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Abstract

Adversarial learning methods are a promising approach

to training robust deep networks, and can generate complex

samples across diverse domains. They can also improve

recognition despite the presence of domain shift or dataset

bias: recent adversarial approaches to unsupervised domain

adaptation reduce the difference between the training and

test domain distributions and thus improve generalization

performance. However, while generative adversarial net-

works (GANs) show compelling visualizations, they are not

optimal on discriminative tasks and can be limited to smaller

shifts. On the other hand, discriminative approaches can

handle larger domain shifts, but impose tied weights on the

model and do not exploit a GAN-based loss. In this work,

we first outline a novel generalized framework for adver-

sarial adaptation, which subsumes recent state-of-the-art

approaches as special cases, and use this generalized view

to better relate prior approaches. We then propose a previ-

ously unexplored instance of our general framework which

combines discriminative modeling, untied weight sharing,

and a GAN loss, which we call Adversarial Discriminative

Domain Adaptation (ADDA). We show that ADDA is more

effective yet considerably simpler than competing domain-

adversarial methods, and demonstrate the promise of our

approach by exceeding state-of-the-art unsupervised adapta-

tion results on standard domain adaptation tasks as well as

a difficult cross-modality object classification task.

1. Introduction

Deep convolutional networks, when trained on large-scale

datasets, can learn representations which are generically use-

full across a variety of tasks and visual domains [1, 2]. How-

ever, due to a phenomenon known as dataset bias or domain

shift [3], recognition models trained along with these rep-

resentations on one large dataset do not generalize well to

source target

target*encoder

domain*discriminator

Figure 1: We propose an improved unsupervised domain

adaptation method that combines adversarial learning with

discriminative feature learning. Specifically, we learn a dis-

criminative mapping of target images to the source feature

space (target encoder) by fooling a domain discriminator that

tries to distinguish the encoded target images from source

examples.

novel datasets and tasks [4, 1]. The typical solution is to

further fine-tune these networks on task-specific datasets—

however, it is often prohibitively difficult and expensive to

obtain enough labeled data to properly fine-tune the large

number of parameters employed by deep multilayer net-

works.

Domain adaptation methods attempt to mitigate the harm-

ful effects of domain shift. Recent domain adaptation meth-

ods learn deep neural transformations that map both domains

17167



into a common feature space. This is generally achieved by

optimizing the representation to minimize some measure of

domain shift such as maximum mean discrepancy [5, 6] or

correlation distances [7, 8]. An alternative is to reconstruct

the target domain from the source representation [9].

Adversarial adaptation methods have become an increas-

ingly popular incarnation of this type of approach which

seeks to minimize an approximate domain discrepancy dis-

tance through an adversarial objective with respect to a do-

main discriminator. These methods are closely related to

generative adversarial learning [10], which pits two networks

against each other—a generator and a discriminator. The

generator is trained to produce images in a way that confuses

the discriminator, which in turn tries to distinguish them

from real image examples. In domain adaptation, this prin-

ciple has been employed to ensure that the network cannot

distinguish between the distributions of its training and test

domain examples [11, 12, 13]. However, each algorithm

makes different design choices such as whether to use a gen-

erator, which loss function to employ, or whether to share

weights across domains. For example, [11, 12] share weights

and learn a symmetric mapping of both source and target im-

ages to the shared feature space, while [13] decouple some

layers thus learning a partially asymmetric mapping.

In this work, we propose a novel unified framework for

adversarial domain adaptation, allowing us to effectively

examine the different factors of variation between the exist-

ing approaches and clearly view the similarities they each

share. Our framework unifies design choices such as weight-

sharing, base models, and adversarial losses and subsumes

previous work, while also facilitating the design of novel

instantiations that improve upon existing ones.

In particular, we observe that generative modeling of in-

put image distributions is not necessary, as the ultimate task

is to learn a discriminative representation. On the other hand,

asymmetric mappings can better model the difference in low

level features than symmetric ones. We therefore propose

a previously unexplored unsupervised adversarial adapta-

tion method, Adversarial Discriminative Domain Adapta-

tion (ADDA), illustrated in Figure 1. ADDA first learns a

discriminative representation using the labels in the source

domain and then a separate encoding that maps the target

data to the same space using an asymmetric mapping learned

through a domain-adversarial loss. Our approach is simple

yet surprisingly powerful and achieves state-of-the-art visual

adaptation results on the MNIST, USPS, and SVHN digits

datasets. We also test its potential to bridge the gap between

even more difficult cross-modality shifts, without requiring

instance constraints, by transferring object classifiers from

RGB color images to depth observations. Finally, we eval-

uate on the standard Office adaptation dataset, and show

that ADDA achieves strong improvements over competing

methods, especially on the most challenging domain shift.

