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Abstract

What if we could effectively read the mind and transfer

human visual capabilities to computer vision methods? In

this paper, we aim at addressing this question by developing

the first visual object classifier driven by human brain sig-

nals. In particular, we employ EEG data evoked by visual

object stimuli combined with Recurrent Neural Networks

(RNN) to learn a discriminative brain activity manifold of

visual categories in a reading the mind effort. Afterward,

we transfer the learned capabilities to machines by training

a Convolutional Neural Network (CNN)–based regressor

to project images onto the learned manifold, thus allowing

machines to employ human brain–based features for auto-

mated visual classification. We use a 128-channel EEG with

active electrodes to record brain activity of several subjects

while looking at images of 40 ImageNet object classes. The

proposed RNN-based approach for discriminating object

classes using brain signals reaches an average accuracy of

about 83%, which greatly outperforms existing methods at-

tempting to learn EEG visual object representations. As for

automated object categorization, our human brain–driven

approach obtains competitive performance, comparable to

those achieved by powerful CNN models and it is also able

to generalize over different visual datasets.

1. Introduction

Humans show excellent performance, still unreachable by

machines, in interpreting visual scenes. Despite the recent

rediscovery of Convolutional Neural Networks has led to a

significant performance improvement in automated visual

classification, their generalization capabilities are not at the

human level, since they learn a discriminative feature space,

which strictly depends on the employed training dataset

rather than on more general principles. More specifically,

the first-layer features of a CNN appear to be generalizable

across different datasets, as they are similar to Gabor fil-

ters and color blobs, while the last-layer features are very

specific to a particular dataset or task. In humans, instead,

the process behind visual object recognition stands at the

interface between perception, i.e., how objects appear visu-

ally in terms of shape, colors, etc. (all features that can be

modeled with first CNN layers) and conception, which in-

volves higher cognitive processes that have never been ex-

ploited. Several cognitive neuroscience studies [12, 16, 17]

have investigated which parts of visual cortex and brain are

responsible for such cognitive processes, but, so far, there

is no clear solution. Of course, this reflects on the diffi-

culties of cognition-based automated methods to perform

visual tasks.

We argue that one possible solution is to act in a reverse

engineering manner, i.e., by analyzing human brain activ-

ity – recorded through neurophysiology (EEG/MEG) and

neuroimaging techniques (e.g., fMRI) – to identify the fea-

ture space employed by humans for visual classification.

In relation to this, it is has been acknowledged that brain

activity recordings contain information about visual object

categories [6, 26, 19, 4, 3, 10, 20]. Understanding EEG

data evoked by specific stimuli has been the goal of brain

computer interfaces (BCI) research for years. Nevertheless,

BCIs aim mainly at classifying or detecting specific brain

signals to allow direct-actuated control of machines for dis-

abled people. In this paper, we want to take a great leap for-

ward with respect to classic BCI approaches, i.e., we aim at

exploring a new and direct form of human involvement (a

new vision of the “human-based computation” strategy) for

automated visual classification. The underlying idea is to
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Figure 1. Examples of brain signals evoked by visual stimuli of two different ImageNet object classes.

learn a brain signal discriminative manifold of visual cat-

egories by classifying EEG signals - reading the mind -

and then to project images into such manifold to allow ma-

chines to perform automatic visual categorization - transfer

human visual capabilities to machines. The impact of de-

coding object category–related EEG signals for inclusion

into computer vision methods is tremendous. First, identi-

fying EEG-based discriminative features for visual catego-

rization might provide meaningful insight about the human

visual perception systems. As a consequence, it will greatly

advance performance of BCI-based applications as well as

enable a new form of brain-based image labeling. Second,

effectively projecting images into a new biologically based

manifold will change radically the way object classifiers are

developed (mainly in terms of feature extraction). Thus, the

contribution of this paper is threefold:

• We propose a deep learning approach to classify EEG

data evoked by visual object stimuli outperforming

state-of-the-art methods both in the number of tackled

object classes and in classification accuracy.

• We propose the first computer vision approach driven

by brain signals, i.e., the first automated classifica-

tion approach employing visual descriptors extracted

directly from human neural processes involved in vi-

sual scene analysis.

• We will publicly release the largest EEG dataset for

visual object analysis, with related source code and

trained models.

