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Abstract

We introduce a geometry-driven approach for real-time

3D reconstruction of deforming surfaces from a single

RGB-D stream without any templates or shape priors. To

this end, we tackle the problem of non-rigid registration by

level set evolution without explicit correspondence search.

Given a pair of signed distance fields (SDFs) representing

the shapes of interest, we estimate a dense deformation field

that aligns them. It is defined as a displacement vector field

of the same resolution as the SDFs and is determined iter-

atively via variational minimization. To ensure it generates

plausible shapes, we propose a novel regularizer that im-

poses local rigidity by requiring the deformation to be a

smooth and approximately Killing vector field, i.e. generat-

ing nearly isometric motions. Moreover, we enforce that the

level set property of unity gradient magnitude is preserved

over iterations. As a result, KillingFusion reliably recon-

structs objects that are undergoing topological changes and

fast inter-frame motion. In addition to incrementally build-

ing a model from scratch, our system can also deform com-

plete surfaces. We demonstrate these capabilities on several

public datasets and introduce our own sequences that per-

mit both qualitative and quantitative comparison to related

approaches.

1. Introduction

The growing markets of virtual and augmented reality,

combined with the wide availability of inexpensive RGB-

D sensors, are perpetually increasing the demand for vari-

ous applications capable of capturing the user environment

in real time. While many excellent solutions for the recon-

struction of static scenes exist [5, 12, 23, 31, 33, 34, 43, 54],

the more common real-life scenario - where objects move

and interact non-rigidly - is still posing a challenge.

The difficulty stems from the high number of unknown

parameters and the inherent ambiguity of the problem, since

various deformations can yield the same shape. These is-

sues can be alleviated through additional constraints, thus

solutions for multi-view surface tracking [4, 8, 9, 10, 18,

22, 50] and template-based approaches [1, 28, 57] have been
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Figure 1. Non-rigid reconstruction from a single noisy Kinect

depth stream: KillingFusion builds a complete model under large

deformations, rapid inter-frame motion and topology changes.

developed. DynamicFusion [32] is the pioneering work that

addresses the general case of incrementally building a 3D

model from a single Kinect stream in real time, which is

also the objective of our work. VolumeDeform [20] tackles

the same problem, combining depth-based correspondences

with SIFT features to increase robustness to drift. While

both systems demonstrate results of impressive visual qual-

ity, they may suffer under larger inter-frame motion due to

the underlying mesh-based correspondence estimation.

Many recent works on deformable 3D reconstruction use

a signed distance field (SDF) to accumulate the recovered

geometry [10, 20, 32], benefiting from its ability to smooth

out errors in the cumulative model [7]. However, they inter-

mittently revert back to a mesh representation in order to de-

termine correspondences for non-rigid alignment [20, 32],

thereby losing accuracy, computational speed and the capa-

bility to conveniently capture topological changes. On the

other hand, an SDF inherently tackles situations when sur-

faces are merging or splitting, e.g. a man puts hands on his

hips or takes his hat off (Fig. 1, 2), a dog bites its tail, etc.

In this paper we propose a non-rigid reconstruction

pipeline where the deformation field, the data explanation

and regularization are operating on a single shape repre-

sentation: the SDF. We formulate the problem of interest

as building a 3D model in its canonical pose by estimating

a 3D deformation field from each new depth frame to the

global model and subsequently fusing its data. To this end,

we incrementally evolve the projective SDF of the current

frame towards the target SDF following a variational frame-

work. The main energy component is a data term which
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Figure 2. Warped live frames from two-object topological changes.

aligns the current frame to the cumulative model by mini-

mizing their voxel-wise difference of signed distances - thus

without explicit correspondence search and suitable for par-

allelization. In order to handle noise and missing data, we

impose smoothness both on the deformation field and on

the SDFs, and require a certain level of rigidity. This is

done by enforcing the deformation field to be approximately

Killing [3, 41, 46] so that it generates locally nearly isomet-

ric motions - in analogy to as-rigid-as-possible constraints

on meshes [42]. Furthermore, we ensure that the SDF evo-

lution is geometrically correct by conserving the level set

property of unity gradient magnitude [26, 35].