2. Related work

There has been extensive prior work on domain trans-

fer learning, see e.g., [3]. Recent work has focused on

transferring deep neural network representations from a

labeled source datasets to a target domain where labeled

data is sparse or non-existent. In the case of unlabeled

target domains (the focus of this paper) the main strat-

egy has been to guide feature learning by minimizing the

difference between the source and target feature distribu-

tions [11, 12, 5, 6, 8, 9, 13, 14].

Several methods have used the Maximum Mean Discrep-

ancy (MMD) [3] loss for this purpose. MMD computes the

norm of the difference between two domain means. The

DDC method [5] used MMD in addition to the regular clas-

sification loss on the source to learn a representation that is

both discriminative and domain invariant. The Deep Adapta-

tion Network (DAN) [6] applied MMD to layers embedded

in a reproducing kernel Hilbert space, effectively matching

higher order statistics of the two distributions. In contrast,

the deep Correlation Alignment (CORAL) [8] method pro-

posed to match the mean and covariance of the two distribu-

tions.

Other methods have chosen an adversarial loss to mini-

mize domain shift, learning a representation that is simulta-

neously discriminative of source labels while not being able

to distinguish between domains. [12] proposed adding a do-

main classifier (a single fully connected layer) that predicts

the binary domain label of the inputs and designed a domain

confusion loss to encourage its prediction to be as close as

possible to a uniform distribution over binary labels. The gra-

dient reversal algorithm (ReverseGrad) proposed in [11] also

treats domain invariance as a binary classification problem,

but directly maximizes the loss of the domain classifier by

reversing its gradients. DRCN [9] takes a similar approach

but also learns to reconstruct target domain images. Domain

separation networks [15] enforce these adversarial losses to

minimize domain shift in a shared feature space, but achieve

impressive results by augmenting their model with private

feature spaces per-domain, an additional dissimilarity loss

between the shared and private spaces, and a reconstruction

loss.

In related work, adversarial learning has been explored

for generative tasks. The Generative Adversarial Network

(GAN) method [10] is a generative deep model that pits two

networks against one another: a generative model G that

captures the data distribution and a discriminative model

D that distinguishes between samples drawn from G and

images drawn from the training data by predicting a binary

label. The networks are trained jointly using backprop on the

label prediction loss in a mini-max fashion: simultaneously

update G to minimize the loss while also updating D to

maximize the loss (fooling the discriminator). The advantage

of GAN over other generative methods is that there is no
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need for complex sampling or inference during training;

the downside is that it may be difficult to train. GANs

have been applied to generate natural images of objects,

such as digits and faces, and have been extended in several

ways. The BiGAN approach [16] extends GANs to also

learn the inverse mapping from the image data back into the

latent space, and shows that this can learn features useful

for image classification tasks. The conditional generative

adversarial net (CGAN) [17] is an extension of the GAN

where both networks G and D receive an additional vector of

information as input. This might contain, say, information

about the class of the training example. The authors apply

CGAN to generate a (possibly multi-modal) distribution of

tag-vectors conditional on image features. GANs have also

been explicitly applied to domain transfer tasks, such as

domain transfer networks [18], which seek to directly map

source images into target images.

Recently the CoGAN [13] approach applied GANs to the

domain transfer problem by training two GANs to generate

the source and target images respectively. The approach

achieves a domain invariant feature space by tying the high-

level layer parameters of the two GANs, and shows that

the same noise input can generate a corresponding pair of

images from the two distributions. Domain adaptation was

performed by training a classifier on the discriminator output

and applied to shifts between the MNIST and USPS digit

datasets. However, this approach relies on the generators

finding a mapping from the shared high-level layer feature

space to full images in both domains. This can work well

for say digits which can be difficult in the case of more

distinct domains. In this paper, we observe that modeling

the image distributions is not strictly necessary to achieve

domain adaptation, as long as the latent feature space is

domain invariant, and propose a discriminative approach.

