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Abstract

Scene flow describes the motion of 3D objects in real

world and potentially could be the basis of a good fea-

ture for 3D action recognition. However, its use for ac-

tion recognition, especially in the context of convolutional

neural networks (ConvNets), has not been previously stud-

ied. In this paper, we propose the extraction and use of

scene flow for action recognition from RGB-D data. Previ-

ous works have considered the depth and RGB modalities

as separate channels and extract features for later fusion.

We take a different approach and consider the modalities as

one entity, thus allowing feature extraction for action recog-

nition at the beginning. Two key questions about the use of

scene flow for action recognition are addressed: how to or-

ganize the scene flow vectors and how to represent the long

term dynamics of videos based on scene flow. In order to

calculate the scene flow correctly on the available datasets,

we propose an effective self-calibration method to align the

RGB and depth data spatially without knowledge of the

camera parameters. Based on the scene flow vectors, we

propose a new representation, namely, Scene Flow to Ac-

tion Map (SFAM), that describes several long term spatio-

temporal dynamics for action recognition. We adopt a chan-

nel transform kernel to transform the scene flow vectors to

an optimal color space analogous to RGB. This transforma-

tion takes better advantage of the trained ConvNets models

over ImageNet. Experimental results indicate that this new

representation can surpass the performance of state-of-the-

art methods on two large public datasets.

1. Introduction

Recognition of human actions from RGB-D data has

generated renewed interest in the computer vision com-

munity due to the recent availability of easy-to-use and
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Figure 1: Samples of variants of SFAM for action “Bounce

Basketball” from M2I Dataset [21]. For top-left to bottom-

right, the images correspond to SFAM-D, SFAM-S, SFAM-

RPf, SFAM-RPb, SFAM-AMRPf, SFAM-AMRPb, SFAM-

LABRPf, SFAM-LABRPb.

low-cost depth sensors (e.g. Microsoft Kinect TMsensor).

In addition to tristimulus visual data captured by conven-

tional RGB cameras, depth data are provided in RGB-D

cameras, thus encoding rich 3D structural information of

the entire scene. Previous works [28, 16, 10, 58, 61, 13]

showed the effectiveness of fusing the two modalities for

3D action recognition. However, all the previous meth-

ods consider the depth and RGB modalities as separate

channels from which to extract features and fuse them at

a later stage for action recognition. Since the depth and

RGB data are captured simultaneously, it will be interest-

ing to extract features considering them jointly as one en-

tity. Optical flow-based methods for 2D action recogni-

tion [48, 18, 31, 30, 50] have provided the state-of-the-art

results for several years. In contrast to optical flow which

provides the projection of the scene motion onto the im-

age plane, scene flow [41, 6, 26, 8, 11, 37, 32] estimates

the actual 3D motion field. Thus, we propose the use of

scene flow for 3D action recognition. Differently from the

optical flow-based late fusion methods on RGB and depth
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data, scene flow extracts the real 3D motion and also explic-

itly preserves the spatial structural information contained in

RGB and depth modalities.

There are two critical issues that need to be addressed

when adopting scene flow for action recognition: how to or-

ganize the scene flow vectors and how to effectively exploit

the spatio-temporal dynamics. Two kinds of motion rep-

resentations can be identified: Lagrangian motion [48, 18,

31, 50, 30, 56] and Eulerian motion [2, 25, 60, 51, 52, 1].

Lagrangian motion focuses on individual points and anal-

yses their change in location over time. Such trajectories

requires reliable point tracking over long term and is prone

to error. Eulerian motion considers a set of locations in the

image and analyses the changes at these locations over time,

thus avoiding the need for point tracking.

Since scene flow vectors could be noisy and to avoid the

difficulty of long term point tracking of Lagrangian motion,

we adopted the Eulerian approach in constructing the fi-

nal representation for action recognition. Furthermore, the

scene flow between two consecutive pair of RGB-D frames

(two RGB images and two corresponding depth images) is

one simple Lagrangian motion with only two frames match-

ing/tracking. This property provides a better representation

than is possible with Eulerian motion obtained from raw

pixels.

However, it remains unclear as to how video could be

effectively represented and fed to deep neural networks for

classification. For example, one can conventionally con-

sider a video as a sequence of still images with some form

of temporal smoothness, or as a subspace of images or im-

age features, or as the output of a neural network encoder.

Which one among these and other possibilities would result

in the best representation in the context of action recogni-

tion is not well understood. The promising performance of

existing temporal encoding works [51, 52, 56, 1] provides

a source of motivation. These works encode the spatio-

temporal information as dynamic images and enable the use

of existing ConvNets models directly without training the

whole networks afresh. Thus, we propose to encode the

RGB-D video sequences based on scene flow into one mo-

tion map, called Scene Flow to Action Map (SFAM), for

3D action recognition. Intuitively and similarly to the three

channels of color images, the three elements of a scene flow

vector can be considered as three channels. Such consider-

ation allows the scene flow between two consecutive pairs

of RGB-D frames to be reorganized as one three-channel

Scene Flow Map (SFM), and the RGB-D video sequence

can be represented as SFM sequence. In the spirits of Eu-

lerian motion and rank pooling methods [5, 1], we propose

to encode SFM sequence into SFAM. Several variants of

SFAM are developed. They capture the spatio-temporal in-

formation from different perspectives and are complemen-

tary to each other for final recognition. However, two issues

arise with these hand-crafted SFAMs: 1) direct organization

of the scene flow vectors in SFM may sacrifice the relations

among the three elements; 2) in order to take advantage of

available model trained over ImageNet, the input needs to

be analogous to RGB images; that is, the input for the Con-

vNets need to have similar properties to conventional RGB

images as used in trained filters. Based on these two ob-

servations, we propose to learn Channel Transform Kernels

with rank pooling method and ConvNets, that convert the

three channels into suitable three new channels capable of

exploiting the relations among the three elements and have

similar RGB image features. With this transformation, the

dynamic SFAM can describe both the spatial and temporal

information of a given video. It can be used as the input

to available and already trained ConvNets along with fine-

tuning.