To sum up, we contribute a novel variational non-rigid

3D reconstruction system that handles topological changes

inherently and circumvents expensive correspondence esti-

mation. Due to the generality of the representation, it can be

directly applied to evolving complete meshed models. Last

but not least, we propose a methodology for quantifying re-

construction error from a single RGB-D stream.1

2. Related Work

Here we discuss existing approaches on level set evolu-

tion, vector field estimation and deformable surface track-

ing in RGB-D data, identifying their limitations in the con-

text of our problem of interest and suggesting remedies.

Level set methods Deformable reconstruction systems

commonly rely on meshes for correspondence estimation,

making them highly susceptible to errors under larger de-

formations or topology changes [24]. On the contrary,

level sets inherently handle such cases [35]. They have

been used for surface manipulation and animation in graph-

ics [6, 14, 47, 53] where models are complete and noise-

free, while our goal is incremental reconstruction from

noisy partial scans. In medical imaging, where high fidelity

shape priors for various organs are available [13, 16], level

set methods have been applied to segmentation [2, 17] and

registration [25, 30], usually guided by analytically defined

evolution equations [36]. However, as we have no template

or prior knowledge of the scene, we propose an energy that

is driven by the geometry of the SDF and deformation field.

In computer vision, Paragios et al. [37] use distance

functions for non-rigid registration driven by a vector field,

1Our data is publicly available at http://campar.in.tum.de/

personal/slavcheva/deformable-dataset/index.html.

but are limited to synthetic 2D examples. Fujirawa et

al. [15] discuss extensions of their locally rigid globally

non-rigid registration to 3D, but demonstrate only few tests

on full surfaces. Instead, we define the energy in 3D and

impose rigidity constraints so that 2.5D scans can be fused

together from scratch.

Scene flow Determining a vector field that warps 2.5D/3D

frames is the objective of works on scene flow [19, 21, 39,

48, 51, 52]. They are typically variational in nature, com-

bining a data alignment term with a smoothness term that

ensures that nearby points undergo similar motion. How-

ever, this is not sufficient for incremental reconstruction

where new frames exhibit previously unseen geometry that

has to be overlaid on the model in a geometrically consis-

tent fashion. This is why we include another rigidity prior

that requires the field to be approximately Killing - gener-

ating nearly isometric motions [3, 41, 46]. In this way we

conveniently impose local rigidity through the deformation

field, without need for a control grid as in embedded defor-

mation [44] and as-rigid-as-possible modelling [42].

Multiview and template-based surface tracking Exter-

nal constraints help to alleviate the highly unconstrained na-

ture of non-rigid registration. The system of Zollhöfer et

al. [57] deforms a template to incoming depth frames in real

time, but requires the subject to stay absolutely still during

the template generation, which cannot be guaranteed when

scanning animals or kids. Multi-camera setups are another

way to avoid the challenging task of incrementally building

a model. Fusion4D [10] recently demonstrated a power-

ful real-time performance capture system using 24 cameras

and multiple GPUs, which is a setup not available to the

general user. Moreover, Section 8 of [10] states that even

though Fusion4D deals with certain topology changes, the

algorithm does not address the problem intrinsically.

Incremental non-rigid reconstruction from a single

RGB-D stream The convenience of using a single sensor

makes incremental model generation highly desirable. Dou

et al. [11] proposed a pipeline that achieves impressive qual-

ity thanks to a novel non-rigid bundle adjustment, which

may last up to 9-10 hours. DynamicFusion [32] was the

first approach to simultaneously reconstruct and track the

surface motion in real time. VolumeDeform [20] extended

the method, combining dense depth-based correspondences

with matching of sparse SIFT features across all frames in

order to reduce drift and handle tangential motion in scenes

of poor geometry. While both works demonstrate com-

pelling results, the shown examples suggest that only rel-

atively controlled motion can be recovered. We aim to uti-

lize the properties of distance fields in order to achieve full

evolution under free general motion.
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3. Preliminaries

In the following we define our mathematical notation and

outline the non-rigid reconstruction pipeline.

3.1. Notation

Our base representation is a signed distance field (SDF),

which assigns to each point in space the signed distance to

its closest surface location. One of its characteristic geo-

metric properties is that its gradient magnitude equals unity

everywhere where it is differentiable [35]. It is widely used

since it can be easily converted to a mesh via marching

cubes [29] - the surface is the zero-valued interface between

the negative inside and positive outside.

SDF generation is done in a pre-defined volume of phys-

ical space, discretized into voxels of a chosen side length.