3. Generalized adversarial adaptation

We present a general framework for adversarial unsuper-

vised adaptation methods. In unsupervised adaptation, we

assume access to source images Xs and labels Ys drawn

from a source domain distribution ps(x, y), as well as target

images Xt drawn from a target distribution pt(x, y), where

there are no label observations. Our goal is to learn a tar-

get representation, Mt and classifier Ct that can correctly

classify target images into one of K categories at test time,

despite the lack of in domain annotations. Since direct su-

pervised learning on the target is not possible, domain adap-

tation instead learns a source representation mapping, Ms,

along with a source classifier, Cs, and then learns to adapt

that model for use in the target domain.

In adversarial adaptive methods, the main goal is to reg-

ularize the learning of the source and target mappings, Ms

and Mt, so as to minimize the distance between the empir-

ical source and target mapping distributions: Ms(Xs) and

source mapping

Which 

adversarial 

objective?

source 

input

target 

input
target mapping

classifier

Weights 

tied or 

untied?

source 

discriminator

target 

discriminator

Generative or 

discriminative 

model?

Figure 2: Our generalized architecture for adversarial do-

main adaptation. Existing adversarial adaptation methods

can be viewed as instantiations of our framework with dif-

ferent choices regarding their properties.

Mt(Xt). If this is the case then the source classification

model, Cs, can be directly applied to the target representa-

tions, elimating the need to learn a separate target classifier

and instead setting, C = Cs = Ct.

The source classification model is then trained using the

standard supervised loss below:

min
Ms,C

Lcls(Xs, Yt) =

E(xs,ys)∼(Xs,Yt) −

K
∑

k=1

✶[k=ys] logC(Ms(xs)) (1)

We are now able to describe our full general framework

view of adversarial adaptation approaches. We note that

all approaches minimize source and target representation

distances through alternating minimization between two

functions. First a domain discriminator, D, which classi-

fies whether a data point is drawn from the source or the

target domain. Thus, D is optimized according to a standard

supervised loss, LadvD (Xs,Xt,Ms,Mt) where the labels

indicate the origin domain, defined below:

LadvD (Xs,Xt,Ms,Mt) =

− Exs∼Xs
[logD(Ms(xs))]

− Ext∼Xt
[log(1−D(Mt(xt)))]

(2)

Second, the source and target mappings are optimized ac-

cording to a constrained adversarial objective, whose partic-

ular instantiation may vary across methods. Thus, we can

derive a generic formulation for domain adversarial tech-

niques below:

min
D

LadvD (Xs,Xt,Ms,Mt)

min
Ms,Mt

LadvM (Xs,Xt, D)

s.t. ψ(Ms,Mt)

(3)
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Method Base model Weight sharing Adversarial loss

Gradient reversal [19] discriminative shared minimax

Domain confusion [12] discriminative shared confusion

CoGAN [13] generative unshared GAN

ADDA (Ours) discriminative unshared GAN

Table 1: Overview of adversarial domain adaption methods and their various properties. Viewing methods under a unified

framework enables us to easily propose a new adaptation method, adversarial discriminative domain adaptation (ADDA).

In the next sections, we demonstrate the value of our

framework by positioning recent domain adversarial ap-

proaches within our framework. We describe the poten-

tial mapping structure, mapping optimization constraints

(ψ(Ms,Mt)) choices and finally choices of adversarial map-

ping loss, LadvM .

3.1. Source and target mappings

In the case of learning a source mapping Ms alone it is

clear that supervised training through a latent space discrim-

inative loss using the known labels Ys results in the best

representation for final source recognition. However, given

that our target domain is unlabeled, it remains an open ques-

tion how best to minimize the distance between the source

and target mappings. Thus the first choice to be made is in

the particular parameterization of these mappings.

Because unsupervised domain adaptation generally con-

siders target discriminative tasks such as classification, pre-

vious adaptation methods have generally relied on adapting

discriminative models between domains [12, 19]. With a

discriminative base model, input images are mapped into

a feature space that is useful for a discriminative task such

as image classification. For example, in the case of digit

classification this may be the standard LeNet model. How-

ever, Liu and Tuzel achieve state of the art results on un-

supervised MNIST-USPS using two generative adversarial

networks [13]. These generative models use random noise

as input to generate samples in image space—generally, an

intermediate feature of an adversarial discriminator is then

used as a feature for training a task-specific classifier.

