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Abstract

We study the quadratic assignment problem, in computer

vision also known as graph matching. Two leading solvers

for this problem optimize the Lagrange decomposition du-

als with sub-gradient and dual ascent (also known as mes-

sage passing) updates. We explore this direction further

and propose several additional Lagrangean relaxations of

the graph matching problem along with corresponding al-

gorithms, which are all based on a common dual ascent

framework. Our extensive empirical evaluation gives several

theoretical insights and suggests a new state-of-the-art any-

time solver for the considered problem. Our improvement

over state-of-the-art is particularly visible on a new dataset

with large-scale sparse problem instances containing more

than 500 graph nodes each.

1. Introduction

In computer vision and beyond, the quadratic assignment

problem, known also as graph matching, feature correspon-

dence and feature matching, has attracted great interest. This

problem is similar to Maximum-A-Posteriori (MAP) infer-

ence on a discrete pairwise graphical model, also called

conditional random field (CRF) in the literature. It differs

in an additional uniqueness constraint: Each label can be

taken at most once. This uniqueness constraint makes it

well-suited to attack e.g. tracking problems or shape match-

ing. In both cases feature points or object parts have to be

matched between multiple frames one-to-one. Unfortunately,

the uniqueness constraint prevents naive application of ef-

ficient message passing solvers for MAP-inference to this

problem. For this reason, many dedicated graph matching

solvers were developed, see related work below.

On the other hand, efficient dual block-coordinate ascent

(also known as message passing) algorithms like TRW-S [33]

count among the most efficient solvers for MAP-inference

in conditional random fields. Also, the graph matching prob-

lem, after possibly introducing many additional variables,

can be stated as a MAP-inference problem in a standard

pairwise CRF. Such an approach already surpasses most

state-of-the-art graph matching solvers.

Hence, it is desirable to devise specialized convergent

message passing solvers exhibiting none of the drawbacks

discussed above, i.e. (i) directly operating on a compact

representation of the graph matching problem and (ii) us-

ing techniques from the MAP-inference community to gain

computational efficiency.

To achieve this goal, we propose (i) several Lagrangean

decompositions of the graph matching problem and (ii) novel

efficient message passing solvers for these relaxations. We

show their efficacy in an extensive empirical evaluation.

Related work The term graph matching refers to a num-

ber of different optimization problems in pattern recognition,

see [18] for a review. We mean the special version known un-

ambiguously as quadratic assignment problem (QAP) [36].

Recently, the graph matching was generalized to the hyper-

graph matching problem (see [43] and references therein),

which match between more than two graphs.

The quadratic assignment problem was first formulated

in [13] back in 1957. Since a number of NP-complete prob-

lems such as traveling salesman, maximal clique, graph

isomorphism and graph partitioning can be straightforwardly

reduced to QAP, this problem is NP-hard itself. Its impor-

tance for numerous applications boosted its analysis a lot:

The (already aged) overview [41] contains 362 references

with over 150 works suggesting new algorithms and over

100 with new theoretical results related to this problem.

Nearly all possible solver paradigms were put to the test

for QAP. These include, but are not limited to, convex re-

laxations based on Lagrangean decompositions [31, 52], lin-

ear [6,22], convex quadratic [9] and semi-definite [46,51,63]

relaxations, which can be used either directly to obtain ap-

proximate solutions or just to provide lower bounds. To

tighten these bounds several cutting plane methods were pro-

posed [11, 12]. On the other side, various primal heuristics,

both (i) deterministic, such as local search [5, 44], graduated

assignment methods [25], fixed point iterations [39], spectral
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technique and its derivatives [17,38,53,62] and (ii) stochastic,

like random walk [16] and Monte-Carlo sampling [37, 49]

were suggested to provide approximate solutions to the prob-

lem. Altogether these methods serve as building blocks for

exact branch-and-bound [10, 23, 26] algorithms and other

non-convex optimization methods [25,59,64]. The excellent

surveys [15, 41] contain further references.

As is usual for NP-hard problems, no single method can

efficiently address all QAP instances. Different applications

require different methods and we concentrate here on prob-

lem instances specific for computer vision. Traditionally

within this community predominantly primal heuristics are

used, since demand for low computational time usually domi-

nates the need to obtain optimality guarantees. However, two

recently proposed solvers [52, 61] based on Lagrangean de-

composition (also known as dual decomposition in computer

vision) have shown superior results and surpassed numerous

state-of-the-art primal heuristics.

The dual decomposition solver [52] represents the prob-

lem as a combination of MAP-inference for binary CRFs,

the linear assignment problem and a number of small-sized

QAPs over few variables; Lagrangean multipliers connecting

these subproblems are updated with the sub-gradient method.

Although the solver demonstrates superior results on com-

puter vision datasets, we suspect that its efficiency can be

further improved by switching to a different update method,

such as bundle [30,32] or block-coordinate ascent [57]. This

suspicion is based on comparison of such solvers for MAP-

inference in CRFs [29] and similar observation related to

other combinatorial optimization problems (see e.g. [45]).