2. Related Work

The idea of reading the mind of people while perform-

ing specific tasks has been long investigated, especially for

building brain-computer interfaces. Most of BCI studies

have mainly performed binary EEG-data classification, i.e.,

presence of absence of a specific pattern, e.g., in [5] for

P300 detection or in [14] for seizure detection.

Recently, thanks to deep learning, other works have at-

tempted to investigate how to model more complex cogni-

tive events (e.g., cognitive load, audio stimuli, etc.) from

brain signals. For example, in [1], a combination of re-

current and convolutional neural networks was proposed to

learn EEG representations for cognitive load classification

task (reported classification accuracy is of about 90% over

four cognitive load levels). In [23], a similar approach,

using only CNNs, is proposed to learn to classify EEG-

recordings evoked by audio music with an accuracy of 28%

over 12 songs. These methods have proved the potential

of using brain signals and deep learning for classification,

but they tackle a small number of classification categories

(maximum twelve in [23]), and none of them are related to

visual scene understanding.

A number of cognitive neuroscience studies have

demonstrated (by identifying specific regions of visual cor-

tex) that up to a dozen of object categories can be decoded in

event-related potential (ERP) amplitudes recorded through

EEG [26, 4, 20]. However, such scientific evidence has not

been deeply exploited to build visual stimuli–evoked EEG

classifiers. Indeed, a very limited number of methods have

been developed [2, 11, 22, 10] (none of them using deep

learning) to address the problem of decoding visual object–
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Figure 2. Overview of the proposed approach. Top: a low-dimensional representation for temporal EEG signals recorded while users

looked at images is learned by the encoder module; the computed EEG features are employed to train an image classifier. Bottom: a

CNN is trained to estimate EEG features directly from images; then, the classifier trained in the previous stage can be used for automated

classification without the need of EEG data for new images.

related EEG data, and most of these methods were mainly

devised for binary classification (e.g., presence or absence

of a given object class). One of the most recent and com-

prehensive methods was proposed by Kaneshiro et al. in

[10], who trained a classifier able to distinguish EEG brain

signals evoked by twelve different object classes, with an

accuracy of about 29% and that represents, so far, the state-

of-art performance.

In this paper, we explore not only the capabilities of deep

learning in modeling visual stimuli–evoked EEG with more

object classes than state-of-the-art methods, but we also in-

vestigate how to project images into an EEG-based mani-

fold in order to allow machines to interpret visual scenes

automatically using features extracted according to human

brain processes. This, to the best of our knowledge, has not

been done before.

3. Method

The work described in this paper relies on three key in-

tuitions:

• EEG signals recorded while a subject looks at an im-

age convey feature-level and cognitive-level informa-

tion about the image content (a qualitative difference

between EEG signals evoked, on one subject, by vi-

sual stimuli of two different object classes is shown in

Fig. 1).

• A low-dimensional manifold within the multi-

dimensional and temporally-varying EEG signals ex-

ists and can be extracted to obtain a 1D representation

which we refer to as EEG features.

• EEG features are assumed to mainly encode visual

data, thus it is possible to extract the corresponding

image descriptors for automated classification.

These three ideas provide the design basis for the over-

all two-stage image classification architecture proposed in

this work and shown in Fig. 2. The first stage of our ap-

proach - the reading the mind phase - aims at identify-

ing a low-dimensional manifold within the two-dimensional

(channels and time) EEG space, such that the representation

within that manifold is discriminant over object classes. In

order to learn this representation, we employed EEG data

recorded while users looked at images on a screen. Then,

we trained an encoder network (implemented through re-

current neural networks – RNNs – for temporal analysis)
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Figure 3. Tested encoder architectures: a) common LSTM; b) channel LSTM + common LSTM; c) common LSTM + output layer.

Number of classes 40

Number of images per class 50

Total number of images 2000

Visualization order Sequential

Time for each image 0.5 s

Pause time between classes 10 s

Number of sessions 4

Session running time 350 s

Total running time 1400 s

Table 1. The parameters of the experimental protocol.

to extract EEG features from raw EEG signals; the training

process is supervised by the class of the images for which

each input EEG sequences were recorded, and a classifier

for EEG features is jointly trained in the process.