Once the mapping parameterization is determined for

the source, we must decide how to parametrize the target

mapping Mt. In general, the target mapping almost always

matches the source in terms of the specific functional layer

(architecture), but different methods have proposed various

regularization techniques. All methods initialize the target

mapping parameters with the source, but different methods

choose different constraints between the source and target

mappings, ψ(Ms,Mt). The goal is to make sure that the

target mapping is set so as to minimize the distance between

the source and target domains under their respective map-

pings, while crucially also maintaining a target mapping that

is category discriminative.

Consider a layered representations where each layer pa-

rameters are denoted as, M ℓ
s or M ℓ

t , for a given set of equiv-

alent layers, {ℓ1, . . . , ℓn}. Then the space of constraints

explored in the literature can be described through layerwise

equality constraints as follows:

ψ(Ms,Mt) , {ψℓi(M
ℓi
s ,M

ℓi
t )}i∈{1...n} (4)

where each individual layer can be constrained indepen-

dently. A very common form of constraint is source and

target layerwise equality:

ψℓi(M
ℓi
s ,M

ℓi
t ) = (M ℓi

s =M ℓi
t ). (5)

It is also common to leave layers unconstrained. These equal-

ity constraints can easily be imposed within a convolutional

network framework through weight sharing.

For many prior adversarial adaptation methods [19, 12],

all layers are constrained, thus enforcing exact source and

target mapping consistency. Learning a symmetric transfor-

mation reduces the number of parameters in the model and

ensures that the mapping used for the target is discrimina-

tive at least when applied to the source domain. However,

this may make the optimization poorly conditioned, since

the same network must handle images from two separate

domains.

An alternative approach is instead to learn an asymmetric

transformation with only a subset of the layers constrained,

thus enforcing partial alignment. Rozantsev et al. [20]

showed that partially shared weights can lead to effective

adaptation in both supervised and unsupervised settings. As

a result, some recent methods have favored untying weights

(fully or partially) between the two domains, allowing mod-

els to learn parameters for each domain individually.

3.2. Adversarial losses

Once we have decided on a parametrization ofMt, we em-

ploy an adversarial loss to learn the actual mapping. There

are various different possible choices of adversarial loss func-

tions, each of which have their own unique use cases. All

adversarial losses train the adversarial discriminator using

a standard classification loss, LadvD , previously stated in

Equation 2. However, they differ in the loss used to train the

mapping, LadvM .
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The gradient reversal layer of [19] optimizes the mapping

to maximize the discriminator loss directly:

LadvM = −LadvD . (6)

This optimization corresponds to the true minimax objective

for generative adversarial networks. However, this objective

can be problematic, since early on during training the dis-

criminator converges quickly, causing the gradient to vanish.

When training GANs, rather than directly using the mini-

max loss, it is typical to train the generator with the standard

loss function with inverted labels [10]. This splits the opti-

mization into two independent objectives, one for the gen-

erator and one for the discriminator, where LadvD remains

unchanged, but LadvM becomes:

LadvM (Xs,Xt, D) = −Ext∼Xt
[logD(Mt(xt))]. (7)

This objective has the same fixed-point properties as the

minimax loss but provides stronger gradients to the target

mapping. We refer to this modified loss function as the

“GAN loss function” for the remainder of this paper.

Note that, in this setting, we use independent mappings

for source and target and learn only Mt adversarially. This

mimics the GAN setting, where the real image distribution

remains fixed, and the generating distribution is learned to

match it.

The GAN loss function is the standard choice in the set-

ting where the generator is attempting to mimic another

unchanging distribution. However, in the setting where

both distributions are changing, this objective will lead to

oscillation—when the mapping converges to its optimum,

the discriminator can simply flip the sign of its prediction

in response. Tzeng et al. instead proposed the domain

confusion objective, under which the mapping is trained

using a cross-entropy loss function against a uniform distri-

bution [12]:

LadvM (Xs,Xt, D) =

−
∑

d∈{s,t}

Exd∼Xd

[

1

2
logD(Md(xd))

+
1

2
log(1−D(Md(xd)))

]

.

(8)

This loss ensures that the adversarial discriminator views the

two domains identically.