Hungarian Belief Propagation (HBP) [61] considers a

combination of a multilabel CRF and a linear assignment as

subproblems; Lagrange mutipliers are updated by a block-

coordinate ascent (message passing) algorithm and the ob-

tained lower bounds are employed inside a branch-and-

bound solver. It is known [34], however, that efficiency

of message passing significantly depends on the schedule

of sending messages. Specifically, efficiency of dual ascent

algorithms depends on selecting directions for the ascent

(blocks of variables to optimize over) and the order in which

these ascent operations are performed. Arguably, the under-

lying multilabel CRF subproblem is crucial and the message

passing must deal with it efficiently. However, HBP [61]

uses a message passing schedule similarly as in the MPLP

algorithm [24], which was shown [29, 34] to be significantly

slower than the schedule of SRMP (TRW-S) [34].

Contribution We study several Lagrangean decompo-

sitions of the graph matching problem. Some of these are

known, e.g. the one used in the HBP algorithm [61] and

the one corresponding to the local polytope relaxation of the

pairwise CRF representation of graph matching. The others

have not been published so far, to our knowledge. For all

these decompositions we provide efficient message passing

(dual ascent) algorithms based on a recent message passing

framework [50]. In the case of the local polytope relax-

ation our algorithm coincides with the SRMP method [34],

a higher-order generalization of the famous TRW-S algo-

rithm [33].

Our experimental evaluation suggests a new state-of-the-

art method for the graph matching problem, which outper-

forms both the dual decomposition [52] and the HBP [61]

solvers. We propose tighter convex relaxations for all our

methods. Also, we significantly improve performance of the

HBP algorithm by changing its message passing schedule.

Proofs are given in the appendix. Code and

datasets can be obtained at https://github.com/

pawelswoboda/LP_MP.

Notation. Undirected graphs are denoted by G =
(V,E), where V is a finite node set and E ⊆

(
V
2

)
is the

edge set. The set of neighboring nodes of v ∈ V w.r.t. graph

G is denoted by NG(v) := {u : uv ∈ E}. The convex hull

of a set X ⊂ R
n is denoted by conv(X).

2. CRFs and Graph Matching

First, we introduce conditional random fields and state the

graph matching problem as one with additional uniqueness

constraints. Second, we consider an inverse formulation of

the graph matching problem, which, after being coupled with

the original formulation, often leads to faster algorithms.

Conditional random fields (CRF). Let G = (V,E) be

an undirected graph. With each node u ∈ V we associate a

variable xu taking its values in a finite set of labels Xu ⊆
{(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. Hence,

each label corresponds to a unit vector. Notation XA de-

notes the Cartesian product
∏

u∈A⊆V
Xu. A vector x ∈ XV

with coordinates (xu)u∈V is called a labeling. Likewise,

we use the notation xA ∈ XA (a special case being xuv ∈
Xuv ≡ Xu ×Xv) to indicate part of a labeling. Functions

θu : Xu → R, u ∈ V, and θuv : Xuv → R, uv ∈ E, are

potentials, which define a local quality of labels and label

pairs.

The energy minimization or MAP-inference problem for

CRFs is

min
x∈XV

∑

u∈V

θu(xu) +
∑

uv∈E

θuv(xuv) . (1)

The objective in (1) is called energy of the CRF.

A great number of applied problems can be efficiently

cast in the format (1), see e.g. [29, 54]. This defines its

importance for computer vision, machine learning and a

number of other branches of science [54]. While problem (1)

is NP-hard in general, many exact and approximate solvers

were proposed [29].
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Graph Matching. Although the format of Problem (1)

allows us to express many practically important optimiza-

tion tasks efficiently, some applications require the resulting

labelings x to satisfy additional constraints. In particular, for

the graph matching problem no label may be taken twice.

Let a common universe L of labels be given such that

Xu ⊆ L ∀u ∈ V. We require each label s ∈ L to be taken at

most once, i.e. |{u ∈ V : xu = s}| ≤ 1. In other words, we

seek an injective mapping (xu)u∈V : V → L. This problem

can be stated as

min
x∈XV

∑

u∈V

θu(xu) +
∑

uv∈E

θuv(xuv) s.t. xu 6= xv ∀u 6= v .

(2)

Graph matching is NP-hard, since it is equivalent to MAP-

inference for CRFs (1) in the trivial case, when nodes of the

graph contain mutually non-intersecting sets of labels.