The function φ : N3 7→ R maps grid indices (x, y, z) to the

signed distance calculated from the center of the respective

voxel. We follow the usual creation process [40, 56], where

additionally a confidence weight counting the number of

observations is associated with each voxel. We also apply

the standard practice of truncating the signed distances. In

our case, voxels further than 10 voxels away from the sur-

face are clamped to ±1. This also serves the purpose of a

narrow-band technique, as we only estimate the deforma-

tion field over the near-surface non-truncated voxels.

In the given discrete setting, all points in space that be-

long to a certain voxel obtain the same properties. Thus an

index (x, y, z) ∈ N
3 refers to the whole voxel.

Our goal is to determine a vector field Ψ: N3 7→ R
3

that aligns a pair of SDFs. It assigns a displacement vector

(u, v, w) to each voxel (x, y, z). This formulation is similar

to VolumeDeform [20] where the deformation field is of the

same resolution as the cumulative SDF, while DynamicFu-

sion [32] only has a coarse sparse control grid. However,

both require a 6D motion to be estimated per grid point,

while a 3D flow field is sufficient in our case due to the

dense smooth nature of the SDF representation and the use

of alignment constraints directly over the field. Moreover,

this makes the optimization process less demanding.

3.2. Rigid Component of the Motion

Although the whole motion from target to reference can

be estimated as a deformation, singling out the rigid part of

the motion serves as a better initialization. The deformation

field is initialized from the previous frame, so we determine

frame-to-frame rigid camera motion. We use the SDF-2-

SDF registration energy [40] which registers pairs of voxel

grids by direct minimization. We prefer this over ICP where

the search for point correspondences can be highly erro-

neous under larger deformation. Nevertheless, any robust

rigid registration algorithm of choice can be used instead.

3.3. Overview

We accumulate the model φglobal in its canonical

pose via the weighted averaging scheme of Curless and

Levoy [7]. Given a new depth frame Dn, we register it

to the previous one and obtain an estimate of its pose rel-

ative to the global model. Next, we generate a projective

SDF φn from this pose. The remaining task is to estimate

the deformation field Ψ which will best align φglobal and

φn(Ψ), explained in detail in the next section. The field is

estimated iteratively and after each step the increment is ap-

plied on φn, updating its values using trilinear interpolation.

Once the minimization process converges, we fuse the fully

deformed φn(Ψ) into the model via weighted averaging.

The choice to deform the live frame towards the canon-

ical model and not vice versa is based on multiple reasons.

On the one hand, this setting is easier for data fusion into the

cumulative model. On the other hand, the global SDF has

achieved a certain level of regularity after sufficiently many

frames have been fused, while a single Kinect depth image

is inevitably noisy. Thus, if the model is deformed towards

the live frame without imposing enough rigidity, there is a

high risk that it would grow into the sensor noise.

4. Non-rigid Reconstruction

In this section we describe our model for determining the

vector field Ψ that aligns φn(Ψ) with φglobal.

4.1. Energy

Our level-set-based, and thus correspondence-free, non-

rigid registration energy is defined as follows:

E non
rigid

(Ψ) = Edata(Ψ) + ωkEKilling(Ψ) + ωsElevel
set

(Ψ) . (1)

It consists of a data term and two regularizers whose influ-

ence is controlled by the factors ωk and ωs.

Data term The main component of our energy follows

the reasoning that under perfect alignment, the deformed

SDF and the cumulative one would have the same signed

distance values everywhere in 3D space. Therefore the flow

vector (u, v, w) applied at each voxel (x, y, z) of the current

frame’s SDF φn will align it with φglobal. For brevity we

omit the dependence of u, v, w on location:

Edata(Ψ) =
1

2

∑

x,y,z

(

φn(x+ u, y + v, z + w)−

−φglobal(x, y, z)
)2

.

(2)

Motion regularization To prevent uncontrolled deforma-

tions, e.g. in case of spurious artifacts caused by sensor

noise, we impose rigidity over the motion. Existing ap-

proaches typically employ an as-rigid-as-possible [42] or an

1388



embedded deformation [44] regularization, which ensures

that the vertices of a latent control graph move in an approx-

imately rigid manner. We take a rather different strategy and

impose local rigidity directly through the deformation field.