4. Adversarial discriminative domain adapta-

tion

The benefit of our generalized framework for domain ad-

versarial methods is that it directly enables the development

of novel adaptive methods. In fact, designing a new method

has now been simplified to the space of making three design

choices: whether to use a generative or discriminative base

model, whether to tie or untie the weights, and which adver-

sarial learning objective to use. In light of this view we can

summarize our method, adversarial discriminative domain

adaptation (ADDA), as well as its connection to prior work,

according to our choices (see Table 1 “ADDA”). Specifically,

we use a discriminative base model, unshared weights, and

the standard GAN loss. We illustrate our overall sequential

training procedure in Figure 3.

First, we choose a discriminative base model, as we hy-

pothesize that much of the parameters required to generate

convincing in-domain samples are irrelevant for discrim-

inative adaptation tasks. Most prior adversarial adaptive

methods optimize directly in a discriminative space for this

reason. One counter-example is CoGANs. However, this

method has only shown dominance in settings where the

source and target domain are very similar such as MNIST

and USPS, and in our experiments we have had difficulty

getting it to converge for larger distribution shifts.

Next, we choose to allow independent source and target

mappings by untying the weights. This is a more flexible

learing paradigm as it allows more domain specific feature

extraction to be learned. However, note that the target do-

main has no label access, and thus without weight sharing

a target model may quickly learn a degenerate solution if

we do not take care with proper initialization and training

procedures. Therefore, we use the pre-trained source model

as an intitialization for the target representation space and

fix the source model during adversarial training.

In doing so, we are effectively learning an asymmetric

mapping, in which we modify the target model so as to match

the source distribution. This is most similar to the original

generative adversarial learning setting, where a generated

space is updated until it is indistinguishable with a fixed real

space. Therefore, we choose the inverted label GAN loss

described in the previous section.

Our proposed method, ADDA, thus corresponds to the

following unconstrained optimization:

min
Ms,C

Lcls(Xs, Ys) =

− E(xs,ys)∼(Xs,Ys)

K
∑

k=1

✶[k=ys] logC(Ms(xs))

min
D

LadvD (Xs,Xt,Ms,Mt) =

− Exs∼Xs
[logD(Ms(xs))]

− Ext∼Xt
[log(1−D(Mt(xt)))]

min
Mt

LadvM (Xs,Xt, D) =

− Ext∼Xt
[logD(Mt(xt))].

(9)

We choose to optimize this objective in stages. We begin
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Figure 3: An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train

a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target

encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain

label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source

classifier. Dashed lines indicate fixed network parameters.

by optimizing Lcls over Ms and C by training using the

labeled source data, Xs and Ys. Because we have opted to

leave Ms fixed while learning Mt, we can thus optimize

LadvD and LadvM without revisiting the first objective term.

A summary of this entire training process is provided in

Figure 3.

We note that the unified framework presented in the previ-

ous section has enabled us to compare prior domain adversar-

ial methods and make informed decisions about the different

factors of variation. Through this framework we are able

to motivate a novel domain adaptation method, ADDA, and

offer insight into our design decisions. In the next section we

demonstrate promising results on unsupervised adaptation

benchmark tasks, studying adaptation across visual domains

and across modalities.

5. Experiments

We now evaluate ADDA for unsupervised classification

adaptation across three different adaptation settings. We ex-

plore three digits datasets of varying difficulty: MNIST [21],

USPS, and SVHN [22]. We additionally evaluate on the

NYUD [23] dataset to study adaptation across modalities.

Finally, we evaluate on the standard Office [24] dataset for

comparison against previous work. Example images from

all experimental datasets are provided in Figure 4.

For the case of digit adaptation, we compare against mul-

tiple state-of-the-art unsupervised adaptation methods, all

based upon domain adversarial learning objectives. In 3 of

4 of our experimental setups, our method outperforms all

competing approaches, and in the last domain shift studied,

our approach outperforms all but one competing approach.

We also validate our model on a real-world modality adap-

tation task using the NYU depth dataset. Despite a large

domain shift between the RGB and depth modalities, ADDA

learns a useful depth representation without any labeled

depth data and improves over the nonadaptive baseline by

over 50% (relative). Finally, on the standard Office dataset,

we demonstrate ADDA’s effectiveness by showing convinc-

ing improvements over competing approaches, especially on

the hardest domain shift.