Of course, it is unreasonable to assume the availability

of EEG data for each image to be classified. Therefore, the

second stage of the method aims at extracting EEG features

directly from images - the transfer human visual capabili-

ties to machines phase - by learning a mapping from CNN

deep visual descriptors to EEG features (learned through

RNN encoder). After that, new images can be classified by

simply estimating their EEG features through the trained

CNN-based regressor and employ the stage-one classifier

to predict the corresponding image class.

3.1. EEG data acquisition

Six subjects (five male and one female) were shown vi-

sual stimuli of objects while EEG data was recorded. All

subjects were homogeneous in terms of age, education level

and cultural background and were evaluated by a profes-

sional physicist in order to exclude possible conditions (e.g.,

diseases) interfering with the acquisition process.

The dataset used for visual stimuli was a subset of Ima-

geNet [18], containing 40 classes of easily recognizable ob-

jects1. During the experiment, 2,000 images (50 from each

class) were shown in bursts for 0.5 seconds each. A burst

lasts for 25 seconds, followed by a 10-second pause where

a black image was shown for a total running time of 1,400

seconds (23 minutes and 20 seconds). A summary of the

adopted experimental paradigm is shown in Table 1.

The experiments were conducted using a 128-channel

cap with active, low-impedance electrodes (actiCAP

128Ch2). Brainvision3 DAQs and amplifiers were used for

the EEG data acquisition. Sampling frequency and data res-

olution were set, respectively, to 1000 Hz and 16 bits.

A notch filter (49-51 Hz) and a second-order band-pass

Butterworth filter (low cut-off frequency 14 Hz, high cut-off

frequency 71 Hz) were set up so that the recorded signal in-

cluded the Beta (15-31 Hz) and Gamma (32-70 Hz) bands,

as they convey information about the cognitive processes

involved in the visual perception [15].

From each recorded EEG sequence, the first 40 samples

1ImageNet classes used: dog, cat, butterfly, sorrel, capuchin, elephant,

panda, fish, airliner, broom, canoe, phone, mug, convertible, computer,

watch, guitar, locomotive, espresso, chair, golf, piano, iron, jack, mailbag,

missile, mitten, bike, tent, pajama, parachute, pool, radio, camera, gun,

shoe, banana, pizza, daisy and bolete (fungus)
2http://www.brainproducts.com/
3http://www.brainvision.com/

6812



(40 ms) for each image were discarded in order to exclude

any possible interference from the previously shown image

(i.e., to permit the stimulus to propagate from the retina

through the optical tract to the primary visual cortex [8]).

The following 440 samples (440 ms) were used for the

experiments. Data value distribution was centered around

zero, thus non-linear quantization was applied. By using the

protocol described above we acquired 12,000 (2,000 images

for 6 subjects) 128-channel EEG sequences. In the follow-

ing descriptions, we will refer to a generic input EEG se-

quence as s(c, t), where c (from 1 to 128) indexes a channel

and t (from 1 to 440) indexes a sample in time. We will also

use the symbol (·) to indicate “all values”, so s(·, t) repre-

sents the vector of all channel values at time t, and s(c, ·)
represents the whole set of time samples for channel c.

3.2. Learning EEG manifold

The first analysis aims at translating an input multi-

channel temporal EEG sequence into a low dimensional

feature vector summarizing the relevant content of the in-

put sequence. Previous approaches [10, 22] simply con-

catenate time sequences from multiple channels into a sin-

gle feature vector, ignoring temporal dynamics, which, in-

stead, contains fundamental information for EEG activity

understanding [10]. In order to include such dynamics in

our representation, we employ LSTM recurrent neural net-

works [9] because of their capability to track long-term de-

pendencies in the input data. The top half of Fig. 2 shows

the general architecture of our EEG manifold representation

model. The EEG multi-channel temporal signals, prepro-

cessed as described in Sect. 3.1, are provided as input to an

encoder module, which processes the whole time sequence

and outputs an EEG feature vector as a compact represen-

tation of the input. Ideally, if an input sequence consists of

the EEG signals recorded while looking at an image, our

objective is to have the resulting output vector encode rel-

evant brain activity information for discriminating different

image classes. The encoder network is trained by adding,

at its output, a classification module (in all our experiments,

it will be a softmax layer), and using gradient descent to

learn the whole model’s parameters end-to-end. In our ex-

periments, we tested several configurations of the encoder

network:

• Common LSTM (Fig. 3a): the encoder network is

made up of a stack of LSTM layers. At each time step

t, the first layer takes the input s(·, t) (in this sense,

“common” means that all EEG channels are initially

fed into the same LSTM layer); if other LSTM lay-

ers are present, the output of the first layer (which may

have a different size than the original input) is provided

as input to the second layer and so on. The output of

the deepest LSTM layer at the last time step is used

as the EEG feature representation for the whole input

sequence.