A 3D flow field generating an isometric motion is called

a Killing vector field [3, 41, 46], named after the mathe-

matician Wilhelm Killing. It satisfies the Killing condition

JΨ + J⊤

Ψ = 0, where JΨ is the Jacobian of Ψ.

A Killing field is divergence-free, i.e. it is volume-

preserving, but does not regularize angular motion. A field

which generates only nearly isometric motion and thus bal-

ances both volume and angular distortion is an approxi-

mately Killing vector field (AKVF) [41]. It minimizes the

Frobenius norm of the Killing condition:

EAKVF(Ψ) =
1

2

∑

x,y,z

||JΨ + J⊤

Ψ ||2F . (3)

However, as we are handling deforming objects, this

constraint might be too restrictive. Thus, we propose to

damp the Killing condition. In order to do so, we rewrite

Eq. 3 using the column-wise stacking operator vec(·):

EAKVF(Ψ) =
1

2

∑

x,y,z

vec(JΨ + J⊤

Ψ )⊤vec(JΨ + J⊤

Ψ ) =

=
∑

x,y,z

vec(JΨ)
⊤vec(JΨ) + vec(J⊤

Ψ )⊤vec(JΨ) .
(4)

Next, we notice that the first term can be written as:

vec(JΨ)
⊤vec(JΨ) = |∇u|2 + |∇v|2 + |∇w|2 , (5)

which is the typical motion smoothness regularizer used in

scene and optical flow [19, 45, 52]. It only encourages that

nearby points move in a similar manner, but does not ex-

plicitly impose rigid motion. Based on this observation, we

devise the damped Killing regularizer

EKilling(Ψ) =

=
∑

x,y,z

(

vec(JΨ)
⊤vec(JΨ) + γvec(J⊤

Ψ )⊤vec(JΨ)
)

, (6)

where γ controls the trade-off between Killing property and

volume distortion penalization, so that non-rigid motions

can also be recovered. A value of γ = 1 corresponds to the

pure Killing condition. We refer the interested reader to the

supplementary material for a more detailed derivation.

Level set property To ensure geometric correctness dur-

ing the evolution of φn, the property that the gradient mag-

nitude in the non-truncated regions of an SDF is unity has

to be conserved [35]:

Elevel
set

(Ψ) =
1

2

∑

x,y,z

(

|∇φn(x+u, y+v, z+w)|−1
)2

. (7)

It is important to note that a subsequent work of the same

authors proposes an improved regularizer for maintaining

the level set property [27]. However, it is only useful when

the function to be evolved is initialized with a piecewise

constant function, and not a signed distance one. As we

are initializing φn with an SDF, the regularizer of Eq. 7 is

absolutely sufficient for the considered application.

4.2. Energy Minimization

One of the main benefits of our energy formulations is

that it can be applied to each voxel independently, as each

term only contains values of the current estimates for the de-

formation field and SDFs or their derivatives. Therefore the

displacement vector updates can be computed in parallel.

We follow a gradient descent scheme. It is variational

since Ψ is a function of coordinates in space. Only final

results of the Euler-Lagrange equations are presented here,

with full derivations given in the supplementary material.

We separate the 3D vector field Ψ into its spatial com-

ponents, each of which is a scalar field. This allows us to

calculate partial derivatives of the energy terms in each spa-

tial direction and to combine them into vectors in order to

execute the gradient descent steps.

To ease notation, we will no longer specify summation

over voxel indices. Further, we will write φ(Ψ) instead of

φ(x+u, y+v, z+w) to refer to the value of φ after the de-

formation field has been applied. Note that the summation

of integer- and real-valued indices is not problematic, since

interpolation is done after every step. We thus obtain the

following derivatives with respect to the deformation field:

E′

data(Ψ) =
(

φn(Ψ)− φglobal

)

∇φn(Ψ) , (8)

E′

Killing(Ψ) = 2Huvw

(

vec(J⊤

Ψ ) vec(JΨ)

)(

1
γ

)

, (9)

E′

level
set

(Ψ) =
|∇φn(Ψ)| − 1

|∇φn(Ψ)|ǫ
Hφn(Ψ) ∇φn(Ψ) . (10)

Here ∇φn(Ψ) ∈ R
3×1 is the spatial gradient of the de-

formed SDF of frame number n and Hφn(Ψ) ∈ R
3×3 is its

Hessian matrix, composed of second-order partial deriva-

tives. Similarly, Huvw =
(

Hu Hv Hw

)

is a 3 × 9 ma-

trix consisting of the 3 × 3 Hessians of each component of

the deformation field. To avoid division by zero we use | · |ǫ,
which equals the norm plus a small constant ǫ = 10−5.