Inverse Graph Matching A special case arises if the

universe L of labels to be matched has the same size as the

set of nodes of the graph |L| = |V|. Then every injective

mapping (xu)u∈V : V → L must also be a bijection. Hence,

every feasible labeling x ∈ XV corresponds to a permutation

of V. The graph matching problem (2) can in this case

also be approached in terms of the inverse permutation. To

this end let the inverse graph G
′ = (V′,E′) be given by

V
′ = L; the inverse label set X ′

s = {v ∈ V : s ∈ Xv}
is associated with each node s ∈ V

′; respectively X ′
L =

∏

s∈L X ′
s is the set of inverse labelings and X ′

st denotes

Xs × Xt; the set of edges of the inverse graph is defined

as E
′ = {st ∈ V

′ × V
′ : ∃xst ∈ X ′

st s.t. xsxt ∈ E}. The

inverse costs θ′ for s, s′ ∈ V
′, xs ∈ X ′

s read:

θ′s(xs) = θxs
(s), θ′st(xst) =

{
θxst

(s, t), xst ∈ E

0, otherwise.

Consider the resulting inverse graph matching problem

min
x∈X′

L

∑

s∈L

θ′s(xs) +
∑

st∈E′

θ′st(xst) s.t. xs 6= xt ∀s 6= t .

(3)

Labeling x ∈ XV and inverse labeling y ∈ X ′
L correspond

to each other iff xu = s ∈ V ⇔ ys = u ∈ V.

Note that when the edge set E is sparse, the inverse edge

set E′ may be not. In such a case, computational complexity

of the inverse problem is higher than of the original one.

3. Lagrangean Decompositions

Since the graph matching problem (2) is NP-hard, it is

common to consider convex relaxations. Below, we present

three Lagrangean decompositon based relaxations of the

problem. These can be applied to the original graph match-

ing problem (2), to the inverse one (3) and to a combination

of both. Since all these relaxations are based on the famous

local polytope relaxation [47, 55] of the MAP-inference for

CRFs (1), we give a short overview of this relaxation first.

Local Polytope for CRFs. The MAP-inference prob-

lem (1) can be represented as an integer linear program

(ILP) [35] using an overcomplete representation [54] by

grouping potentials corresponding to each node and edge

into separate vectors. That is, θw(xw), w ∈ V ∪ E stands for

a vector with coordinates (θw(xw))xw∈Xw
. The real-valued

vectors µw have the same dimensionality as θw and stand

for the ”relaxed” version of xw. The corresponding linear

programming (LP) relaxation reads:

min
∑

w∈V∪E

〈θw, µw〉 (4)

∑

xw∈Xw

µw(xw) = 1, µw(s) ≥ 0, w ∈ V ∪ E, s ∈ Xw ,

∑

xv∈Xv

µuv(xuv) = µu(xu), uv ∈ E, u ∈ uv, xu ∈ Xu .

Constraints of (4) define the local polytope LG. Note that

adding integrality constraints µw ∈ {0, 1}|Xw| makes the

problem (4) equivalent to its combinatorial formulation (1).

Integer Relaxed Pairwise Separable Linear Programs

(IRPS-LP) Below we describe a general problem for-

mat studied in [50], which generalizes the local polytope

relaxation (4). Importantly, the same format fits also the

Lagrangean decompositions of the graph matching problem,

which we consider below. This makes it possible to consider

all these relaxations at once from a general viewpoint.

Let a factor graph G = (F,E) consist of nodes F =
{1, . . . , k}, called factors and edges E, called factor-edges.

Let Xi ⊂ {0, 1}dim(Xi), i ∈ F, be sets of binary vectors

and (ii) A(i,j) ⊂ {0, 1}dim(Xi)×Kij , ij ∈ E, Kij ∈ N be

matrices with binary entries, which map binary vectors from

Xi into binary vectors from {0, 1}Kij , i.e., A(i,j) : Xi →
{0, 1}Kij . The IRPS-LP is a class of problems, which fac-

torize according to G.

min
µ∈ΛG

∑

i∈F

〈θi, µi〉 (5)

ΛG :=

{
(
µ1 . . . µk

)
:

µi ∈ conv(Xi) i ∈ F

A(i,j)µi = A(j,i)µj ∀ij ∈ E

}

.

Constraints A(i,j)µi = A(j,i)µj are associated with each

factor-edge and are called coupling constraints. When rep-

resenting the local polytope relaxation (4) as (5) we assume

F = V ∪ E and E = {{u, uv}, {v, uv} : uv ∈ E}. The con-

vex hull of Xw is fully defined by the first line of constraints

in (4), since Xw constitutes a set of unit binary vectors. The

second line of constraints in (4) defines the coupling con-

straints.

We use variable names µ for (in general) non-binary vec-

tors µi ∈ conv(Xi) and x for binary ones xi ∈ Xi, i ∈ F.

3.1. Graph Matching Problem Relaxations.

Below, we describe three relaxations of the graph match-

ing (2) problem, which fit the IRPS-LP (5) format. The first
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one results in a standard local polytope relaxation (4) of a

specially constructed CRF, the second one utilizes additional

coupling constraints on top of (4), while the third approach

uses a network flow subproblem. Additionally, we use the

inverse formulation (3) and build two additional IRPS-LPs.