The contributions of this paper are summarized as fol-

lows:1) The proposed SFAM is the first attempt, to our best

knowledge, to extract features from depth and RGB modali-

ties as joint entity through scene flow, in the context of Con-

vNets; 2) we propose an effective self-calibration method

that enables the estimation of scene flow from unregistered

captured RGB-D data; 3) several variants of SFAM that

encode the spatio-temporal information from different as-

pects and are complementary to each other for final 3D

action recognition are proposed; 4) we introduce Chan-

nel Transform Kernels which learn the relations among the

three channels of SFM and convert the scene flow vectors

to RGB-like images to take advantages of trained ConvNets

models and 5) the proposed method achieved state-of-the-

art results on two relatively large datasets.

The reminder of this paper is organized as follows. Sec-

tion 2 describes the related work. Section 3 introduces the

SFAM and its variants, and presents the proposed Channel

Transform Kernels. Experimental results on two datasets

are provided in Section 4. Section 5 concludes the paper

and discusses future work.

2. Related Work

2.1. Feature Extraction from RGB­D Data

Since the first work [20] on 3D action recognition from

depth data captured by commodity depth sensors (e.g., Mi-

crosoft Kinect TM) in 2010, many methods for action recog-

nition have been proposed based on depth, RGB or skele-

ton data. These methods either extracted features from one

modality: depth [49, 60, 29, 59, 24, 51, 52] or RGB [27, 33]

or skeleton [43, 55, 56, 4, 34, 19], or fuse the features ex-

tracted separately from them at a later stage [28, 16, 10, 58].

Neither of these methods considered depth and RGB modal-

ities jointly in feature extraction. In contrast, we propose to

adopt scene flow for 3D action recognition and extract fea-

tures jointly from RGB-D data.
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Figure 2: Illustration of Multiply-Score Fusion for SFAM-RP.

2.2. Scene Flow

In general, scene flow is defined as the dense or semi-

dense non-rigid motion field of a scene observed at differ-

ent instants of time [41, 37, 32]. The term “scene flow” was

firstly coined by Vedula et al. [41] who proposed to start

by computing the Lucas-Kanade optical flow and applied

the range flow constraint equation at a later stage. Since

this work, several methods [64, 57, 44] have been proposed

based on stereo or multiple view camera systems. With the

advent of affordable RGB-D cameras, scene flow methods

for RGB-D data have also been proposed [41, 8, 37, 32].

However most of the existing methods incur high computa-

tional burden, taking from several seconds to a few hours to

compute the scene flow per frame. Thus, limiting their use-

fulness in real applications. Recently, a primal-dual frame-

work for real-time dense RGB-D scene flow [11] has been

proposed. A primal-dual algorithm is applied to solve the

variational formulation of the scene flow problem. It is an

iterative solver performing pixel-wise updates and can be

efficiently implemented on GPUs. In this paper, we used

this algorithm for scene flow calculation.

2.3. Deep Leaning based Action Recognition

Existing deep learning approaches for action recogni-

tion can be generally divided into four categories based

on how the video is represented and fed to a deep neu-

ral network. The first category views a video either as a

set of still images [62] or as a short and smooth transi-

tion between similar frames [35], and each color channel of

the images is fed to one channel of a ConvNet. Although

obviously suboptimal, considering the video as a bag of

static frames performs reasonably well. The second cate-

gory represents a video as a volume and extend ConvNets

to a third, temporal dimension [12, 39] replacing 2D filters

with 3D equivalents. So far, this approach has produced

little benefits, probably due to the lack of annotated train-

ing data. The third category treats a video as a sequence

of images and feed the sequence to an Recurrent Neural

Network (RNN) [3, 4, 42, 34, 22, 23]. An RNN is typ-

ically considered as memory cells, which are sensitive to

both short as well as long term patterns. It parses the video

frames sequentially and encodes the frame-level informa-

tion in the memory. However, using RNNs did not give an

improvement over temporal pooling of convolutional fea-

tures [62] or even over hand-crafted features. The last cate-

gory represents a video in one or multiple compact images

and adopt available trained ConvNet architectures for fine-

tuning [51, 52, 56, 1, 9, 53, 54]. This category has achieved

state-of-the-art results in action recognition on many RGB

and depth/skeleton datasets. The proposed method in this

paper falls into this last category.

3. Scene Flow to Action Map

SFAM encodes the dynamics of RGB-D sequences

based on scene flow vectors. To make our description self-

contained, in Section 3.1 we briefly present the primal-dual

framework for real-time dense RGB-D scene flow com-

putation (hereafter denoted by PD-flow [11]). For scene

flow computation, we assume that the depth and RGB data

are prealigned. If this is not the case, the videos can be

quickly realigned as described in Section 3.2. Then, in Sec-

tion 3.3 we present several hand-crafted constructions of

SFAM and we propose an end-to-end learning method for

SFAM through Channel Transform Kernels in Section 3.4.