Finally, we obtain the new state of the deformation field

Ψk+1 as a gradient descent step of size α starting from Ψk:

Ψk+1 = Ψk − α E′
non
rigid

(Ψk) . (11)

The field of each incoming frame is initialized with that of

the previous frame. Naturally, for the very first frame the

initial state is without deformation. Registration is termi-

nated when the magnitude of the maximum vector update

in Ψ falls below a threshold of 0.1 mm.
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Current reconstruction warped into the live frame Final canonical model
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Figure 3. Comparison under topological changes. Our level-set-based KillingFusion fully evolves into the correct geometric shape between

frames, while VolumeDeform [20] does so only partially (3rd and 5th live frames), which is reflected as artifacts in the final reconstruction.

4.3. Implementation Details

Equations 8-10 are highly suitable for parallelization as

the update for each voxel depends only on its immediate

neighbourhood. Thus we opted for a GPU implementation,

which we tested on an NVIDIA Quadro K2100M. It runs at

3-30 frames per second for all shown examples. In partic-

ular, it takes 33 ms for a grid consisting of approximately

803 voxels. Naturally, speed decreases with increasing grid

resolution. However, the slowdown is not cubic, since only

the near-surface voxels contribute for the deformation field

estimation, which typically constitute less than 10% of all.

5. Results

This section contains qualitative and quantitative evalu-

ation of the proposed non-rigid reconstruction framework.

The parameters were fixed as follows: gradient descent step

α = 0.1, damping factor for the Killing energy γ = 0.1,

weights for the motion and level set regularization respec-

tively ωk = 0.5, ωs = 0.2. The choice of values for ωs

and ωk not only balances their influence, but also acts as

normalization since signed distances are truncated to the in-

terval [−1; 1], while the deformation field contains vectors

spanning up to several voxels. We used a voxel size of 8 mm

for human-sized subjects and 4 mm for smaller-scale ones.

Changing topology and large inter-frame motion The

first experiments that we carried out focus on highlight-

ing the strengths of our KillingFusion compared to other

single-stream deformable reconstruction pipelines: chang-

ing topology and rapid motion between frames. To be able

to quantify results, we used mechanical toys that can both

deform and move autonomously. We first reconstructed

them in their static rest pose using a markerboard for exter-

nal ground-truth pose estimation. Then we recorded their

non-rigid movements starting from the rest pose, which lets

us evaluate the error in the canonical-pose reconstruction.

We shared our recordings with the authors of VolumeDe-

form [20], who kindly run the Frog, Duck and Snoopy se-

quences and gave us their final canonical-pose reconstruc-

tions and videos of the model warped onto the live images.

Figures 3 and 4 juxtapose our results. Note that the re-

constructions are partial because these objects do not com-

plete 360◦ loops. Both approaches perform well under

general motion. However, the third and fifth Frog live

frames demonstrate that VolumeDeform, as an example of a

method that determines mesh-based correspondences, does

not track topological changes. Similarly, the latter three

Snoopy live frames show that it cannot recover once a topo-

logical change occurs when the feet touch. Furthermore, the

rapid ear motion, making a full revolution from horizontal

to vertical position and back within 5 frames, cannot be cap-

tured and causes artifacts in the final reconstruction, while

our level-set based KillingFusion fully evolves the surface

even in such cases. Thus SDFs are better suited for over-

coming large inter-frame motion and changing topology.
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Current reconstruction warped into the live frame Canonical model Error
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Figure 4. Comparison of KillingFusion to VolumeDeform [20] under rapid motion and topological changes. Duck’s wings and Snoopy’s

ears make a complete up-down revolution within 5 frames, and Snoopy’s feet touch and separate several times. While a mesh-based method

does not handle such motions, our SDF-based approach fully captures the deformations. This is reflected in less artifacts and lower error in

the final model. Live frames are in chronological order, the objects do not complete 360◦ loops. Red is saturated at 1 cm in all error plots.