(R1) Graph Matching as CRF. To build a CRF equiva-

lent to the graph matching we start with the underlying CRF

as in (2) and express the uniqueness constraints in the edge

factors. To this end we (i) extend the edge set E with new

edges connecting any two nodes having at least one common

label, i.e. Ê := E ∪ {uv ∈
(
V

2

)
: Xu ∩Xv 6= ∅}; (ii) assign

edge potentials θuv ≡ 0 to all new edges Ê\E; (iii) for all

uv ∈ Ê we assign θuv(x, x) := ∞ ∀x ∈ Xu ∩ Xv. Any

solution of the resulting CRF (1) with cost < ∞ is an as-

signment. The relaxation in terms of an IRPS-LP is the local

polytope (4).

This approach results in general in a quadratic number of

additional edge potentials, which may become intractable as

the size of the graph matching problem grows.

(R2) Relaxation with Label Factors. For each label

s ∈ L we introduce an additional label factor, which keeps

track of nodes which assign label s. The label set of this

factor Xs := {u ∈ V : s ∈ Xu} ∪ {#} consists of those

nodes u ∈ V which can be assigned label s and an additional

dummy node # representing non-assignment of label s. La-

bel # is necessary, as not every label needs to be taken. The

set of factors becomes F = V ∪ E ∪ L, with the coupling

constraint set E = {{u, uv}, {v, uv} : uv ∈ E} ∪ {{u, l} :
u ∈ V, l ∈ Xu}. The resulting IRPS-LP formulation reads

min
∑

w∈V∪E

〈θw, µw〉+
∑

s∈L

〈θ̃s, µ̃s〉 (R2)

µ ∈ LG

µ̃s ∈ conv(Xs), s ∈ L
µu(s) = µ̃s(u), s ∈ Xu .

Here we introduced additional potentials θ̃s for the label

factor. Initially, we set θ̃s ≡ 0.

(R3) Relaxation with a Network Flow Factor. If one

ignores the edge potentials θuv in (2), the problem can be

equivalently reformulated as bipartite matching [7]:

min
µ∈M

∑

u∈V

〈θu, µu〉, where (6)

M =

{

(µu)u∈V ≥ 0:

∑

s∈Xu
µu(s) = 1, u ∈ V

∑

u∈V,s∈Xu
µu(s) ≤ 1, s ∈ L

}

Here we substituted the uniqueness constraints with the lin-

ear inequalities
∑

u∈V,s∈Xu
µu(s) ≤ 1, which is equivalent

for µu ∈ {0, 1}|Xu|. It is known that M is the convex hull

of all binary vectors satisfying the conditions of M [7], i.e.

conv(M∩ {0, 1}dim(M)) = M. Therefore M fits into the

IRPS-LP framework. Crucially for an efficient implemen-

tation, (6) can be efficiently solved by minimum cost flow

solvers [7].

Below we treat (6) as a separate factor M and link it

with (4) to obtain an IRPS-LP. Its factor graph is defined

by F = V ∪ E ∪ {M} and E = {{u, uv}, {v, uv} : uv ∈
E}∪{{u,M} : u ∈ V}. The resulting IRPS-LP formulation

is

min
∑

w∈V∪E

〈θw, µw〉+
∑

u∈V

〈θ̃u, µ̃u〉 (R3)

µ ∈ LG, µ̃ ∈ M,

µ̃u(s) = µu(s), u ∈ V, s ∈ Xu .

Initially, we set θ̃ ≡ 0.

Representation (6) for the uniqueness constraints has been

already used e.g., in [20]. However their optimization tech-

nique lacks both convergence guarantees and monotonic-

ity of a lower bound, which our methods possess. The

work [61] considered the Lagrange dual of (R3) as a re-

laxation the graph matching problem. Their relaxation is

equivalent to (R3), but their algorithm differs from ours. We

refer to Section 5 for a discussion of the differences and to

Section 6 for an experimental comparison.

(R4-R5) Coupling Original Graph Matching (2) and its

Inverse (3). In the special case when |L| = |V| we may

solve the inverse graph matching problem (3) instead of the

original one (2). Another alternative is to solve both prob-

lems simultaneously and couple them together by requiring

that the labeling of (2) is the inverse permutation for the

labeling from (3). Such an approach doubles the problem

size, yet it may result in a smaller number of iterations re-

quired to obtain convergence. This approach works both for

relaxations (R2) and (R3).

The resulting coupled IRPS-LP for (R2) reads

min
µ,µ′

∑

w∈V∪E

〈θw, µw〉+
∑

w∈V′∪E′

〈θ′w, µ
′
w〉 (R4)

µ ∈ LG, µ
′ ∈ LG′

∀u ∈ V, u′ ∈ Xu : µu(u
′) = µ′

u′(u) .

Here the role of label factors in (R2) has been taken over

by the node factors of the inverse graph matching (3). We

distribute the costs equally among θ and θ′ initially.