3.1. PD­flow

The PD-flow estimates the dense 3D motion field of a

scene between two instants of time t and t + 1 using RGB

and depth images provided by an RGB-D camera. This mo-

tion field M : (Ω ∈ R
2) → R

3 defined over the image

domain Ω, is described with respect to the camera reference

frame and expressed in meters per second. For simplicity,

the bijective relationship Γ : R
3 → R

3 between M and

s = (µ, υ, ω)T is given by:

M = Γ(s) =





Z
fx

0 X
Z

0 Z
fy

Y
Z

0 0 1









µ

υ

ω



 , (1)

where µ, υ represent the optical flow and ω denotes the

range flow; fx, fy are the camera focal length values, and

X,Y, Z the spatial coordinates of the observed point. Thus,
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estimating the optical and range flows is equivalent to es-

timating the 3D motion field but leads to a simplified im-

plementation. In order to compute the motion field a min-

imization problem over s is formulated where photometric

and geometric consistency are imposed as well as a regular-

ity of the solution:

min
s
{ED(s) + ER(s)}. (2)

In Eq. (2), ED(s) is the data term, representing a two-fold

restriction for both intensity and depth matching between

pairs of frames; ER(s) is the regularization term which both

smooths the flow field and constrains the solution space.

For data term ED(s), the L1 norm of photometric con-

sistency ρI(s, x, y) and geometric consistency ρz(s, x, y) is

minimized as:

ED(s) =

∫

|ρI(s, x, y)|+ ε(x, y)|ρz(s, x, y)|dxdy, (3)

where ε(x, y) is a positive function that weights geomet-

ric consistency against brightness constancy; ρI(s, x, y) =
I0(x, y)− I1(x+ µ, y + υ) and ρz(s, x, y) = ω − Z1(x+
µ, y + υ) + Z0(x, y) with I0, I1 being the intensity images

while Z0, Z1 the depth images taken at instants t and t+ 1.

The regularization term ER(s) is based on the total vari-

ation and takes into consideration the geometry of the scene

which is formulated as:

ER(s) = λI

∫

Ω

|(rx
∂µ

∂x
, ry

∂µ

∂y
)|+ |(rx

∂υ

∂x
, ry

∂υ

∂y
)|dxdy

+λD

∫

Ω

|(rx
∂ω

∂x
, ry

∂ω

∂y
)|dxdy, (4)

where λI , λD are constant weights and rx = 1
√

∂X2

∂x
+ ∂Z2

∂x

,

ry = 1
√

∂Y 2

∂y
+ ∂Z2

∂y

.

As the energy function (Eq. (2)) is based on a linearisa-

tion of the data term (Eq. (3)) and convex TV regularizer

(Eq. (4)), the energy function can be solved using convex

solver. An iterative solver can be obtained by deriving the

energy function (Eq. (2)) as its primal-dual formulation and

implemented in parallel on GPUs. For more implementa-

tion details, the keen reader is recommended to read [11].

3.2. Self­Calibration

Scene flow computation requires that the RGB and depth

data be spatially aligned and temporally synchronized. The

data considered in this paper were captured by Kinect sen-

sors and are temporally synchronized. However, the RGB

and depth channels may not be spatially registered if cal-

ibration was not performed properly before recording the

data. For the RGB-D datasets with spatial misalignment,

we propose an effective self-calibration method to perform

spatial alignment without knowledge of the cameras param-

eters. The alignment is based on a pinhole model through

which depth maps are transformed into the same view of

the RGB video. Let pi be a point in an RGB frame and

p′i be the corresponding point in the depth map. The 2D

homography mapping H satisfying pi = Hp′i is a 3 × 3
projective transformation for the alignment. Following the

method in [7], we chose a set of matching points in an RGB

frame and its corresponding depth map. Using four pairs

of corresponding points, H is obtained through direct linear

transformation. Let p′i = (x′

i, y
′

i, 1)
T , hT

j be the jth row of

H and 0 = [0, 0, 0]T . The vector cross product equation

pi ×Hp′i = 0 is written as [7]:

[

0T −pTi y′ip
T
i

pTi 0T −x′

ip
T
i

]





h1

h2

h3



 = 0, (5)

where the up-to-scale equation is omitted. A better estima-

tion of H is achieved by minimising (for example, using

Levenberg-Marquardt algorithm [15]) the following objec-

tive function with more matching points:

argmin
Ĥ,p̂i,p̂i

′

∑

i

[d(pi, p̂i)
2 + d(p′i, p̂i

′)]

s.t. p̂i = Ĥp̂i
′ for ∀i (6)

In Eq. (6), d(·) is the distance function and Ĥ is the opti-

mal estimation of the homography mapping while p̂i and p̂i
′

are estimated matching points from {pi, p
′

i}. Because the

process of selecting matching points may not be reliable,

the random sample consensus (RANSAC) algorithm is ap-

plied to exclude outliers. By transforming the depth map

using the 2D projective transformation H , the RGB video

and its corresponding depth video are spatially aligned.

3.3. Construction of Hand­crafted SFAM

SFAM encodes a video sample into a single dynamic im-

age to take advantage of the available pre-trained models for

standard ConvNets architecture without training millions of

parameters afresh. There are several ways to encode the

video sequences into dynamic images [2, 25, 60, 51, 52, 1],

but how to encode the scene flow vectors into one dynamic

image still needs to be explored. As described in Sec-

tion 3.1, one scene flow vector s = (µ, υ, ω)T is obtained

by matching/tracking one point in the current frame to an-

other in the reference frame; this is one simple Lagrangian

motion. In order to avoid error in tracking Lagrangian mo-

tion over long term, we construct SFAM using the Eulerian

motion approach and thus, the SFAM inherits the merits of

both the Eulerian and Lagrangian motion. As we argued

earlier, the three entries (µ, υ, ω) in the scene flow vector s

for each point can be considered as three channels. Hence
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a scene flow between two pairs of RGB-D images (I0, Z0

and I1, Z1) can be reorganized as one three-channel SFM

(Xµ, Xυ , Xω), and the RGB-D video sequences can be rep-

resented as SFM sequences. Based on the SFM sequences,

there are several ways to construct the SFAM.