The last column of Figure 4 contains snapshots from

the evaluation of the canonical-pose outputs against the

groundtruth in CloudCompare2. Our models tend to be

less detailed than those of VolumeDeform due to the coarse

voxel resolution. However, we achieve higher geometric

consistency: our average errors are 3.5 mm on Snoopy and

3.9 mm on Duck, while those of VolumeDeform are 4.2 mm

and 5.4 mm respectively. Note that the voxel size we used

is 4 mm, indicating that our accuracy stays within its lim-

its. As expected, KillingFusion is closer to the groundtruth

model in the areas of fast motion, while VolumeDeform has

2CloudCompare - 3D Point Cloud and Mesh Processing Software,

http://www.danielgm.net/cc/.

er
ro

r:
4
.8

5
2

m
m

Figure 5. Canonical-pose result on a 360◦ sequence: KillingFusion

reconstructs a complete, geometrically consistent model.

accumulated artifacts there.

Finally, in Fig. 5 we scanned another object, which com-

pletes a full 360◦ loop while moving non-rigidly, in order to

demonstrate our capabilities to incrementally build a com-

plete water-tight model from scratch. The reconstruction er-

ror remained of the same order as for the partial view scans.
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Current warp into the live frame Final canonical model
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Figure 6. Comparison of our depth-only KillingFusion to Vol-

umeDeform [20] which additionally relies on the color frames for

SIFT matching: our reconstructions are of comparable fidelity.

In particular, our canonical model exhibits less artifacts where

larger motion occurred, e.g. around the neck which bends over

90
◦. Moreover, our live frames show that KillingFusion follows

the folds of the neck more naturally (see marked regions).

Public single-stream RGB-D datasets Next, we tested

KillingFusion on the datasets used in related single-stream

non-rigid reconstruction works. We chose the sequences

that we identify as most challenging, i.e. exhibiting large

deformations and completing a full loop in front of the cam-

era, where available.

First, we tested KillingFusion on data from the Vol-

umeDeform publication [20]. The authors have also made

publicly available their canonical-pose and warped recon-

structions for every 100th frame. The comparison in Fig-

ure 6 shows that KillingFusion achieves similar quality. No-

tably, the second warped frame demonstrates that our SDFs

deform to the geometry more naturally: our warped model

replicates the skin folding around the neck, while the model

of VolumeDeform does not bend further than a certain ex-

tent, causing artifacts in the final reconstruction as well.

This is similar to the behaviour we observed on our own

rapid motion recordings. In conclusion, another dataset also

indicates that level set evolution allows to capture larger

motion better than mesh-based techniques.

Next, we run KillingFusion on 360◦ sequences used in

Dou et al.’s offline non-rigid bundle adjustment paper [11]

and DynamicFusion [32]. As we do not have the authors’

resulting meshes, we show snapshots available from the

publications. KillingFusion manages to recover a complete

model of comparable fidelity to the other techniques. In

particular, despite the coarse voxel resolution, it preserves

fine-scale details such as noses, ears and folds on shirts after

a full loop around the subject.
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Figure 7. Comparison to the offline bundle adjustment method of

Dou et al. [11]: our KillingFusion achieves similar quality at real

time, preserving fine structures, such as shirt folds and the nose,

after a full loop around the subject.
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Figure 8. KillingFusion result on the full-loop Squeeze se-

quence from DynamicFusion [32], showing front and back of the

canonical-pose reconstruction.

(a) all terms (b) ωs = 0 (c) ωk = 0 (d) γ = 0 (e) γ = 1

Figure 9. Evaluation of energy component effects. (a) Standard

parameter setting. (b) No level set property preservation. (c) No

motion regularization. (d) Conventional motion smoothness with-

out a Killing component. (e) Pure Killing condition.

Contributions of energy components In order to con-

firm that all regularizers from our non-rigid energy for-

mulation are essential, we studied their effects in Fig. 9.

The model is not smooth and fine artifacts, visible as small

holes, appear without the level set property (Fig. 9b), be-

cause it has been violated in places during the SDF evo-

lution. Without motion regularization (Fig. 9c), the mov-

ing parts of the object, such as the wings and head, get

destroyed as more frames are fused. In case of applying

standard motion smoothness, without enforcing divergence-

free Killing behaviour (Fig. 9d), the model is somewhat
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Figure 10. Non-rigid registration of complete 3D shapes from the MIT dataset [49]. Starting with an initial SDF, we gradually evolve it to

match every next model in the sequence. Each pair shows our reconstruction along with its corresponding error plot (scale same as before).

smoother, but in several regions the geometry between dif-

ferent frames is inconsistent, resulting in holes. Conversely,

if we do not damp the Killing condition (Fig. 9e) and thus

the energy steers towards completely rigid motion, the non-

rigidly moving wings almost vanish. We empirically deter-

mined favourable values for γ to be between 0.05 and 0.3.