5.1. MNIST, USPS, and SVHN digits datasets

We experimentally validate our proposed method in an un-

supervised adaptation task between the MNIST [21], USPS,

and SVHN [22] digits datasets, which consist 10 classes of

digits. Example images from each dataset are visualized in

Figure 4 and Table 2. For adaptation between MNIST and

USPS, we follow the training protocol established in [25],

sampling 2000 images from MNIST and 1800 from USPS.

For adaptation between SVHN and MNIST, we use the full

training sets for comparison against [19]. All experiments

are performed in the unsupervised settings, where labels in

the target domain are withheld, and we consider adaptation

in three directions: MNIST→USPS, USPS→MNIST, and

SVHN→MNIST.

For these experiments, we use the simple modified LeNet

architecture provided in the Caffe source code [21, 26].

When training with ADDA, our adversarial discriminator

consists of 3 fully connected layers: two layers with 500

hidden units followed by the final discriminator output. Each

of the 500-unit layers uses a ReLU activation function. Opti-

mization proceeds using the Adam optimizer [27] for 10,000

iterations with a learning rate of 0.0002, a β1 of 0.5, a β2 of

0.999, and a batch size of 256 images (128 per domain). All

training images are converted to greyscale, and rescaled to

28×28 pixels.

Results of our experiment are provided in Table 2. On the

easier MNIST and USPS shifts ADDA achieves comparable

performance to the current state-of-the-art, CoGANs [13],
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Figure 4: We evaluate ADDA on unsupervised adaptation across seven domain shifts in three different settings. The first

setting is adaptation between the MNIST, USPS, and SVHN datasets (left). The second setting is a challenging cross-modality

adaptation task between RGB and depth modalities from the NYU depth dataset (center). The third setting is adaptation on the

standard Office adaptation dataset between the Amazon, DSLR, and Webcam domains (right).

MNIST → USPS USPS → MNIST SVHN → MNIST

Method → → →

Source only 0.752± 0.016 0.571± 0.017 0.601± 0.011
Gradient reversal 0.771± 0.018 0.730± 0.020 0.739 [19]

Domain confusion 0.791± 0.005 0.665± 0.033 0.681± 0.003
CoGAN 0.912± 0.008 0.891± 0.008 did not converge

ADDA (Ours) 0.894± 0.002 0.901± 0.008 0.760± 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

despite being a considerably simpler model. This provides

compelling evidence that the machinery required to generate

images is largely irrelevant to enabling effective adaptation.

Additionally, we show convincing results on the challenging

SVHN and MNIST task in comparison to other methods,

indicating that our method has the potential to generalize

to a variety of settings. In contrast, we were unable to get

CoGANs to converge on SVHN and MNIST—because the

domains are so disparate, we were unable to train coupled

generators for them.

5.2. Modality adaptation

We use the NYU depth dataset [23], which contains

bounding box annotations for 19 object classes in 1449 im-

ages from indoor scenes. The dataset is split into a train (381

images), val (414 images) and test (654) sets. To perform

our cross-modality adaptation, we first crop out tight bound-

ing boxes around instances of these 19 classes present in

the dataset and evaluate on a 19-way classification task over

object crops. In order to ensure that the same instance is not

seen in both domains, we use the RGB images from the train

split as the source domain and the depth images from the val

split as the target domain. This corresponds to 2,186 labeled

source images and 2,401 unlabeled target images. Figure 4

visualizes samples from each of the two domains.

We consider the task of adaptation between these RGB

and HHA encoded depth images [28], using them as source

and target domains respectively. Because the bounding boxes

are tight and relatively low resolution, accurate classification

is quite difficult, even when evaluating in-domain. In addi-

tion, the dataset has very few examples for certain classes,

such as toilet and bathtub, which directly translates

to reduced classification performance.

For this experiment, our base architecture is the VGG-16

architecture, initializing from weights pretrained on Ima-

geNet [29]. This network is then fully fine-tuned on the

source domain for 20,000 iterations using a batch size of

128. When training with ADDA, the adversarial discrim-

inator consists of three additional fully connected layers:

1024 hidden units, 2048 hidden units, then the adversar-

ial discriminator output. With the exception of the output,

these layers use a ReLU activation function. ADDA training

then proceeds for another 20,000 iterations, using the same

hyperparameters as in the digits experiments.

