened one with M (h) : V (h−1) 7→ V (h). We use

a different algorithm depending on whether we work with

general graphs or graphs in Euclidean space, therefore we

postpone discussing the details to the applications. Finally,

the pooling layer with index lh aggregates X(h−1),lh−1 into

a lower dimensional X(h),lh based on M (h). See Figure 3

for an example of using the introduced notation.

During coarsening, a small graph may be reduced to sev-

eral disconnected vertices in its lower resolutions without

problems as self-edges are always present. Since the archi-

tecture is designed to process graphs with variable n,m, we

deal with varying vertex count n(hmax) in the lowest graph

resolution by global average/max pooling.

3.4. Application in Point Clouds

Point clouds are an important 3D data modality arising

from many acquisition techniques, such as laser scanning

(LiDAR) or multi-view reconstruction. Due to their natural

irregularity and sparsity, so far the only way of processing

point clouds using deep learning has been to first voxelize

them before feeding them to a 3D CNN, be it for classifi-

cation [25] or segmentation [18] purposes. Such a dense

representation is very hardware friendly and simple to han-

dle with the current deep learning frameworks.

On the other hand, there are several disadvantages too.

First, voxel representation tends to be much more expensive

in terms of memory than usually sparse point clouds (we

are not aware of any GPU implementation of convolutions

on sparse tensors). Second, the necessity to fit them into a

fixed size 3D grid brings about discretization artifacts and

the loss of metric scale and possibly of details. With this

work, we would like to offer a competitive alternative to the

mainstream by performing deep learning on point clouds

directly. As far as we know, we are the first to demonstrate

such a result.

Graph Construction. Given a point cloud P with its

point features XP (such as laser return intensity or color)

we build a directed graph G = (V,E) and set up its labels

X0 and L as follows. First, we create vertex i ∈ V for

every point p ∈ P and assign the respective signal to it by

X0(i) = XP (p) (or 0 if there are no features XP (p)). Then

we connect each vertex i to all vertices j in its spatial neigh-

borhood by a directed edge (j, i). In our experiments with

neighborhoods, fixed metric radius ρ worked better than a

fixed number of neighbors. The offset δ = pj − pi between

the points corresponding to vertices j, i is represented in

Cartesian and spherical coordinates as 6D edge label vector

L(j, i) = (δx, δy, δz, ||δ||, arccos δz/||δ||, arctan δy/δx).

Graph Coarsening. For a single input point cloud P , a

pyramid of downsampled point clouds P (h) is obtained by

the VoxelGrid algorithm [30], which overlays a grid of res-

olution r(h) over the point cloud and replaces all points

within a voxel with their centroid (and thus maintains sub-

voxel accuracy). Each of the resulting point clouds P (h) is

then independently converted into a graph G(h) and labeling

L(h) with neighborhood radius ρ(h) as described above. The

pooling map M (h) is defined so that each point in P (h−1)

is assigned to its spatially nearest point in the subsampled

point cloud P (h).
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Figure 3. Illustration of a deep network with three edge-conditioned convolutions (first, fourth, and eight network layer) and one pooling

(seventh layer). The last convolution is executed on a structurally different graph G
(1), which is related to the input graph G

(0) by

coarsening and signal aggregation in the max pooling step according to mapping M
(1). See Section 3.3 for more details.

Data Augmentation. In order to reduce overfitting on

small datasets, we perform online data augmentation. In

particular, we randomly rotate point clouds about their up-

axis, jitter their scale, perform mirroring, or delete random

points.

3.5. Application in General Graphs

Many problems can be modeled directly as graphs. In

such cases the graph dataset is already given and only the

appropriate graph coarsening scheme needs to be chosen.