Multiview mesh datasets To show the generality of our

SDF-based approach, we run KillingFusion on the MIT

multiview mesh dataset [49], as done by Zollhöfer et

al. [57]. It contains several sequences of 150-200 meshes,

fused from multiview captures around people who are ex-

ecuting movements with considerably large deformation.

Therefore it also permits another quantitative evaluation.

Figure 10 shows our reconstructions throughout the se-

quences, together with the alignment error indicating the

deviation from the ground truth. We started with an SDF

initialized from the first mesh and continuously evolve it to-

wards the SDF corresponding to every next frame. While

the error tends to slightly increase over time, the effects of

drift accumulation are not severe. The model error remains

below 2 mm throughout both sequences, with an average

of 1.3 mm in D bouncing and 0.9 mm in T swing. We in-

cluded one of the dancing girl sequences, as they are typi-

cally used in literature to demonstrate problems with topol-

ogy changes when the dress touches the legs [11] - but do

not cause a problem for KillingFusion. In particular, we no-

tice no larger artifacts near the dress edge than other areas

of the model. The biggest errors are, in fact, typically near

the hands of the subjects. This is because the used voxel

size of 8 mm does not always manage to recover fine struc-

tures like the fingers with absolute accuracy. Last but not

least, we noticed that if instead we deform the first SDF to

every frame, more iterations are required to converge, but

the errors do not change significantly.

6. Limitations and Future Work

The primary aim of our non-rigid reconstruction system

is to recover the 3D shape of the deforming object. As this

is done via level set evolution rather than by determining the

new position of each point, applications which require ex-

plicit point correspondences, such as texture mapping, fall

out of the scope of our approach. Thus we plan to inte-

grate backward tracking of point correspondences in level

sets [38] in order to open up further possibilities. More-

over, we plan to explore representing the flow field at a

coarser resolution grid using interpolation of radial basis

functions [55], so that a larger volume can be covered.

7. Conclusion

We have presented a novel framework for non-rigid 3D

reconstruction that inherently handles changing topology

and is able to capture rapid motion. Our lightweight en-

ergy formulation allows to determine dense deformation

flow field updates without correspondence search, based on

a combination of a newly introduced damped Killing mo-

tion constraint and level set validity regularization. A vari-

ety of qualitative and quantitative examples have shown that

KillingFusion can recover the geometry of objects undergo-

ing diverse kinds of deformations. We believe our contribu-

tion is a step forward towards making real-time recovery of

unconstrained motion truly available to the general user.
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S. Rusinkiewicz, and W. Matusik. Dynamic Shape Capture

Using Multi-view Photometric Stereo. ACM Transactions on

Graphics (TOG), 28(5), 2009. 1

[51] C. Vogel, K. Schindler, and S. Roth. Piecewise Rigid Scene

Flow. In IEEE International Conference on Computer Vision

(ICCV), 2013. 2

[52] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and

D. Cremers. Efficient Dense Scene Flow from Sparse or

Dense Stereo Data. In 10th European Conference on Com-

puter Vision (ECCV), 2008. 2, 4

[53] Y. Weng, M. Chai, W. Xu, Y. Tong, and K. Zhou. As-

Rigid-As-Possible Distance Field Metamorphosis. Com-

puter Graphics Forum (CGF), 32(7):381–389, 2013. 2

[54] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker,

and A. J. Davison. ElasticFusion: Dense SLAM Without A

Pose Graph. In Robotics: Science and Systems (RSS), 2015.

1

[55] X. Xie and M. Mirmehdi. Radial Basis Function Based Level

Set Interpolation and Evolution for Deformable Modelling.

Image and Vision Computing (IVC), 29(2-3):167–177, 2011.

8

[56] C. Zach, T. Pock, and H. Bischof. A Globally Optimal Al-

gorithm for Robust TV-L1 Range Image Integration. In Pro-

ceedings of the 11th IEEE International Conference on Com-

puter Vision (ICCV), pages 1–8, 2007. 3
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