We find that our method, ADDA, greatly improves clas-

sification accuracy for this task. For certain categories, like
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# of instances 19 96 87 210 611 103 122 129 25 55 144 37 51 276 47 129 210 33 17 2401

Source only 0.000 0.010 0.011 0.124 0.188 0.029 0.041 0.047 0.000 0.000 0.069 0.000 0.039 0.587 0.000 0.008 0.010 0.000 0.000 0.139

ADDA (Ours) 0.000 0.146 0.046 0.229 0.344 0.447 0.025 0.023 0.000 0.018 0.292 0.081 0.020 0.297 0.021 0.116 0.143 0.091 0.000 0.211

Train on target 0.105 0.531 0.494 0.295 0.619 0.573 0.057 0.636 0.120 0.291 0.576 0.189 0.235 0.630 0.362 0.248 0.357 0.303 0.647 0.468

Table 3: Adaptation results on the NYUD [23] dataset, using RGB images from the train set as source and depth images from

the val set as target domains. We report here per class accuracy due to the large class imbalance in our target set (indicated in #

instances). Overall our method improves average per category accuracy from 13.9% to 21.1%.

Method A → W D → W W → D

Source only (AlexNet) 0.642 0.961 0.978

Source only (ResNet-50) 0.626 0.961 0.986

DDC [5] 0.618 0.950 0.985

DAN [6] 0.685 0.960 0.990

DRCN [9] 0.687 0.964 0.990

DANN [19] 0.730 0.964 0.992

ADDA (Ours) 0.751 0.970 0.996

Table 4: Unsupervised adaptation performance on the Of-

fice dataset in the fully-transductive setting. ADDA achieves

strong results on all three evaluated domain shifts and demon-

strates the largest improvement on the hardest shift,A→W .

counter, classification accuracy goes from 2.9% under the

source only baseline up to 44.7% after adaptation. In general,

average accuracy across all classes improves significantly

from 13.9% to 21.1%. However, not all classes improve.

Three classes have no correctly labeled target images before

adaptation, and adaptation is unable to recover performance

on these classes. Additionally, the classes of pillow and

nightstand suffer performance loss after adaptation.

5.3. Office dataset

Finally, we evaluate our method on the benchmark Office

visual domain adaptation dataset [24]. This dataset consists

of 4,110 images spread across 31 classes in 3 domains: ama-

zon, webcam, and dslr. Following previous work [19], we

focus our evaluation on three domain shifts: amazon to we-

bcam (A → W ), dslr to webcam (D → W ), and webcam

to dslr (W → D). We evaluate ADDA fully transductively,

where we train on every labeled example in the source do-

main and every unlabeled example in the target.

Because the Office dataset is relatively small, fine-tuning

a full network quickly leads to overfitting. As a result, we use

ResNet-50 [30] as our base model due to its relatively low

number of parameters and fine-tune only the lower layers of

the target model, up to but not including conv5. Optimization

is done using SGD for 20,000 iterations with a learning rate

of 0.001, a momentum of 0.9, and a batch size of 64. The

adversarial discriminator consists of three fully connected

layers of dimensions 1024, 2048, and 3072, each followed

by ReLUs, and one fully connected layer for the final output.

We present the results of this experiment in Table 4.

We see that ADDA is competitive on this adaptation task

as well, achieving state-of-the-art on all three of the evalu-

ated domain shifts. Although the base architecture ADDA

uses is different from previous work, which typically fine-

tunes using AlexNet as a base, by comparing the source-only

baselines we see that the ResNet-50 architecture does not

perform significantly better. Additionally, we see the largest

increase on the hardest shift A → W despite ResNet-50’s

poor performance on that shift, indicating that ADDA is

effective even on challenging real-world adaptation tasks.

6. Conclusion

We have proposed a unified framework for unsupervised

domain adaptation techniques based on adversarial learning

objectives. Our framework provides a simplified and cohe-

sive view by which we may understand the similarities and

differences between recently proposed adaptation methods.

Through this comparison, we are able to understand the ben-

efits and key ideas from each approach and to combine these

strategies into a new adaptation method, ADDA.

We presented an evaluation across four domain shifts for

our unsupervised adaptation approach. Our method general-

izes well across a variety of tasks, achieving strong results

on benchmark adaptation datasets as well as a challenging

cross-modality adaptation task.
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