• Channel LSTM + Common LSTM (Fig. 3b): the first

encoding layer consists of several LSTMs, each con-

nected to only one input channel: for example, the first

LSTM processes input data s(1, ·), the second LSTM

processes s(2, ·), and so on. In this way, the output of

each “channel LSTM” is a summary of a single chan-

nel’s data. The second encoding layer then performs

inter-channel analysis, by receiving as input the con-

catenated output vectors of all channel LSTMs. As

above, the output of the deepest LSTM at the last time

step is used as the encoder’s output vector.

• Common LSTM + output layer (Fig. 3c): similar to the

common LSTM architecture, but an additional output

layer (linear combinations of input, followed by ReLU

nonlinearity) is added after the LSTM, in order to in-

crease model capacity at little computational expenses

(if compared to the two-layer common LSTM archi-

tecture). In this case, the encoded feature vector is the

output of the final layer.

Encoder and classifier training is performed through gradi-

ent descent by providing the class label associated to the

image shown while each EEG sequence was recorded. Af-

ter training, the encoder can be used to generate EEG fea-

tures from an input EEG sequences, while the classification

network will be used to predict the image class for an input

EEG feature representation, which can be computed from

either EEG signals or images, as described in the next sec-

tion.

3.3. CNNbased Regression on EEG manifold for
Visual Classification

In order to employ the RNN learned feature representa-

tion for general images, it is necessary to bypass the EEG

recording stage and extract features directly from the image,

which should be possible by our assumption that the learned

EEG features reflect the image content which evoked the

original EEG signals.

We employed two CNN-based approaches (see Fig. 4)

to extract EEG features (or, at least, a close approximation)

from an input image:

• Approach 1: End to end training. The first approach is

to train a CNN to map images to corresponding EEG

feature vectors. Typically, the first layers of CNN at-

tempt to learn the general (global) features of the im-

ages, which are common between many tasks, thus we

initialize the weights of these layers using pre-trained

models, and then learn the weights of last layers from

scratch in an end to end setting. In particular, we used
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Figure 4. Tested CNN-based regressors. Approach 1: we stacked a regression layer to a common deep network and then trained, end to

end, the resulting module; Approach 2: We extracted deep features using a common off-the-shelf deep network and then train separately

the regressor

the pre-trained AlexNet CNN [13], and modified it by

replacing the softmax classification layer with a regres-

sion layer (containing as many neurons as the dimen-

sionality of the EEG feature vectors), using Euclidean

loss as objective function.

• Approach 2: Deep feature extraction followed by re-

gressor training. The second approach consists of ex-

tracting image features using pre-trained CNN models

and then employ regression methods to map image fea-

tures to EEG feature vectors. We used our fine-tuned

AlexNet [13], GoogleNet [25] and VGG [21] as fea-

ture extractors by reading the output of the last fully-

connected layer, and then applied several regression

methods (namely, k-NN regression, ridge regression,

random forest regression) to obtain the predicted fea-

ture vectors.

We opted to fine-tune only AlexNet, instead of

GoogleNet [25] and VGG [21], because these two CNNs

contain more convolutional layers and, as such, they were

more prone to overfitting given the relatively small dataset

size. The resulting CNN-based regressor is able to extract

brain-learned features from any input image for futher clas-

sification by the softmax layer trained during EEG feature

learning.

4. Performance Analysis

Performance analysis is split into three parts since our

method consists of: 1) learning visual stimuli–evoked EEG

data using RNN (implemented in Torch4); 2) CNN-based

regression to map images to RNN-learned EEG-based fea-

tures (implemented in Caffe5); 3) the combination of the

above two steps to implement automated visual classifiers.