This is by no means trivial and there exists a large body of

literature on this problem [31]. Without any concept of spa-

tial localization of vertices, we resort to established graph

coarsening algorithms and utilize the multiresolution frame-

work of Shuman et al. [35, 28], which works by repeated

downsampling and graph reduction of the input graph. The

downsampling step is based on splitting the graph into two

components by the sign of the largest eigenvector of the

Laplacian. This is followed by Kron reduction [13], which

also defines the new edge labeling, enhanced with spectral

sparsification of edges [36]. Note that the algorithm regards

graphs as unweighted for the purpose of coarsening.

This method is attractive for us because of two reasons.

Each downsampling step removes approximately half of the

vertices, guaranteeing a certain level of pooling strength,

and the sparsification step is randomized. The latter prop-

erty is exploited as a useful data augmentation technique

since several different graph pyramids can be generated

from a single input graph. This is in spirit similar to the

effect of fractional max-pooling [16]. We do not perform

any other data augmentation.

4. Experiments

The proposed method is evaluated in point cloud clas-

sification (real-world data in Section 4.1 and synthetic in

4.2) and on a standard graph classification benchmark (Sec-

tion 4.3). In addition, we validate our method and study its

properties on MNIST (Section 4.4).

4.1. Sydney Urban Objects

This point cloud dataset [9] consists of 588 objects in 14

categories (vehicles, pedestrians, signs, and trees) manually

extracted from 360◦ LiDAR scans, see Figure 4. It demon-

strates non-ideal sensing conditions with occlusions (holes)

and a large variability in viewpoint (single viewpoint). This

makes object classification a challenging task.

Following the protocol employed by the dataset authors,

we report the mean F1 score weighted by class frequency, as

the dataset is imbalanced. This score is further aggregated

over four standard training/testing splits.

Network Configuration. Our ECC-network has 7

parametric layers and 4 levels of graph resolution. Its con-

figuration can be described as C(16)-C(32)-MP(0.25,0.5)-

C(32)-C(32)-MP(0.75,1.5)-C(64)-MP(1.5,1.5)-GAP-

FC(64)-D(0.2)-FC(14), where C(c) denotes ECC with c
output channels followed by affine batch normalization and

ReLU activation, MP(r,ρ) stands for max-pooling down

to grid resolution of r meters and neighborhood radius of
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Model Mean F1

Triangle+SVM [9] 67.1

GFH+SVM [7] 71.0

VoxNet [25] 73.0

ORION [1] 77.8

ECC 2ρ 74.4

ECC 1.5ρ 76.9

ECC 78.4

Table 1. Mean F1 score weighted by class frequency on Sydney

Urban Objects dataset [9]. Only the best-performing models of

each baseline are listed.

ρ meters, GAP is global average pooling, FC(c) is fully-

connected layer with c output channels, and D(p) is dropout

with probability p. The filter-generating networks F l have

configuration FC(16)-FC(32)-FC(dldl−1) with orthogonal

weight initialization [32] and ReLUs in between. Input

graphs are created with r0 = 0.1 and ρ0 = 0.2 meters to

break overly dense point clusters. Networks are trained

with SGD and cross-entropy loss for 250 epochs with batch

size 32 and learning rate 0.1 step-wise decreasing after 200

and 245 epochs. Vertex signal X0 is scalar laser return

intensity (0-255), representing depth.

Results. Table 1 compares our result (ECC, 78.4) against

two methods based on volumetric CNNs evaluated on vox-

elized occupancy grids of size 32x32x32 (VoxNet [25] 73.0

and ORION [1] 77.8), which we outperform by a small mar-

gin and set the new state of the art result on this dataset.

In the same table, we also study the dependence on con-

volution radii ρ: increasing them 1.5× or 2× in all convo-

lutional layers leads to a drop in performance, which would

correspond to a preference of using smaller filters in regular

CNNs. The average neighborhood size is roughly 10 ver-

tices for our best-performing network. We hypothesize that

larger radii smooth out the information in the central vertex.

To investigate this, we increased the importance of the self-

connection by reformulating Equation 1 so that Θl
iiX

l−1(i)
is not normalized by 1/|N(i)| and retrained the networks.