Another coupled IRPS-LP, corresponding to (R3) reads

min
µ,µ′,µ̃

∑

w∈V∪E

〈θw, µw〉+
∑

w∈V′∪E′

〈θ′w, µ
′
w〉+

∑

u∈V

〈θ̃u, µ̃u〉

µ ∈ LG, µ
′ ∈ LG′ , µ̃ ∈ M (R5)

∀u ∈ V, u′ ∈ Xu : µu(u
′) = µ̃u(u

′), µ′
u′(u) = µ̃u(u

′)

Here the network flow factor M controls consistency of the

original µ and inverse labelings µ′. Initially, we set θ̃ ≡ 0
and distribute costs in θ and θ′ equally.
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The optimal values obtained by relaxations (R1) – (R5)

may deliver differing bounds to (2), as characterized below.

Proposition 1. (R2) = (R3) and (R4) = (R5). Relaxation

(R1) is weaker than (R2) and (R3).

4. General Algorithm

In this section we define a general algorithm for IRPS-

LP problems (5), which is applicable to the decompositions

(R1)–(R5) of the graph matching problem considered in

Section 3.1. Our algorithm is a simplified version of the

algorithm [50], where we fixed several parameters to the

values common to the relaxations (R1)–(R5).

Instead of optimizing IRPS-LP (5) directly, we con-

sider its Lagrangean dual w.r.t. the coupling constraints

A(i,j)µi = A(j,i)µj . The IRPS-LP problem (5) can be

shortly written as minµ{〈θ, µ〉, s.t. Aµ = 0, µ ∈ P}, where

µ stands for (µi)
k
i=1, Aµ = 0 represents all coupling con-

straints A(i,j)µi − A(j,i)µj = 0 and P denotes a polytope

encapsulating the rest of constraints. By dualizing Aµ = 0
with a vector of Lagrange multipliers ∆ one obtains the

Lagrange function 〈θ, µ〉 − 〈∆,Aµ〉 = 〈θ − A⊤∆,µ〉. Af-

ter introducing θ∆ := θ − A⊤∆ the dual objective reads

D(∆) = minµ{〈θ
∆, µ〉, s.t. µ ∈ P}. It is well-known [14]

that D(∆) ≤ 〈θ, µ〉 for any feasible µ and the dual problem

consists in maximizing D(∆) over ∆. Going from θ to θ∆

is called an equivalent transformation or reparametrization

in the literature or message passing in the CRF-community.

Now we apply the above considerations to the general

IRPS-LP problem (5). Specifically, let i, j ∈ F be two

neighboring factors in the factor-graph G. Then for any µi

and µj satisfying the coupling constraint for edge ij ∈ E

〈θi, µi〉+ 〈θj , µj〉
= 〈θi, µi〉+ 〈θj , µj〉+ 〈∆(i,j), A(i,j)µi −A(j,i)µj〉

︸ ︷︷ ︸
=0

= 〈θi +A⊤
(i,j)∆(i,j), µi〉+ 〈θj −A⊤

(i,j)∆(i,j), µj〉 .

The values and sign of the Lagrange multiplies ∆(i,j) define

how much cost is ”sent” from j to i or the other way around.

When we consider a subset J ⊆ NG(i) of the neighboring

factors for i, the resulting equivalent transformation reads:

θi → θi +
∑

j∈J

A⊤
(i,j)∆(i,j) and θj → θj −A⊤

(j,i)∆(i,j). (7)

Below we define a subclass of messages ∆(i,j) in the

setting (7) which improve the dual.

Definition 1. Messages ∆(i, j), j ∈ J , are called admissi-

ble, if there exists x∗
i ∈ argmin

xi∈Xi

〈θi, µi〉 ∩ argmin
xi∈Xi

〈θ∆i , µi〉

and additionally

∆(i,j)(s)

{

≥ 0, ν(s) = 1

≤ 0, ν(s) = 0
,where ν := A(i,j)x

∗
i . (8)

We denote the set of admissible vectors by AD(θi, x
∗
i , J).

Lemma 1 ( [50]). Admissible messages do not decrease the

dual value, i.e., ∆ ∈ AD(θφi , x
∗
i , J) implies D(0) ≤ D(∆).

Example 1. Let us apply Definition 1 to the local polytope

relaxation (4) of CRFs. Let ij correspond to {u, uv}, where

u ∈ V is some node and uv ∈ E is any of its incident edges

and J = {j}. Then x∗
i corresponds to a locally optimal label

x∗
u ∈ argmins∈Xu

θu(s) and ν(s) = Js = x∗
uK. Therefore

we may assign ∆u,uv(s) to any value from [0, θu(x
∗
u) −

θu(s)]. This assures that (8) is fulfilled and x∗
u remains a

locally optimal label after reparametrization even if there are

multiple optima in Xu.

