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Abstract

Retrieving 3D shapes with sketches is a challenging

problem since 2D sketches and 3D shapes are from two

heterogeneous domains, which results in large discrepancy

between them. In this paper, we propose to learn barycen-

ters of 2D projections of 3D shapes for sketch-based 3D

shape retrieval. Specifically, we first use two deep convo-

lutional neural networks (CNNs) to extract deep features of

sketches and 2D projections of 3D shapes. For 3D shapes,

we then compute the Wasserstein barycenters of deep fea-

tures of multiple projections to form a barycentric repre-

sentation. Finally, by constructing a metric network, a dis-

criminative loss is formulated on the Wasserstein barycen-

ters of 3D shapes and sketches in the deep feature space

to learn discriminative and compact 3D shape and sketch

features for retrieval. The proposed method is evaluated

on the SHREC’13 and SHREC’14 sketch track benchmark

datasets. Compared to the state-of-the-art methods, our

proposed method can significantly improve the retrieval

performance.

1. Introduction

With the development of touch-screen technology,

sketching has became much easier as a way to interact

with computer systems such as tablet computers and smart

phones. Sketch-based 3D shape retrieval has been receiv-

ing more and more attention in the community of computer

graphics and computer vision [15, 13, 27, 28]. In compari-

son to text and 3D shapes as queries, sketches are intuitive

and convenient for users to search 3D models.

Compared to 3D shape retrieval using 3D shapes as

queries, sketch-based 3D shape retrieval is much more chal-

lenging. Since sketches are highly abstract and subjectively

drawn, there are usually large variations with them. More-

over, due to the discrepancy between the sketch and 3D

shape domains, there are also large cross-domain variations

between 2D sketches and 3D shapes, which usually degen-

erates the performance of the learning model.

In recent years, extensive research efforts have been ded-

icated to sketch-based 3D shape retrieval. In [13], an inte-

grated descriptor ZFEC is proposed, including the region-

based Zernike moments, contour-based Fourier descrip-

tor, eccentricity feature and circularity feature, to describe

sketches and projections of 3D shapes. Then, in order to

align sketches and 3D shapes, the representative views of

3D shapes are selected with the defined view context. The

shape context matching is used to compare the sketch to

each selected view with the ZFEC feature for retrieval. In

[12], silhouettes of 3D shapes from the defined views are

used to represent 3D shapes. Then, three kinds of de-

scriptors, histogram of edge local orientations (HELO), his-

togram of oriented gradients (HOG) and Fourier descrip-

tors, are extracted to describe sketches and 3D shapes. The

KD-tree with the Manhattan distance is used for matching

sketches to 2D projections of 3D shapes.

Besides the hand-crafted features, learning-based fea-

tures are also extracted to represent sketches and 3D shapes

for sketch-based 3D shape retrieval. In [15], followed by

the Gabor local line-based features (GALIFs), the bag-

of-feature (BOF) histograms are extracted to represent

sketches and 2D projections of 3D shapes. Then the min-

imum distance between the BOF histograms of the sketch

and 2D projections is used as similarity for retrieval. Fu-

ruya et al. [10] proposed the BF-SIFT feature to describe

sketches and 2D projections, which is the dense SIFT with

the BOF method. By constructing a Laplacian graph in

the feature space of the sketches and 2D projections of 3D
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shapes, the manifold ranking method is employed to calcu-

late the distances between sketches and 2D projections for

retrieval.

Recently, due to the success of deep neural networks in

different applications, deep features have been proposed for

sketch-based 3D shape retrieval. In [27], two views are first

selected to characterize 3D shapes, where the difference be-

tween their angles is larger than 45 degrees. Then, two

Siamese convolutional neural networks (CNNs) are used,

one for the sketch domain and the other for the view do-

main. The within-domain loss and cross-domain loss are

defined to learn discriminative sketch and view features for

retrieval. Zhu et al. [28] employed view-invariant local

depth scale-invariant feature transform (LD-SIFT) [8] to

characterize 3D shapes. Then, the pyramid cross-domain

neural networks are constructed, where the output layers of

the two neural networks from the same class are identical.

The outputs from the hidden layers are used as the learned

features for retrieval.

The 3D shape retrieval task using 3D shapes as queries is

also related to our task. In 3D shape retrieval, Shi et al. [18]

proposed the deep panoramic representation for 3D shape

retrieval, where the CNN is applied to the panoramic rep-

resentation of 3D shapes for learning deep shape features.