This made our models ECC, ECC 1.5ρ, and ECC 2ρ per-

form roughly equally but worse than the original best model

(76.1, 76, 75.4 respectively), which indeed suggests that in-

formation should be aggregated neither too much nor too

little.

4.2. ModelNet

ModelNet [39] is a large scale collection of object

meshes. We evaluate classification performance on its sub-

sets ModelNet10 (3991/908 train/test examples in 10 cat-

egories) and ModelNet40 (9843/2468 train/test examples

in 40 categories). Synthetic point clouds are created from

Figure 4. Illustrative samples of the majority of classes in Sydney

Urban Objects dataset, reproduced from [9].

meshes by uniformly sampling 1000 points on mesh faces

according to face area (a simulation of acquisition from

multiple viewpoints) and rescaled into a unit sphere.

Network Configuration. Our ECC-network for Model-

Net10 has 7 parametric layers and 3 levels of graph reso-

lution with configuration C(16)-C(32)-MP(2.5/32,7.5/32)-

C(32)-C(32)-MP(7.5/32,22.5/32)-C(64)-GMP-FC(64)-

D(0.2)-FC(10), GAP being global max pooling. Other

definitions and filter-generating networks F l are as in

Section 4.1. Input graphs are created with r0 = 1/32 and

ρ0 = 2/32 units, mimicking the typical grid resolution of

323 in voxel-based methods. The network is trained with

SGD and cross-entropy loss for 175 epochs with batch

size 64 and learning rate 0.1 step-wise decreasing after

every 50 epochs. There is no vertex signal, i.e. X0 are

zero. For ModelNet40, the network is wider (C(24), C(48),

C(48), C(48), C(96), FC(64), FC(40)) and is trained for 100

epochs with learning rate decreasing after each 30 epochs.

Results. Table 2 compares our result to several recent

works, based either on volumetric [39, 25, 1, 29] or ren-

dered image representation [37]. Test sets were expanded

to include 12 orientations (ECC). We also evaluate voting

over orientations (ECC 12 votes), which slightly improves

the results likely due to the rotational variance of VoxelGrid

algorithm. While not fully reaching the state of the art, we

believe our method remains very competitive (90.8%, resp.

87.4% mean instance accuracy). For a fairer comparison, a

leading volumetric method should be retrained on voxelized

synthetic point clouds.

4.3. Graph Classification

We evaluate on a graph classification benchmark fre-

quently used in the community, consisting of five datasets:

NCI1, NCI109, MUTAG, ENZYMES, and D&D. Their

properties can be found in Table 3, indicating the variabil-

ity in dataset sizes, in graph sizes, and in the availability of

labels. Following [34], we perform 10-fold cross-validation
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Model ModelNet10 ModelNet40

3DShapeNets [39] 83.5 77.3

MVCNN [37] — 90.1

VoxNet [25] 92 83

ORION [1] 93.8 —

SubvolumeSup [29] — 86.0 (89.2)

ECC 89.3 (90.0) 82.4 (87.0)

ECC (12 votes) 90.0 (90.8) 83.2 (87.4)

Table 2. Mean class accuracy (resp. mean instance accuracy) on

ModelNets [39]. Only the best models of each baseline are listed.

with 9 folds for training and 1 for testing and report the av-

erage prediction accuracy.

NCI1 and NCI109 [38] consist of graph representations

of chemical compounds screened for activity against non-

small cell lung cancer and ovarian cancer cell lines, respec-

tively. MUTAG [10] is a dataset of nitro compounds labeled

according to whether or not they have a mutagenic effect

on a bacterium. ENZYMES [4] contains representations

of tertiary structure of 6 classes of enzymes. D&D [12] is

a database of protein structures (vertices are amino acids,

edges indicate spatial closeness) classified as enzymes and

non-enzymes.