3.3.1 SFAM-D

Inspired by the construction of Depth Motion Maps

(DMM) [60], we accumulate the absolute differences be-

tween consecutive SFMs and denote it as SFAM-D. It is

written as:

SFAM-Di =
T−1
∑

t=1

|Xt+1
i −Xt

i | i ∈ (µ, υ, ω), (7)

where t denotes the map number and T represents the total

number of maps (the same for the following sections). This

representation characterizes the distribution of the accumu-

lated motion difference energy.

3.3.2 SFAM-S

Similarly to SFAM-D, we construct the SFAM-S (S here

denotes the sum) by accumulating the sum between consec-

utive SFMs. This can be written as:

SFAM-Si =

T−1
∑

t=1

(Xt+1
i +Xt

i ) i ∈ (µ, υ, ω). (8)

This representation mainly captures the large motion of an

action after normalization.

3.3.3 SFAM-RP

Inspired by the work reported in [1], we adopt the rank pool-

ing method to encode SFM sequence into one action image.

Let X1, ..., XT denote the SFM sequence where each Xt

contains three channels (Xµ, Xυ , Xω), and ϕ(Xt) ∈ R
d

be a representation or feature vector extracted from each

individual map, Xt. Herein, we directly apply rank pool-

ing to the X , thus, ϕ(·) equals to identity matrix. Let

Vt =
1

t

∑t
τ=1

ϕ(Xτ ) be time average of these features up

to time t. The ranking function associates with each time t

a score S(t|d) =< d, Vt >, where d ∈ R
d is a vector of

parameters. The function parameters d are learned so that

the scores reflect the order of the maps in the video. In gen-

eral, more recent frames are associated with larger scores,

i.e. q > t ⇒ S(q|d) > S(t|d). Learning d is formulated

as a convex optimization problem using RankSVM [36]:

d∗ = ρ(X1, ..., XT ;ϕ) = argmin
d

E(d),

E(d) =
λ

2
‖ d ‖2 +

2

T (T − 1)
×
∑

q>t

max{0, 1− S(q|d) + S(t|d)}.

(9)

The first term in this objective function is the usual

quadratic regular term used in SVMs. The second term is

a hinge-loss soft-counting how many pairs q > t are in-

correctly ranked by the scoring function. Note in particular

that a pair is considered correctly ranked only if scores are

separated by at least a unit margin, i.e. S(q|d) > S(t|d)+1.

Optimizing the above equation defines a function

ρ(X1, ..., XT ;ϕ) that maps a sequence of T SFMs to a sin-

gle vector d∗. Since this vector contains enough informa-

tion to rank all the frames in the SFM sequence, it aggre-

gates information from all of them and can be used as a se-

quence descriptor. In our work, the rank pooling is applied

in a bidirectional manner to convert each SFM sequence

into two action maps, SFAM-RPf (forward) and SFAM-RPb

(backward). This representation captures the different types

of importance associated with frames in one action and as-

signs more weight to recent frames.

3.3.4 SFAM-AMRP

In previous sections, all the three channels are considered as

separate channels in constructing SFAM. However, the spe-

cific relationship (independent or otherwise) between them

is yet to be ascertained. To study this relationship, we

adopt a simple method viz., using amplitude of the scene

flow vector s to represent the relations between the three

components. Thus, for each triple (Xµ, Xυ , Xω) we ob-

tain a new amplitude map, Xam. Based on the Xam =
√

X2
µ +X2

υ +X2
ω , the rank pooling method is applied to

encode the scene flow maps into two action maps, SFAM-

AMRPf and SFAM-AMRPb. This representation exploits

the weights of frames based on the motion magnitude.

3.3.5 SFAM-LABRP

To further investigate the relationship amongst the triple

(Xµ, Xυ , Xω), they are transformed nonlinearly into an-

other space, similarly to the manner of transforming RGB

color space to Lab space. The Lab space is designed to ap-

proximate the human visual system. Based on these trans-

formed maps, the rank pooling method is applied to en-

code the sequence into two action maps, SFAM-LABRPf

and SFAM-LABRPb.

A few examples of the SFAM variants are shown

in Figure 1 for action “Bounce Basketball” from M2I
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Dataset [21]. It can be seen that different variants of SFAM

capture and encode SFM sequence into action maps with

large visual differences.