Sending Messages. Procedure 1 represents an elemen-

tary step of our optimization algorithm. It consists of sending

messages from a node i to a subset of its neighbors J .

Procedure 1: Send messages from i ∈ F to J ⊆ NG(i)

1 Optimize factor: x∗
i ∈ argmin

xi∈Xi

〈θi, µi〉

2 Choose δ ∈ R
di s.t. δ(s)

{
≥ 0, x∗

i (s) = 1
≤ 0, x∗

i (s) = 0

3 Maximize admissible messages to J:

∆(i,J) := (∆(i,j))j∈J ∈ argmax
∆̂∈D(θφ

i
,x∗

i
,J)

〈δ, θ∆̂i 〉 (9)

4 Update θi and θj , j ∈ J , according to (7)

Procedure 1 first computes an optimal labeling for the

factor i in line 1, then computes message updates in (9) and

finally updates the costs θ in line 4. The costs δ in line 2

are chosen as ±1, except when i = M is the network flow

factor for (R3) and (R5). In this case, we choose δ(u, xu) ={
0, xu = x∗

u

1− |Xu|, xu 6= x∗
u

.

Computation (9) provides a maximally possible admis-

sible message from i to {J}. Essentially, it makes the cost

vector of the factor i as uniform as possible. So, in the setting

of Example 1 ∆u,uv(s) becomes equal to θu(x
∗
u) − θu(s)

and therefore θ∆i (s) = θu(x
∗
u) for all s ∈ Xu. Since the

result of (9) is an admissible message, Procedure 1 never

decreases the dual objective, as follows from Lemma 1.

Dual Ascent Algorithm. Let the notation

{j1, . . . , jn}< stand for an ordered set such that jk < jk+1,

k = 1, . . . , n. Algorithm 2 below goes over some of the

factors i ∈ F in a pre-specified order and calls Procedure 1

to send or receive messages to/from some of the neighbors.

Algorithm 2 works as follows: We choose an ordered

subset of factors {i1, . . . , ik}<. For each factor i ∈ F we
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Algorithm 2: Dual Ascent for IRPS-LP

1 Input: I = {i1, . . . , ik}< ⊆ F , (Jr(i) ⊆ NG(i))i∈I ,

(Js(i) ⊆ NG(i))i∈I

2 for iter = 1, . . . do

3 for i = i1, . . . , ik do

4 Receive messages:

5 for j ∈ Jr(i) do

6 Call Algorithm 1 with input (j, {i}).
7 end

8 Send messages:

9 Call Algorithm 1 with input (i, Js(i)).

10 end

11 Reverse the order of i1, . . . , ik and exchange Jr ↔ Js
12 end

select a neighborhood Jr(i) ⊆ NG(i) of factors from which

to receive messages and a neighborhood Js(i) to which mes-

sages are sent by Procedure 1. We run Algorithm 2 on

{i1, . . . , ik}< (forward direction) and {ik, . . . , i1}< (back-

ward direction) alternatingly until some stopping condition

is met. Since Algorithm 2 reparametrizes the problem by

Procedure 1 only and the latter is guaranteed to not decrease

the dual, so is Algorithm 2. We refer to [50] for further

theoretical properties of Algorithm 2.

5. Graph matching algorithms.

For each of the relaxations (R1)-(R5) of the graph match-

ing problem we detail parameters of Algorithm 2 used in our

experiments: we define the sets I , Jr(i), Js(i).

Algorithm Names. We use the following shortcuts for

specializations of Algorithm 2 to the relaxations (R1)-(R5):

GM corresponds to (R1), AMP to (R2), AMCF to (R3). To

obtain the relaxations (R1-R3) we use either the original

graph, as in (2), or an inverse one, as in (3). These options

are denoted by suffixes -O and -I respectively. Additionally,

the two coupled relaxations (R4) and (R5), are addressed by

algorithms AMP-C and AMCF-C respectively. All in all,

we have eight algorithms GM-O, GM-I, AMP-O, AMP-I,

AMP-C, AMCF-O, AMCF-I and AMCF-C.

The sets I , Jr(i) and Js(i) are defined in Table 5. For

algorithms with the suffix -I the values are the same as for

those with -O, but corresponding to the inverse graph.

We assume the order of graph nodes V := {u1, . . . , un}<
and labels L := {s1, . . . , s|L|}< to be given a priori. We

define un < M < s1 for the matching factor M and u <

uv < v for the edge factors uv ∈ E. Similarly, we define

s < ss′ < s′ for all edge factors ss′ ∈ E
′ in the inverse

graph. We extend the resulting partial order to a total one,

e.g., by topological sort. For i ∈ F we define NG(i)< :=

Algorithm Ordered set I Jr(i) Js(i)

GM-O {u1, . . , un}< NG(i)< NG(i)>
AMP-O {u1, . . , un, s1, . . , s|L|}< NG(i)< NG(i)>

AMCF-O {u1, . . , un,M}< NG(i)< ∩ E NG(i)>
AMP-C {u1, . . , un, s1, . . , s|L|}< NG(i)< NG(i)>

AMCF-C {u1, . . , un,M, l1, . . , l|L|}< NG(i)< ∩ E NG(i)>

Table 1. Input sets for specializations of Algorithm 2. For algo-

rithms with the suffix -I the sets are the same as for those with -O,

but correspond to the inverse graph.