Based on the CNN features of 2D projections of 3D shapes,

Bai et al. [1] proposed a real-time shape retrieval method by

speeding up multi-view matching. In [23], by performing a

max view-pooling operation, multi-view CNN is proposed

to learn a compact shape feature from multiple projections

of 3D shapes.

In most of the aforementioned approaches, the retrieval

task is converted into the problem of matching sketches to

multiple views of 3D shapes (sketch-based 3D shape re-

trieval) or the multi-view matching problem (3D shape re-

trieval), where multiple separate descriptors from views of

3D shapes are used. In this paper, instead of independently

using multiple views to characterize 3D shapes, we propose

to learn Wasserstein barycenters of multiple views of 3D

shapes in the feature space for sketch-based shape retrieval.

It is expected that we can take full advantage of the infor-

mation of multiple views of 3D shapes simultaneously to

characterize 3D shapes. First, we project 3D shapes to a

set of rendered views. We employ two deep CNNs to ex-

tract the CNN features of sketches and 2D projections. The

Wasserstein barycenters of CNN features of 2D projections

can then be computed to characterize 3D shapes. Conse-

quently, with a metric network, a discriminative loss is de-

fined on the barycenters of 3D shapes and sketches in the

feature space, which can maximize the within-class simi-

larity and minimize the between-class similarity across the

sketch and view domains, simultaneously. Experimental re-

sults on two benchmark datasets demonstrate the effective-

ness of the proposed approach for sketch-based 3D shape

retrieval.

To summarize, our main contributions are as follows :

• We propose to use the Wasserstein barycenters of

multiple projections of 3D shapes to characterize 3D

shapes;

• We formulate a deep metric learning model to learn the

Wasserstein barycentric representation;

• We significantly outperform the state-of-the-art

sketch-based 3D shape retrieval methods on two large

benchmark datasets.

The rest of the paper is organized as follows. Section

2 introduces the background of the Wasserstein distance

and Wasserstein barycenters. In Section 3, we propose the

learning-based Wasserstein barycentric representation for

sketch-based 3D shape retrieval. Section 4 presents the ex-

perimental results and Section 5 concludes the paper.

2. Background

In this section, we briefly review the definition of

the Wasserstein distance and introduce the Wasserstein

barycenters.

2.1. Wasserstein distance

The Wasserstein distance [3] defines a distance between

two probability distributions, which arises in the theory of

optimal transformation [26]. The Wasserstein distance has

been widely used in computer vision [17, 21] and machine

learning [16, 5]. Let p ∈ R
r×1 and q ∈ R

s×1 be two prob-

ability distributions, respectively. The set of transportation

plans between probability distributions p and q is defined

as follows:

R(p, q) =
{

T ∈ R
r×s
+ ;T1 = p,T T

1 = q
}

(1)

where T is the transportation plan and 1 is a column vector

whose elements are 1. The Wasserstein distance D(p, q)
between p and q can be defined as the following optimal

value:

D(p, q) = min
T∈R(p,q)

< M ,T > (2)

where M ∈ R
r×s is a pairwise distance matrix between p

and q, called the ground metric, < M ,T > is the inner-

product of M and T , i.e., < M ,T >= tr(MTT ). The

Wasserstein distance D(p, q) can be viewed as the cost of

the optimal transportation plan that transports the mass of p

to the mass of q.

Since in many cases the linear program problem in Eq.

(2) does not have a unique solution, Cuturi [5] proposed to

add an entropy regularization term to Eq. (2) as:

D(p, q) = min
T∈R(p,q)

< M ,T > +γ < T , logT > (3)
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where < T , logT > is the negative entropy and γ is the

regularization parameter. The problem in Eq. (3) can have

a unique solution and the optimal solution can be obtained

as:

T̂ = diag(u)Kdiag(v) (4)

where K = e−M/γ , and vectors u and v can be solved

using the Sinkhorn’s algorithm [20].