3.4. Constructing SFAM with Channel Transform
Kernels (SFAM­CTKRP)

In previous sections, we have presented the concept of

SFAM and its several variants. However, it has been empiri-

cally observed that none of them can achieve the best results

for all the datasets or scenarios. One reason adduced for this

is that during the construction of the SFAM, the relationship

amongst the triple (Xµ, Xυ , Xω) are hand-crafted. To learn

the relationship amongst the elements of the triple (Xµ,

Xυ , Xω) from data with ConvNets, we propose a Channel

Transform Kernels as follows. Let Y1, Y2, Y3 be the new

learned maps from the original triple (Xµ, Xυ , Xω), the

relationship between them can be formulated as:

Y1 = ϕ1(ω1Xµ + ω2Xυ + ω3Xω)

Y2 = ϕ2(ω4Xµ + ω5Xυ + ω6Xω) (10)

Y3 = ϕ3(ω7Xµ + ω8Xυ + ω9Xω)

where Y has the same size with X , ω are scalar values and

ϕ denotes the transforms that need to be learned. The learn-

ing framework is illustrated in Figure 3. There are differ-

ent ways to learn these Channel Transform Kernels. For

sake of simplicity, in this work we approximated the trans-

forms by three successive convolution layers, where each

layer comprises nine convolutional kernels with size 1 × 1
and followed by ReLU nonlinear transform, as illustrated in

Figure 4. Based on RankPool layer [1] for temporal encod-

ing, we can construct the SFAM with the proposed Channel

Transform Kernels using ConvNets.

3.5. Multiply­Score Fusion for Classification

After construction of the several variants of SFAM, we

propose to adopt one effective late score fusion method,

namely, multiply-score fusion method, to improve the final

recognition accuracy. Take SFAM-RP for example, as illus-

trated in Figure 2, two SFAM-RP, one SFAM-RPf and one

SFAM-RPb, are generated for one pair of RGB-D videos
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Figure 4: Illustration of approximate computation for Chan-

nel Transform Kernels using convolution kernels followed

by nonlinear transforms.

and they are fed into two different trained ConvNets chan-

nels. The score vectors output by the two ConvNets are

multiplied element-wisely and the max score in the resultant

vector is assigned as the probability of the test sequence.

The index of this max score corresponds to the recognized

class label. This process can be easily extended into multi-

ple channels.

4. Experiments

According to the survey of RGB-D datasets [63], we

chose two public benchmark datasets, which contain both

RGB+depth modalities and have relatively large training

samples to evaluate the proposed method. Specifically

we chose ChaLearn LAP IsoGD Dataset [46] and M2I

Dataset [21]. In the following, we proceed by briefly de-

scribing the implementation details and then present the ex-

periments and results.

4.1. Implementation Details

For scene flow computation, we adopted the public codes

provided by [11]. For rank pooling, we followed the work

reported in [1] where each channel was generated into one

channel dynamic map and then merged the three chan-

nels into one three-channel map. Differently from [1], we

used bidirectional rank pooling. For ChaLearn LAP IsoGD

Dataset, in order to minimize the interference of the back-

ground, it is assumed that the background in the histogram

of depth maps occupies the last peak representing far dis-

tances. Specifically, pixels whose depth values are greater

than a threshold defined by the last peak of the depth his-

togram minus a fixed tolerance (0.1 was set in our experi-

ments) are considered as background and removed from the

calculation of scene flow by setting their depth values to

zero. Through this simple process, most of the background

can be removed and has much contribution to the SFAM.

The AlexNet [17] was adopted in this paper. The train-

ing procedure of the hand-crafted SFAMs was similar to

that described in [17]. The network weights were learned

using the mini-batch stochastic gradient descent with the

momentum set to 0.9 and weight decay set to 0.0005. All
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hidden weight layers used the rectification (RELU) activa-

tion function. At each iteration, a mini-batch of 256 samples

was constructed by sampling 256 shuffled training samples.

All the images were resized to 256 × 256. The learning

rate was set to 10−3 for fine-tuning with pre-trained models

on ILSVRC-2012, and then it was decreased according to

a fixed schedule, which was kept the same for all training

sets. Different datasets underwent different iterations ac-

cording to their number of training samples. For all experi-

ments, the dropout regularization ratio was set to 0.5 in or-

der to reduce complex co-adaptations of neurons in the nets.

The implementation was derived from the publicly available

Caffe toolbox [14] based on one NVIDIA Tesla K40 GPU

card. Unless otherwise specified, all the networks were ini-

tialized with the models trained over ImageNet [17]. For

SFAM-CTKRP, we revised the codes of paper [1] based

on MatConvNet [40]. The multiply score fusion method

is compared with the other two commonly used late score

fusion methods, average and maximum score fusion on both

datasets. This verifies that the SFAMs are likely to be sta-

tistically independent and provide complementary informa-

tion.

4.2. ChaLearn LAP IsoGD Dataset

The ChaLearn LAP IsoGD Dataset [46] includes 47933

RGB-D depth sequences, each RGB-D video representing

one gesture instance. There are 249 gestures performed by

21 different individuals. This dataset does not provide the

true depth values in their depth videos. To use this dataset

for scene flow calculation, we estimate the depth values us-

ing the average minimum and maximum values provided

for CGD dataset. The dataset is divided into training, vali-

dation and test sets. As the test set is not available for public

usage, we report the results on the validation set. For this

dataset the training underwent 25K iterations and the learn-

ing rate decreased every 10K iterations.

Results. Table 1 shows the results of six variants of

SFAM, and compares them with methods in the litera-

ture [45, 46, 1, 52]. Among these methods, MFSK com-

bined 3D SMoSIFT [47] with (HOG, HOF and MBH) [48]

descriptors. MFSK+DeepID further included Deep hidden

IDentity (Deep ID) feature [38]. Thus, these two meth-

ods utilized not only hand-crafted features but also deep

learning features. Moreover, they extracted features from

RGB and depth separately, concatenated them together, and

adopted Bag-of-Words (BoW) model as the final video rep-

resentation. The other methods, WHDMM+SDI [52, 1], ex-

tracted features and conducted classification with ConvNets

from depth and RGB individually and adopted multiply-

score fusion for final recognition.