{j ∈ NG(i) : j < i} and NG(i)> := NG(i)\Jr(i) as the

sets of preceding and subsequent factors.

Sending a message by some factor automatically implies

receiving this message by another, coupled factor. There-

fore, there is no need to go over all factors in Algorithm 2.

In particular, edge-factors are coupled to node-factors only,

therefore processing all node factors in Algorithm 2 auto-

matically means updating all edge-factors as well. In the

processing order and selection of the sets Jr(i) and Js(s)
we follow the most efficient MAP-solvers TRWS [33] and

SRMP [34] (the latter is a generalization of TRW-S to higher

order models and has a slightly different implementation

for pairwise CRFs (1)). In the special case when all nodes

contain disjoint subsets of labels the graph matching prob-

lem (2) turns into MAP-inference in CRFs (1). Then all our

algorithms GM, AMP and AMCF reduce to SRMP [34].

It is worth mentioning that for CRFs there exist algo-

rithms, such as MPLP [24], which go over edge-factors only

and in this way implicitly process also node-factors. As em-

pirically shown in SRMP [34], MPLP is usually slower than

SRMP. In Section 6 we show that our methods also favorably

compare to the recently proposed HBP [61], which is similar

to AMCF-O, but uses an MPLP-like processing schedule.

Optimization Subproblems of Procedure 1. For each

call of Procedure 1 one must find the best factor element in

line 1 and compute the best messages by solving (9). The

first subproblem is solved by explicitly scanning all elements

of the factor for node-, edge- and label-factors. For optimiz-

ing over M, we use a min-cost-flow solver. Solving (9) for

all choices of factors and neighborhoods is possible through

closed-form solutions or calling a minimum cost flow solver

and is described in the appendix.

Primal Rounding. Algorithm 2 only provides lower

bounds to the original problem (2). To obtain a primal so-

lution one may ignore the edge potentials θuv and solve the

resulting reparametrized bipartite matching problem (6) with

a minimum cost flow solver, as done in [61]. Empirically

we found that it is better to interleave rounding and message

passing, similarly as in TRWS [33] and SRMP [34]. Assume

we have already computed a primal integer solution x∗
v for

all v < u and we want to compute x∗
u. To this end, between
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lines 4 and 5 of Algorithm 2 for i = u we assign

x∗
u ∈ argmin

xu:xu 6=x∗
v∀v<u

θu(xu)+
∑

v<u:uv∈E

θuv(xu, x
∗
v) . (10)

Time complexity If Xu = L ∀u ∈ V, time complexity

per iteration is O(|L||V| + |L|2|E|) for GM. For AMP we

must add |L|3 and for AMCF the time to solve (6) (possible

in O(L3)). Details and speedups are in the appendix.

Higher Order Extensions. Our approach is straight-

forwardly extendable to the graph matching problem with

higher order factors, a special case being third order: Let

T ⊆
(
V

3

)
be a subset ot triplets of nodes and θuvw : Xuvw →

R be corresponding triplet potentials. The corresponding

third order graph matching problem reads

min
x∈XV

∑

u∈V

θu(xu) +
∑

uv∈E

θuv(xuv) +
∑

uvw∈T

θuvw(xuvw)

s.t. xu 6= xv ∀u 6= v . (11)

The associated IRPS-LP can be constructed by including

additional factors for all triplets in an analoguous fashion as

in (4), see e.g. [56] for the corresponding relaxation.

For relaxations (R1) – (R5) we use third order factors to

enforce cycle inequalities, which we add in a cutting plane

approach as in [48]. For this we set θuvw ≡ 0 at the begin-

ning. By this construction (11) is equivalent to (2), however

the corresponding IRPS-LP are not: Triplet potentials make

the relaxation tighter.

6. Experiments

Algorithms. We compare against the two Lagrangean

decomposition based solvers [52, 61] described in Section 1.

• The dual decomposition solver DD [52]. We use local

subproblems containing 4 nodes. Note that the compari-

son in [61] was made with subproblems of size 3, hence

DD’s relaxation was weaker there.

• “Hungarian belief propagation”HBP [61]. In [61] a

branch and bound solver is used on top of the dual as-

cent solver. For a fair comparison our reimplementation

uses only the dual ascent component. As for AMP and

AMCF, we append to HBP the suffixes -O and -C to

denote the relaxations we let HBP run on.

According to [52, 61], these two algorithms outperformed

competitors [16,19,20,25, 27,38,39,42,46,51,58,64] at the

time of their publication, hence we do not compare against

the latter ones.