2.2. Wasserstein barycenters

The barycenters pb of a set of probability distributions

pi ∈ R
r×1, i = 1, 2, · · · , n, can be defined as [7, 6, 4]:

argminpb

n
∑

i=1

λiD(pb,pi) (5)

where D(pb,pi) is the Wasserstein distance between pb and

pi and λi is the weight. Based on the entropy regularized

Wasserstein distance, Benamou et al. [2] proposed to use

the Sinkhorn fixed-point algorithm to solve Eq. (5). The

regularized Wasserstein barycenters pb can be obtained by

iteratively computing pt
b:

pt
b =

n
∏

i=1

(KTat
i)

λi

ct+1
i =

pt
b

KTat
i

;at+1
i =

pi

Kct+1
i

(6)

where pt
b is the tth iteration of the Wasserstein barycen-

ters pb, at
i and cti are auxiliary variables, a1

i = 1, t =
1, 2, · · · , Q, and Q is the iteration number. It is noted that

in Eq. (6)
∏

xi and x
y

are the element-wise product and

division operations. The readers can refer to Proposition 2

in [2] and Proposition 1 in [4] for more details.

3. Proposed Approach

In this section, we present our learned Wasserstein

barycenters of 3D shapes for sketch-based 3D shape re-

trieval. In subsection 3.1, we propose barycentric repre-

sentations of projections of 3D shapes in the CNN feature

space. In subsection 3.2, we present cross-domain matching

with the learned Wasserstein barycenters.

3.1. Wasserstein barycentric representations of 3D
shapes

The Wasserstein barycenters can be used to estimate the

mean of a family of probability distributions. Specifically,

the Wasserstein barycenters have been applied in a variety

of vision problems, such as texture synthesis [9] and color

editing [4]. Due to the property of the Wasserstein barycen-

ters that can capture the structure of the high-dimensional

data well [6], in this work, we propose to use the Wasser-

stein barycenters of projections from multiple views in the

feature space to characterize 3D shapes.

Our Wasserstein barycentric representations start from

multiple projections of 3D shapes. Following the settings in

[23], we uniformly scale each 3D shape and put the centroid

of the shape at the origin of the spherical coordinate system.

By placing V virtual cameras around the 3D shape evenly,

V rendered views can be obtained. For each view, we render

the 3D shape to a greyscale image as a projection.

Once 2D projections of 3D shapes are obtained, we

can extract the deep CNN features of 2D projections. In

this work, we employ the AlexNet [11] for the CNN fea-

tures, which consists of five convolutional layers followed

by three fully connected layers. For each projection, the last

fully connected layer after the ReLU non-linear activation

function is used as the deep feature, whose feature size is

4096.

Suppose that there are n1 shapes and we use Si to rep-

resent the ith shape. For the shape Si, we denote the

deep CNN feature of the projection from view j by xi,j ,

j = 1, 2, · · · , V . Since the Wasserstein distance is defined

in the space of probability distributions, we need to guar-

antee each element xi,j(l) in the CNN feature xi,j to be

xi,j(l) ≥ 0 and
∑

l xi,j(l) = 1. In the final fully con-

volutional layer of the AlexNet we use the ReLU func-

tion as the activation fuction. Therefore, we can normal-

ize xi,j to be
∑

l xi,j(l) = 1 as input to compute the

Wasserstein barycenters. Given the normalized CNN fea-

ture xi,j ∈ R
L×1
+ , j = 1, 2, · · · , V , the isotropic Wasser-

stein barycenters hi ∈ R
L×1 of these features can be ob-

tained as:

argminhi

V
∑

j=1

1

V
D(hi,xi,j) (7)

where D(hi,xi,j) is the entropy regularized Wasserstein

distance between hi and xi,j . By iteratively computing Eq.

(6), the Wasserstein barycenters hi can be solved.

Fig. 1 shows a visualization of the Wasserstein barycen-

ters of the deep features of projects from ten classes of 3D

shapes. We use the t-distributed stochastic neighbor em-

bedding (t-SNE) technique [25] to reduce the dimension to

two for visualization. From this figure, we can see that in

most cases the shapes from the same class are grouped to-

gether (marked in the same color) while the shapes from

different classes are separated. This implies that although

there are complex geometric structural variations with 3D

shapes the Wasserstein barycenters of the deep features of

the projections has the potential to represent 3D shapes dis-

criminatively.

It is noted that the Wasserstein barycenters hi are differ-

ent from the linear average
∑V

j=1
1
V xi,j , corresponding to

the Euclidean distance based barycenters. The linear aver-

aging of the feature xi,j , as a linear element-wise operation,

does not consider the geometric structure of xi,j . There-

fore, the linear averaging is geometrically-oblivious. Based
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Figure 1. Visualization of the Wasserstein barycenters of the deep

features of projections from ten classes of 3D shapes: airplane,

alarm clock, ant, apple, armchair, ashtray, axe, banana, barn and

baseball bat. The Wasserstein barycenters from the same class of

shapes are marked in the same color.

on the ground metric, the Wasserstein distance seeks an op-

timal transportation plan to transport the mass of one his-

togram to the mass of the other, which considers the infor-

mation of the non-corresponding bins. Thus, based on the

Wasserstein distance, the Wasserstein barycentric represen-

tation as a non-linear operation can capture the structure of

the deep features xi,j better.