Compared with these methods, the proposed SFAM out-

performed all of them significantly. It is worth noting that

all the depth values used in the proposed SFAM were es-

timated rather than the exact real depth values. Despite

the possible estimation errors, our method still achieved

promising results. Interestingly, the proposed variants of

SFAM are complementary to each other and can improve

each other largely by using multiply-score fusion. Even

though this dataset is large, on average 144 video clips per

class, it is still much smaller compared with 1200 images

per class in ImageNet. Thus, directly training from scratch

cannot compete with fine-tuning the trained models over

ImageNet and this is evident in the results reported in Ta-

ble 1. By comparing different types of SFAM, we can see

that the simple SFAM-S method achieved the best results

among all types of hand-designed SFAMs. Due to the rela-

tively large training data, SFAM-CTKRP achieved the best

result among all the variants, even though the approximate

rank pooling in the work reported in [1] was shown to be

worse than rank pooling solved by RankSVM [36]. The rea-

sons for these two phenomenona probably are as follows:

under the inaccurate estimation of the depth values, the

scene flow computation will be affected and based on this

inaccurate scene flow vectors, rank pooling can not achieve

its full efficacy. In other words, the rank pooling method

is sensitive to noise. Instead, the proposed Channel Trans-

form Kernels cannot only exploit the relations amongst the

channels but also decrease the effects of noise after channel

transforms.

Method Accuracy

MFSK [45, 46] 18.65%

MFSK+DeepID [45, 46] 18.23%

SDI [1] 20.83%

WHDMM [52] 25.10%

WHDMM+SDI [52, 1] 25.52%

SFAM-D (training from scratch) 9.23%

SFAM-D 18.86%

SFAM-S (training from scratch) 18.10%

SFAM-S 25.83%

SFAM-RP 23.62%

SFAM-AMRP 18.21%

SFAM-LABRP 23.35%

SFAM-CTKRP 27.48%

Max-Score Fusion All 33.24%

Average-Score Fusion All 34.86%

Multiply-Score Fusion All 36.27%

Table 1: Results and Comparison on the ChaLearn LAP

IsoGD Dataset.

4.3. M2I Dataset

Multi-modal & Multi-view & Interactive (M2I)

Dataset [21] provides person-person interaction actions

and person-object interaction actions. It contains both the
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front and side views; denoted as Front View (FV) and

Side View (SV). It consists of 22 action categories and a

total of 22 unique individuals. Each action was performed

twice by 20 groups (two persons in a group). In total, M2I

dataset contains 1760 samples (22 actions × 20 groups ×
2 views × 2 run). For evaluation, all samples were divided

with respect to the groups into a training set (8 groups), a

validation set (6 groups) and a test set (6 groups). The final

action recognition results are obtained with the test set. For

this dataset the training underwent 6K iterations and the

learning rate decreased every 3K iterations.

Results. We followed the experimental settings as

in [21] and compared the results on two scenarios: single

task scenario and cross-view scenario. The baseline meth-

ods were based on iDT features [48] generated from opti-

cal flow and has been shown to be very effective in 2D ac-

tion recognition. Specifically, for the BoW framework, a set

of local spatio-temporal features were extracted, including

iDT-Tra, iDT-HOG, iDT-HOF, iDT-MBH, iDT-HOG+HOF,

iDT-HOF+MBH and iDT-COM (concatenation of all de-

scriptors); for fisher vector framework, they only used the

iDT-COM feature for evaluation. For comparisons, we only

show several best results achieved by baseline methods for

each scenario. Table 2 shows the comparisons on the M2I

Dataset for single task scenario, that is, learning and test-

ing in the same view while Table 3 presents the compar-

isons for cross-view scenario. Due to the lack of training

data, SFAM-CTKRP could not converge steadily and the

results varied largely, thus, we did not show its results. For

this dataset, SFAM-AMRP achieved the best result for side

view while SFAM-LABRP achieved the best result for front

view. From Table 2 we can see that for scene flow esti-

mation based on real true depth values, the rank pooling-

based method achieved better results than SFAM-D and

SFAM-S, which are consistent with the conclusion in [21].

SFAM-AMRP achieved the best results for two cross-view

scenarios which can be seen from Table 3. Interestingly,

even though our proposed SFAM did not solve any trans-

fer learning problem as in [21] but directly training with the

side/front view and testing in the front/side view, it still out-

performed the best baseline method significantly, especially

in the SV → FV setting. This bonus advantage reflects the

effectiveness of proposed method.

5. Conclusion and Future Work

We propose a novel method for action recognition based

on scene flow. In particular, scene flow vectors are esti-

mated from registered RGB and depth data. A new repre-

sentation based on scene flow vectors, SFAM, and several

variants that capture the spatio-temporal information from

different perspectives are proposed for 3D action recogni-

tion. In order to exploit the relationships amongst the three

channels of scene flow map, we propose to learn the Chan-

Method
Accuracy

SV FV

iDT-Tra (BoW) [21] 69.8% 65.8%

iDT-COM (BoW) [21] 76.9% 75.3%

iDT-COM (FV) [21] 80.7% 79.5%

iDT-MBH (BoW) [21] 77.2% 79.6%

SFAM-D 71.2% 83.0%

SFAM-S 70.1% 75.0%

SFAM-RP 79.9% 81.8%

SFAM-AMRP 82.2% 78.0%

SFAM-LABRP 72.0% 83.7%

Max-Score Fusion All 87.6% 88.8%

Average-Score Fusion All 88.2% 89.1%

Multiply-Score Fusion All 89.4% 91.2%

Table 2: Comparison on the M2I Dataset for single task sce-

nario (learning and testing in the same view).