Network Configuration. Our ECC-network for NCI1

has 8 parametric layers and 3 levels of graph resolution. Its

configuration can be described as C(48)-C(48)-C(48)-MP-

C(48)-C(64)-MP-C(64)-GAP-FC(64)-D(0.1)-FC(2), where

C(c) denotes ECC with c output channels followed by affine

batch normalization, ReLU activation and dropout (prob-

ability 0.05), MP stands for max-pooling onto a coarser

graph, GAP is global average pooling, FC(c) is fully-

connected layer with c output channels, and D(p) is dropout

with probability p. The filter-generating networks F l have

configuration FC(64)-FC(dldl−1) with orthogonal weight

initialization [32] and ReLU in between. Labels are en-

coded as one-hot vectors (d0 = 37 and s = 4 due to an

extra label for self-connections). Networks are trained with

SGD and cross-entropy loss for 50 epochs with batch size

64 and learning rate 0.1 step-wise decreasing after 25, 35,

and 45 epochs. The dataset is expanded five times by ran-

domized sparsification (Section 3.5). Small deviations from

this description for the other four datasets are mentioned in

the supplementary.

Baselines. We compare our method (ECC) to the state

of the art Weisfeiler-Lehman graph kernel et al. [34] and

to four approaches using deep learning as at least one of

their components [2, 27, 40, 8]. Randomized sparsifica-

tion used during training time can also be exploited at test

time, when the network prediction scores (ECC-5-scores)

NCI1 NCI109 MUTAG ENZYMES D&D

# graphs 4110 4127 188 600 1178

mean |V | 29.87 29.68 17.93 32.63 284.32

mean |E| 32.3 32.13 19.79 62.14 715.66

# classes 2 2 2 6 2

# vertex labels 37 38 7 3 82

# edge labels 3 3 11 — —

Table 3. Characteristics of the graph benchmark datasets, ex-

tended from [8]. Both edge and vertex labels are categorical.

Model NCI1 NCI109 MUTAG ENZYMES D&D

DCNN [2] 62.61 62.86 66.98 18.10 —

PSCN [27] 78.59 — 92.63 — 77.12
Deep WL [40] 80.31 80.32 87.44 53.43 —

structure2vec [8] 83.72 82.16 88.28 61.10 82.22
WL [34] 84.55 84.49 83.78 59.05 79.78

ECC (no edge labels) 76.82 75.03 76.11 45.67 72.54
ECC 83.80 81.87 89.44 50.00 73.65

ECC (5 votes) 83.63 82.04 88.33 53.50 73.68
ECC (5 scores) 83.80 82.14 88.33 52.67 74.10

Table 4. Mean accuracy (10 folds) on graph classification datasets.

Only the best-performing models of each baseline are listed.

or votes (ECC-5-votes) are averaged over 5 runs. To judge

the influence of edge labels, we run our method with uni-

form labels and F l being a single layer FC(dldl−1) without

bias2 (ECC no edge labels).

Results. Table 4 conveys that while there is no clear win-

ning algorithm, our method performs at the level of state

of the art for edge-labeled datasets (NCI1, NCI109, MU-

TAG). The results demonstrate the importance of exploiting

edge labels for convolution-based methods, as the perfor-

mance of DCNN [2] and ECC without edge labels is dis-

tinctly worse, justifying the motivation behind this paper.

Averaging over random sparsifications at test time improves

accuracy by a small amount. Our results on datasets with-

out edge labels (ENZYMES, D&D) are somewhat below

the state of the art but still at a reasonable level, though im-

provement in this case was not the aim of this work. This

indicates that further research is needed into the adaptation

of CNNs to general graphs. A more detailed discussion for

each dataset is available in the supplementary.

4.4. MNIST

To further validate our method, we applied it to the

MNIST classification problem [22], a dataset of 70k

greyscale images of handwritten digits represented on a 2D

grid of size 28×28. We regard each image I as point cloud

2Also possible for unlabeled ENZYMES and D&D, since our method

uses labels from Kron reduction for all coarsened graphs by default.
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P with points pi = (x, y, 0) and signal X0(i) = I(x, y)
representing each pixel, x, y ∈ {0, .., 27}. Edge labeling

and graph coarsening is performed as explained in Sec-

tion 3.4. We are mainly interested in two questions: Is ECC

able to reach the standard performance on this classic base-

line? What kind of representation does it learn?