3.2. Crossdomain matching with learned Wasser
stein barycenters

In this subsection, we present to learn the Wasserstein

barycenters of the deep CNN features of 3D shapes for

sketch-based 3D shape retrieval. As mentioned in Section

3.1, we employ two AlexNets to extract deep CNN features

of 2D projections and sketches, respectively. Once the CNN

features from 3D shapes and sketches are obtained, we use

fully connected layers to construct a metric network. Fig. 2

illustrates the cross-domain matching framework with two

networks, one for sketch network and the other for view net-

work. In the view network, the CNNs which correspond to

different views share the same parameters. Moreover, the

structure of the AlexNet for sketches is the same to that of

the AlexNet for 3D shapes. Nonetheless, the weights and

biases of the two networks are different.

The constructed metric network can map the Wasserstein

barycenters of 2D projections and the sketch features to the

corresponding outputs. Let the outputs of the view net-

work and sketch network be z1
i and z2

j , i = 1, 2, · · · , n1,

j = 1, 2, . . . , n2, n1 and n2 are the numbers of 3D shapes

and sketches, respectively. In the transformed non-linear

feature space, it is desirable that across the domains the sim-

ilarity between the features z1
i and z2

j from the same class is

as large as possible and the similarity between the features

from different classes is as small as possible while within

the domains both outputs z1
i and z2

j are discriminative.

To this end, we propose the following discriminative loss

function:

(θ̂1, θ̂2) = argminθ1,θ2

1
∑

nj

n2
∑

j=1

∑

i∈c(j)

‖z2
j − z1

i ‖
2
2+

1
∑

mj

n2
∑

j=1

∑

i/∈c(j)

max(0, α− ‖z2
j − z1

i ‖
2
2) + β1L1 + β2L2

(8)

where max(0, α − ‖z2
j − z1

i ‖
2
2) is a hinge loss function

to penalize the similarity from different classes that is less

than the threshold α, c(j) denotes the class label of the fea-

ture z2
j , nj and mj are the numbers of positive and negative

shape samples of the jth sketch, L1 and L2 are the reg-

ularization terms to achieve discrimination of the within-

domain shape and sketch features, θ1 = {W1, b1} and

θ2 = {W2, b2} are the sets of weights and bias of the view

and sketch networks, respectively, β1 and β2 are the regu-

larization parameters. In Eq. (8), the regularized discrimi-

nation term L1 is defined as:

L1 = tr(

n1
∑

i=1

(z1
i −m1

c(i))(z
1
i −m1

c(i))
T )−

tr(

n1
∑

i=1

(m1
c(i) −m1)(m1

c(i) −m1)T )

(9)

where m1
c(i) is the mean of the shape features from class

label c(i), m1 is the mean of the shape features from all

classes, the first term is the within-class scatter of the shape

features and the second term is the between-class scatter of

the shape features. Similar to Eq. (9), the discrimination

term L2 is defined as:

L2 = tr(

n2
∑

j=1

(z2
j −m2

c(j))(z
2
j −m2

c(j))
T )−

tr(

n2
∑

j=1

(m2
c(j) −m2)(m2

c(j) −m2)T )

(10)

where m2
c(j) is the mean of the sketch features from class

label c(j), m2 is the mean of the sketch features from all

classes.

In the proposed cross-domain matching model Eq. (8),

the first two terms minimize the within-class distances and

maximize the between-class distances between pairs of

cross-domain features, simultaneously. The regularization

terms minimize the within-class scatter and maximize the

between-class scatter of the 3D shape and sketch features,

respectively.
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Figure 2. The cross-domain matching framework for sketch-based 3D shape retrieval. By rendering 3D shapes at multiple views, we extract

deep CNN features of 2D projections. The Wasserstein barycenters of the deep CNN features are computed to represent 3D shapes. With

the metric network of fully connected layers, we then formulate a discriminative loss to learn sketch and shape features for cross-domain

retrieval.