Method
Accuracy

SV → FV FV → SV

iDT-Tra [21] 43.3% 39.2%

iDT-COM [21] 70.2% 67.7%

iDT-HOG+MBH [21] 75.8% 71.8%

iDT-HOG+HOF [21] 78.2% 72.1%

SFAM-D 66.7% 65.2%

SFAM-S 68.2% 60.2%

SFAM-RP 71.6% 65.2%

SFAM-AMRP 77.7% 66.7%

SFAM-LABRP 76.9% 65.9%

Max-Score Fusion All 84.7% 73.8%

Average-Score Fusion All 85.3% 75.3%

Multiply-Score Fusion All 87.6% 76.5%

Table 3: Comparison on the M2I Dataset for cross-view sce-

nario.(SV → FV: learning in the side view and test in the

front view; FV → SV: learning in the front view and testing

in the side view.)

nel Transform Kernels, end-to-end, with ConvNets from

data. Experiments on two benchmark datasets have demon-

strated the effectiveness of the proposed method. For the fu-

ture work, we will improve the temporal encoding method

based on scene flow vectors.

Acknowledgement

The authors would like to thank NVIDIA Corporation

for the donation of a Tesla K40 GPU card used in this re-

search.

602



References

[1] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould.

Dynamic image networks for action recognition. In CVPR,

2016.

[2] A. F. Bobick and J. W. Davis. The recognition of human

movement using temporal templates. IEEE Transactions on

pattern analysis and machine intelligence, 23(3):257–267,

2001.

[3] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In CVPR, pages 2625–2634,

2015.

[4] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neu-

ral network for skeleton based action recognition. In CVPR,

pages 1110–1118, 2015.

[5] B. Fernando, S. Gavves, O. Mogrovejo, J. Antonio, A. Gho-

drati, and T. Tuytelaars. Rank pooling for action recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 2016.

[6] S. Hadfield and R. Bowden. Scene particles: Unregularized

particle-based scene flow estimation. IEEE transactions on

pattern analysis and machine intelligence, 36(3):564–576,

2014.

[7] R. Hartley and A. Zisserman. Multiple view geometry in

computer vision. Cambridge university press, 2003.

[8] M. Hornacek, A. Fitzgibbon, and C. Rother. Sphereflow: 6

DoF scene flow from RGB-D pairs. In CVPR, pages 3526–

3533, 2014.

[9] Y. Hou, Z. Li, P. Wang, and W. Li. Skeleton optical spec-

tra based action recognition using convolutional neural net-

works. IEEE Transactions on Circuits and Systems for Video

Technology, 2016.

[10] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly learning

heterogeneous features for RGB-D activity recognition. In

CVPR, pages 5344–5352, 2015.

[11] M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers.

A primal-dual framework for real-time dense RGB-D scene

flow. In ICRA, pages 98–104, 2015.

[12] S. Ji, W. Xu, M. Yang, and K. Yu. 3D convolutional neu-

ral networks for human action recognition. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 35(1):221–

231, 2013.

[13] C. Jia and Y. Fu. Low-rank tensor subspace learning for rgb-d

action recognition. IEEE Transactions on Image Processing,

25(10):4641–4652, 2016.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proc. ACM

international conference on Multimedia (ACM MM), pages

675–678, 2014.

[15] C. Kanzow, N. Yamashita, and M. Fukushima. Withdrawn:

Levenberg–marquardt methods with strong local conver-

gence properties for solving nonlinear equations with convex

constraints. Journal of Computational and Applied Mathe-

matics, 173(2):321–343, 2005.

[16] Y. Kong and Y. Fu. Bilinear heterogeneous information ma-

chine for RGB-D action recognition. In CVPR, pages 1054–

1062, 2015.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proc. Annual Conference on Neural Information Processing

Systems (NIPS), pages 1106–1114, 2012.

[18] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Be-

yond gaussian pyramid: Multi-skip feature stacking for ac-

tion recognition. In CVPR, pages 204–212, 2015.

[19] C. Li, Y. Hou, P. Wang, and W. Li. Joint distance maps based

action recognition with convolutional neural network. IEEE

Signal Processing Letters, 2017.

[20] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a

bag of 3D points. In CVPRW, pages 9–14, 2010.

[21] A.-A. Liu, N. Xu, W.-Z. Nie, Y.-T. Su, Y. Wong, and

M. Kankanhalli. Benchmarking a multimodal and multiview

and interactive dataset for human action recognition. IEEE

Transactions on cybernetics, 2016.

[22] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal

LSTM with trust gates for 3D human action recognition. In

Proc. European Conference on Computer Vision, pages 816–

833, 2016.

[23] J. Liu and G. Wang. Global context-aware attention lstm

networks for 3d action recognition. In CVPR, 2017.

[24] C. Lu, J. Jia, and C.-K. Tang. Range-sample depth feature

for action recognition. In CVPR, pages 772–779, 2014.

[25] J. Man and B. Bhanu. Individual recognition using gait en-

ergy image. IEEE transactions on pattern analysis and ma-

chine intelligence, 28(2):316–322, 2006.

[26] M. Menze and A. Geiger. Object scene flow for autonomous

vehicles. In CVPR, pages 3061–3070, 2015.

[27] B. Ni, P. Moulin, and S. Yan. Pose adaptive motion feature

pooling for human action analysis. International Journal of

Computer Vision, 111(2):229–248, 2015.

[28] S. Nie, Z. Wang, and Q. Ji. A generative restricted boltz-

mann machine based method for high-dimensional motion

data modeling. Computer Vision and Image Understanding,

pages 14–22, 2015.