Network Configuration. Our ECC-network has 5 para-

metric layers with configuration C(16)-MP(2,3.4)-C(32)-

MP(4,6.8)-C(64)-MP(8,30)-C(128)-D(0.5)-FC(10); the no-

tation and filter-generating network being as in Section 4.1.

The last convolution has a stride of 30 and thus maps all

4× 4 points to only a single point. Input graphs are created

with r0 = 1 and ρ0 = 2.9. This model exactly corresponds

to a regular CNN with three convolutions with filters of size

5×5, 3×3, and 3×3 interlaced with max-poolings of size

2×2, finished with two fully connected layers. Networks

are trained with SGD and cross-entropy loss for 20 epochs

with batch size 64 and learning rate 0.01 step-wise decreas-

ing after 10 and 15 epochs.

Results. Table 5 proves that our ECC network can achieve

the level of quality comparable to the good standard in the

community (99.14). This is exactly the same accuracy as

reported by Defferrard et al. [11] and better than what is

offered by other spectral-based approaches (98.2 [6], 94.96

[15]). Note that we are not aiming at becoming the state of

the art on MNIST by this work.

Next, we investigate the effect of regular grid and ir-

regular mesh. To this end, we discard all black points

(X0(i) = 0) from the point clouds, corresponding to 80.9%

of data, and retrain the network (ECC sparse input). Ex-

actly the same test performance is obtained (99.14), indi-

cating that our method is very stable with respect to graph

structure changing from sample to sample.

Furthermore, we check the quality of the learned filter

generating networks F l. We compare with ECC configured

to mimic regular convolution using single-layer filter net-

works and one-hot encoding of offsets (ECC one-hot), as

described in Section 3.2. This configuration reaches 99.37

accuracy, or 0.23 more than ECC, implying that F l are not

perfect but still perform very well in learning the proper

partitioning of edge labels.

Last, we explore the generated filters visually for the

case of the sparse input ECC. As filters Θ1 ∈ R
16×1 are

a continuous function of an edge label, we can visualize the

change of values in each dimension in 16 images by sam-

pling labels over grids of two resolutions. The coarser one

in Figure 5 has integer steps corresponding to the offsets

δx, δy ∈ {−2, .., 2}. It shows filters exhibiting the struc-

tured patterns typically found in the first layer of CNNs.

The finer resolution in Figure 5 (sub-pixel steps of 0.1) re-

veals that the filters are in fact smooth and do not contain

Model Train accuracy Test accuracy

ECC 99.12 99.14

ECC (sparse input) 99.36 99.14

ECC (one-hot) 99.53 99.37

Table 5. Accuracy on MNIST dataset [22].

Figure 5. Convolutional filters learned on MNIST in the first layer

for sparse input ECC, sampled in two different resolutions. See

Section 4.4 for details.

any discontinuities apart from the angular artifact due to the

2π periodicity of azimuth. Interestingly, the artifact is not

distinct in all filters, suggesting the network may learn to

overcome it if necessary.

5. Conclusion

We have introduced edge-conditioned convolution

(ECC), an operation on graph signal performed in the spa-

tial domain where filter weights are conditioned on edge

labels and dynamically generated for each specific input

sample. We have shown that our formulation generalizes

the standard convolution on graphs if edge labels are cho-

sen properly and experimentally validated this assertion on

MNIST. We applied our approach to point cloud classifi-

cation in a novel way, setting a new state of the art per-

formance on Sydney dataset. Furthermore, we have out-

performed other deep learning-based approaches on graph

classification dataset NCI1.

In feature work we would like to handle meshes as

graphs instead of point clouds. Moreover, we plan to ad-

dress the currently higher level of GPU memory consump-

tion in case of large graphs with continuous edge labels, for

example by randomized clustering, which could also serve

as additional regularization through data augmentation.
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