4.1. Learning visual stimuli–evoked EEG represen
tations

We first tested the three architectures reported in

Sect. 3.2 using our EEG dataset. Our dataset was split into

training, validation and test sets, with respective fractions

80% (1600 images), 10% (200), 10% (200). We ensured

that the signals generated by all participants for a single im-

age are all included in a single split. All model architecture

choices were taken only based on the results on the valida-

tion split, making the test split a reliable and “uncontam-

inated” quality indicator for final evaluations. The overall

number of EEG sequences used for training the RNN en-

coder was 12,000.

Existing works, such as [24, 1], employing Support Vec-

4http://torch.ch/
5http://caffe.berkeleyvision.org/
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Model Details Max VA TA at max VA

Common

64 common 74.4% 73.9%

128 common 77.3% 74.1%

64,64 common 75.9% 72.5%

128,64 common 79.1% 76.8%

128,128 common 79.7% 78.0%

Channel + Common
5 channel, 32 common 75.7% 72.9%

5 channel, 64 common 74.3% 71.2%

Common + output
128 common, 64 output 81.6% 78.7%

128 common, 128 output 85.4% 82.9%

Table 2. Maximum validation accuracy (“Max VA”) and corresponding test accuracy (“TA at max VA”) for different configurations of the

three RNN architectures shown in Sect. 3.2. The model yielding the best validation results is in bold.

tor Machines (SVM), Random Forests and Sparse Logistic

Regression for learning EEG representation, cannot be em-

ployed as baseline since they do not operate on whole brain

signals (but on feature vectors) and are applied to other tasks

(e.g., music classification, seizure detection, etc.) than vi-

sual object–evoked EEG data.

Table 2 reports the achieved performance by the three en-

coder configurations with various architecture details. We

also tested more complex models (e.g., using 256 nodes)

but these ended up with overfitting. The classifier used

to compute the accuracy is the one jointly trained in the

encoder; we will use the same classifier (without any fur-

ther training) also for automated visual classification on

CNN-regressed EEG features. The proposed RNN-based

approach was able to reach about 83% classification accu-

racy, which greatly outperforms the performance achieved

by [10], which was 29% over 12 classes of their dataset, and

13% on our dataset.

To further contribute to the research on how visual scenes

are processed by the human brain, we investigated how

image visualization times may affect classification perfor-

mance. Thus far, it has been known that feature extraction

for object recognition in humans happens during the first

50-120 ms [8] (stimuli propagation time from the eye to the

visual cortex), whereas less is known after 120 ms. Since

in our experiments, we displayed each image for 500 ms;

we evaluated classification performance in different visual-

ization time ranges, i.e., [40-480 ms], [40-160 ms], [40-320

ms] and [320-480 ms]. Table 3 shows the achieved accura-

cies when using the RNN model which obtained the highest

validation accuracy (see Table 2), i.e., the common 128-

neuron LSTM followed by the 128-neuron output layer.

Contrary to what was expected, the best performance was

obtained in the time range [320-480 ms], instead of during

the first 120 ms. This suggests that a key role in visual clas-

sification may be played by neural processes outside the vi-

sual cortex that are activated after initial visual recognition

and might be responsible for the conception part mentioned

Visualization time Max VA TA at max VA

40-480 ms 85.4% 82.9%

40-160 ms 81.4% 77.5%

40-320 ms 82.6% 79.7%

320-480 ms 86.9% 84.0%

Table 3. Classification accuracy achieved by the RNN encoder us-

ing different portions of EEG signal data. Best results in bold.

in the introduction. Of course, this needs further and deeper

investigation that are outside the scope of this paper.

4.2. CNNbased regression

CNN-based regression aims at projecting visual images

onto the learned EEG manifold. According to the results

shown in the previous section, the best encoding perfor-

mance is obtained given by the common 128-neuron LSTM

followed by the 128-neuron output layer. This implies that

our regressor takes as input single images and provides as

output a 128-feature vector, which should ideally resemble

the one learned by the encoder.

To test the regressor’s performance, we used the same Im-

ageNet subset and the same image splits employed for

the RNN encoder. However, unlike the encoder’s training

stage, where different subjects generated different EEG sig-

nal tracks even when looking at the same image, for CNN-

based regression we require that each image be associated

to only one EEG feature vector, in order to avoid “confus-

ing” the network by providing different target outputs for

the same input. We tested two different approaches for se-

lecting the single feature vector associated to each image:

• average: the EEG feature vector associated to an im-

age is computed as the average over all subjects when

viewing that image.