[29] O. Oreifej and Z. Liu. HON4D: Histogram of oriented 4D

normals for activity recognition from depth sequences. In

CVPR, pages 716–723, 2013.

[30] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of visual

words and fusion methods for action recognition: Compre-

hensive study and good practice. Computer Vision and Image

Understanding, 2016.

[31] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition

with stacked fisher vectors. In ECCV, pages 581–595, 2014.

[32] J. Quiroga, T. Brox, F. Devernay, and J. Crowley. Dense

semi-rigid scene flow estimation from RGBD images. In

ECCV, pages 567–582. 2014.

[33] H. Rahmani and A. Mian. Learning a non-linear knowledge

transfer model for cross-view action recognition. In CVPR,

pages 2458–2466, 2015.

[34] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+

D: A large scale dataset for 3D human activity analysis. In

CVPR, 2016.

603



[35] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, pages

568–576, 2014.

[36] A. J. Smola and B. Schölkopf. A tutorial on support vector

regression. Statistics and computing, 14(3):199–222, 2004.

[37] D. Sun, E. B. Sudderth, and H. Pfister. Layered RGBD scene

flow estimation. In CVPR, pages 548–556, 2015.

[38] Y. Sun, X. Wang, and X. Tang. Deep learning face represen-

tation from predicting 10,000 classes. In CVPR, 2014.

[39] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3D convolutional net-

works. In ICCV, pages 4489–4497, 2015.

[40] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In Proceeding of the ACM Int. Conf. on

Multimedia, 2015.

[41] S. Vedula, P. Rander, R. Collins, and T. Kanade. Three-

dimensional scene flow. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 27(3):475–480, 2005.

[42] V. Veeriah, N. Zhuang, and G.-J. Qi. Differential recur-

rent neural networks for action recognition. In ICCV, pages

4041–4049, 2015.

[43] R. Vemulapalli, F. Arrate, and R. Chellappa. Human action

recognition by representing 3D skeletons as points in a lie

group. In CVPR, pages 588–595, 2014.

[44] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene

flow. In ICCV, pages 1377–1384, 2013.

[45] J. Wan, G. Guo, and S. Z. Li. Explore efficient local features

from RGB-D data for one-shot learning gesture recognition.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 38(8):1626–1639, Aug 2016.

[46] J. Wan, S. Z. Li, Y. Zhao, S. Zhou, I. Guyon, and S. Escalera.

Chalearn looking at people RGB-D isolated and continuous

datasets for gesture recognition. In Proc. IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition Workshops (CVPRW), pages 1–9, 2016.

[47] J. Wan, Q. Ruan, W. Li, G. An, and R. Zhao. 3d

smosift: three-dimensional sparse motion scale invariant fea-

ture transform for activity recognition from rgb-d videos.

Journal of Electronic Imaging, 23(2), 2014.

[48] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, pages 3551–3558, 2013.

[49] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet en-

semble for action recognition with depth cameras. In CVPR,

pages 1290–1297, 2012.

[50] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

pages 4305–4314, 2015.

[51] P. Wang, W. Li, Z. Gao, C. Tang, J. Zhang, and P. O. Ogun-

bona. Convnets-based action recognition from depth maps

through virtual cameras and pseudocoloring. In ACM MM,

pages 1119–1122, 2015.

[52] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. Ogun-

bona. Action recognition from depth maps using deep con-

volutional neural networks. Human-Machine Systems, IEEE

Transactions on, 46(4):498–509, 2016.

[53] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, and P. Ogunbona.

Large-scale isolated gesture recognition using convolutional

neural networks. In Proceedings of ICPRW, 2016.

[54] P. Wang, W. Li, S. Liu, Y. Zhang, Z. Gao, and P. Ogunbona.

Large-scale continuous gesture recognition using convolu-

tional neural networks. In Proceedings of ICPRW, 2016.

[55] P. Wang, W. Li, P. Ogunbona, Z. Gao, and H. Zhang. Mining

mid-level features for action recognition based on effective

skeleton representation. In DICTA, 2014.

[56] P. Wang, Z. Li, Y. Hou, and W. Li. Action recognition based

on joint trajectory maps using convolutional neural networks.

In ACM MM, pages 102–106, 2016.

[57] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and

D. Cremers. Stereoscopic scene flow computation for 3D

motion understanding. International Journal of Computer

Vision, 95(1):29–51, 2011.

[58] C. Wu, J. Zhang, S. Savarese, and A. Saxena. Watch-n-

patch: Unsupervised understanding of actions and relations.

In CVPR, pages 4362–4370, 2015.

[59] X. Yang and Y. Tian. Super normal vector for activity recog-

nition using depth sequences. In CVPR, pages 804–811,

2014.

[60] X. Yang, C. Zhang, and Y. Tian. Recognizing actions using

depth motion maps-based histograms of oriented gradients.

In ACM MM, pages 1057–1060, 2012.

[61] M. Yu, L. Liu, and L. Shao. Structure-preserving binary rep-

resentations for rgb-d action recognition. IEEE transactions

on pattern analysis and machine intelligence, 38(8):1651–

1664, 2016.

[62] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short snip-

pets: Deep networks for video classification. In CVPR, pages

4694–4702, 2015.

[63] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang.

RGB-D-based action recognition datasets: A survey. Pattern

Recognition, 60:86–105, 2016.

[64] Y. Zhang and C. Kambhamettu. On 3d scene flow and struc-

ture estimation. In CVPR, pages 778–785, 2001.

604