We set a hard threshold of 1000 iterations for each algo-

rithm, exiting earlier when the primal/dual gap vanishes or

no dual progress was observed anymore. We compute primal

solutions every 5-th iteration in our algorithms. For GM,

AMP, AMCF and HBP we use the tightening extension

discussed in Section 5 to improve the dual lower bound. We

tighten our relaxation whenever no dual progress occurs.

dataset #I #V #L C

house 105 30 30 dense

hotel 105 30 30 dense

car 30 19-49 19-49 dense

motor 20 15-52 15-52 dense

graph flow 6 60-126 2-126 sparse

worms 30 ≤ 600 20-60 sparse

Table 2. Dataset description. #I denotes number of instances, #V

the number of nodes |V|, #L the number |Xu| of labels a node

u ∈ V can be matched to and C the connectivity of the graph.

Datasets. We have compared on six datasets:

• house [3] and hotel [2] with costs as in [52]. The

task is to find matching feature points between images

capturing an object from different viewpoints.

• car and motor, both used in [40], contain pairs of cars

and motorbikes with keypoints to be matched. The images

are taken from the VOC PASCAL 2007 challenge [21].

Costs are computed from features as in [40].

• The graph flow dataset [1] comes from a tracking

problem with large displacements [8]. Keypoints in

frames of RGB-D images obtained by a Kinect cam-

era [60] are matched. The depth information provided

by the Kinect camera is taken into account when comput-

ing the potentials θ.

• The worms dataset [4] from bioimaging [28]. The goal is

to annotate nuclei of C. elegans, a famous model organism

used in developmental biology, by finding the correspond-

ing nuclei in a precomputed model. The instances of

worms are, to our knowledge, the largest graph matching

datasets ever investigated in the literature.

A summary of dataset characteristics can be found in Ta-

ble 2. Previous computational studies concentrated on small-

scale problems having up to 60 nodes and labels. We

have included the worms dataset with up to 500 nodes and

|L| = 1500 labels.

Results. Fig. 2 shows performance of the algorithms on

all 6 considered datasets. Among all variants -O, -I, -C cor-

responding respectively to the original, inverse and coupled

formulations we plotted only the best one. As expected, for

dense graphs (datasets house, hotel, car, motor) the

variant -C with coupling provided most robust convergence,

being similar to the best of -O either -I and therefore is

presented on the plots. For sparse graphs, the inverse repre-

sentation becomes too expensive, as the inverse edge set E′

may be dense even though E is sparse in (3). Therefore we

stick to the original problem -O.

• hotel and house are easy datasets, and many instances

needed < 5 iterations for convergence. AMP, AMCF and

DD were able to solve all instances to optimality within

few seconds or even faster. However, DD is the fastest

method for this data.
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Figure 1. Plots showing convergence over time for house, hotel, car, motor, graph flow and worms datasets. Values denote

log(upper bound − lower bound). Values are averaged over all instances of the dataset. The x-axis and y-axis are logarithmic.

• car and motor were already harder and the 1000 iter-

ation limit did not allow to ascertain optimality for all

instances. AMP significantly outperforms its competitors,

DD is significantly slower than the rest, whereas other

algorithms show comparable results.

• on worms AMP significantly outperforms its competi-

tors, AMCF and HBP converge to similar duality gap, al-

though AMCF does it one-two orders of magnitude faster,

GM and DD return results which are hardly competitive.

• graph flow is the only dataset, where DD clearly over-

comes all competitors, followed by AMP. We attribute it

to DD’s tighter relaxation, (its ”local” subproblems con-

tain 4 variables, whereas our subproblems have at most 3

variables after tightening.)

Insights and Conclusions

• AMP shows overall best performance for both small dense

and large sparse datasets. It is the best anytime solver:

it has the best performance in the first iterations. This is

beneficial (i) if the run-time is limited or (ii) in branch-

and-bound procedures, where a good early progress helps

to efficiently eliminate non-optimal branches fast.

• Although AMP, AMCF and HBP address equivalent re-

laxations (having the same maximal dual value) their con-

vergence speed is different. AMCF and HBP are gen-

erally slower than AMP, which we attribute to the sub-

optimal redistribution of the costs by the min-cost-flow

factors {M} when maximizing messages in (9).

• DD’s relatively good performance is probably due to the

large subproblems used by this method. First, this de-

creases the number of dual variables, which accelerates

bound convergence; second, this makes the relaxation

tighter, which decreases the duality gap. We attribute slow

convergence of DD to the subgradient method.

• Summarizing, larger subproblems are profitable for the

sub-gradient method, but not for message passing.

• AMCF outperforms HBP due to better message schedul-

ing.

• We attribute the inferior performance of GM mostly to

the weakest relaxation it optimizes. Even under this condi-

tion, due to a good message scheduling and fast message

passing it outperforms DD and HBP on several datasets.

A detailed evaluation of all instances is in the appendix.
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