• best features: for each image, the associated EEG fea-

ture vector is the one having the smallest classification

loss over all subjects during RNN encoder training.
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Feature set AlexNet FT
AlexNet FE GoogleNet VGG

k-NN Ridge RF k-NN Ridge RF k-NN Ridge RF

Average 1.86 1.64 1.53 1.52 0.62 1.88 0.93 0.73 1.53 0.94

Best 2.12 1.94 1.62 1.56 3.54 7.06 4.01 3.26 7.63 4.45

Table 4. Mean square error (MSE) values obtained by different regression methods for extracting EEG features from images. “FT”:

fine-tuned; “FE”: feature extractor. Best performance underlined and in bold.

Table 4 shows the mean square error (MSE) obtained

with each of the tested regression approaches. The lowest-

error configuration, i.e., feature extraction with GoogleNet

combined to k-NN regressor, was finally employed as EEG

feature extractor from arbitrary images. Note that the ac-

curacy values for average are markedly better than the best

features’ one. This is in line with the literature on cognitive

neuroscience, for which changes in EEG signals elicited by

visual object stimuli are typically observed when averaging

data from multiple trials and subjects [22].

4.3. Automated visual classification

This section aims at demonstrating that the initial claim,

i.e., that human visual capabilities can be learned and trans-

ferred to machines by testing an automated visual classifier

that extracts EEG features from images (through the com-

bination of CNN-based feature regressor - GoogleNet fea-

tures with k-NN regressor according to Table 4) and then

classifies feature vectors using the softmax classifier trained

during EEG manifold learning.

We evaluated image classification performance on the

images from our dataset’s test split, which were never

used in either EEG manifold learning or CNN-based fea-

ture regression, obtaining a mean classification accuracy

of 89.7%, which, albeit slightly lower than state-of-the-art

CNN performance6, demonstrates the effectiveness of our

approach.

In order to test the generalization capabilities of our

brain-learned features, we also performed an evaluation

of the proposed method as a feature extraction technique,

and compared it to VGG and GoogleNet (we did not test

AlexNet given its lower performance as shown in Table 4)

as feature extractors. We tested the three (off-the-shelf)

deep networks on a 30-class subset of Caltech-101 [7]

(chosen so as to avoid overlap with the classes used for

developing our model) by training separate multiclass

SVM classifiers (one for each network) and comparing the

classification accuracy. The results are reported in Table 5.

Our approach achieves comparable performance to

GoogleNet and much better performance than VGG, which

is actually an impressive result, considering that our EEG

encoder and regressor were trained on a feature space not

even directly related to visual features.

6http://image-net.org/challenges/LSVRC/2015/results

GoogleNet VGG Our method

92.6% 80.0% 89.7%

Table 5. Classification accuracy achieved when using GoogleNet,

VGG and the proposed method as image feature extractors for

training an SVM classifier on a subset of Caltech-101.

5. Conclusions

In this paper we propose the first human brain–driven

automated visual classification method. It consists of two

stages: 1) an RNN-based method to learn visual stimuli-

evoked EEG data as well as to find a more compact and

meaningful representation of such data; 2) a CNN-based ap-

proach aiming at regressing images into the learned EEG

representation, thus enabling automated visual classifica-

tion in a “brain-based visual object manifold”. We demon-

strated that both approaches show competitive performance,

especially as concerns learning EEG representation of ob-

ject classes. The promising results achieved in this first

work make us hope that human brain processes involved

in visual recognition can be effectively decoded for further

inclusion into automated methods. Under this scenario, this

work can be seen as a significant step towards interdisci-

plinary research across computer vision, machine learning

and cognitive neuroscience for transferring human visual

(and not only) capabilities to machines. It also lays the

foundations for a paradigm shift in computer vision: from

performance-based one to human-base computation one.

As future work, we plan a) to develop more complex

deep learning approaches for distinguishing brain signals

generated from a larger number of image classes, and b) to

interpret/decode EEG-learned features in order to identify

brain activation areas, band frequencies, and other relevant

information necessary to uncover human neural underpin-

nings involved in the visual classification.
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