Let ‖z2
j − z1

i ‖
2
2 be J1(θ1,θ2). For the sketch network,

∂J1(θ1,θ2)

∂W k
2

,
∂J1(θ1,θ2)

∂bk
2

, ∂L2

∂W k
2

and ∂L2

∂bk
2

can be easily com-

puted with the back-propagation method. In the view net-

work, the Wasserstein barycenters hi (the input of the met-

ric network) are computed from the deep CNN features xi,j

(the final fully connected layer) of multiple views. There-

fore,
∂J1(θ1,θ2)

∂xi,j
can be calculated from

∂J1(θ1,θ2)
∂hi

. Suppose

that the Wasserstein barycenters hi can converge after Q

iterations. Thus, from Eq. (6), we can have

∂J1(θ1,θ2)

∂xi,j
=

1

V
AT ∂J1(θ1,θ2)

∂hi

A = [(
KTxi,j

Kc
Q
j

)
1
V
−1 ·

(KT )1

Kc
Q
j

·
V
∏

j′=1;j′ 6=j

(KTa
Q

j′
)

1
V

, · · · , (
KTxi,j

Kc
Q
j

)
1
V
−1 ·

(KT )L

Kc
Q
j

·

V
∏

j′=1;j′ 6=j

(KTa
Q

j′
)

1
V ]

(11)

where (KT )l is the lth column of the matrix KT , l =
1, 2, · · · , L, x

y
,
∏

xi and x · y are the element-wise op-

erations. The calculation of
∂J1(θ1,θ2)

∂xi,j
is summarized in

Algorithm. 1. Similarly, ∂L1

∂xi,j
can also be computed from

∂L1

∂hi
. Once

∂J1(θ1,θ2)
∂xi,j

and ∂L1

∂xi,j
are obtained,

∂J1(θ1,θ2)

∂W k
1

,

∂J1(θ1,θ2)

∂bk
1

, ∂L1

∂W k
1

and ∂L1

∂bk
1

can be computed with the back-

propagation method in the CNN.

Once the view and sketch networks are trained, the out-

puts of the networks are used as the final features of 3D

shapes and sketches. For each query sketch, the Euclidean

distance between the sketch and 3D shape features is then

Algorithm 1 Calculation of the gradient
∂J1(θ1,θ2)

∂xi,j
in the view

network .

Input: CNN features xi,j ; view number V ; kernel matrix

K; gradient
∂J1(θ1,θ2)

∂hi
.

Output: gradient
∂J1(θ1,θ2)

∂xi,j
.

Initialize a1
j : a1

j = 1, j = 1, 2, · · · , V .

For t = 1, 2, · · · , Q:

1. Compute hi: hi =
∏V

j=1(K
Tat

j)
1
V ;

2. Compute ct+1
j and at+1

j :

ct+1
j = hi

KTa
t+1

j

;

at+1
j =

xi,j

Kc
t+1

j

.

Calculate the gradient
∂J1(θ1,θ2)

∂xi,j
with Eq. (11) until the dif-

ference between hi in successive iterations is smaller than

a setting threshold.

used as similarity for sketch-based 3D shape retrieval.

4. Experimental Results

In this section, we first evaluate our learned Wasser-

stein barycentric representation method for sketch-based

3D shape retrieval, and then compare it to the state-of-the-

art sketch-based 3D shape retrieval methods on two bench-

mark datasets, i.e., SHREC’13 [13] and SHREC’14 [14]

sketch track benchmark datasets.
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4.1. Datasets and experimental settings

We test our proposed method on the SHREC’13

and SHREC’14 sketch track benchmark datasets. The

SHREC’13 sketch-based 3D shape retrieval benchmark

dataset is built on a collection of human-drawn sketches

[15] and the Princeton shape benchmark (PSB) [19]. The

human-drawn sketch dataset consists of 20000 sketches of

250 classes, each with 80 sketches. The PSB dataset in-

cludes the train and test sub-datasets, where there are 903

3D shapes with 92 and 90 classes, respectively. By finding

the shared classes in both human sketch dataset and PSB

dataset, the SHREC’13 sketch track benchmark dataset is

constructed, including 7200 sketches and 1258 3D shapes

from 90 classes. For each class, these sketches are divided

into two subsets: 50 samples for training and 30 samples

for testing. Fig. 3 shows sketch examples and correspond-

ing shapes in this dataset.

Figure 3. Sketch examples and corresponding 3D shapes in the

SHREC’13 sketch track benchmark dataset.

The SHREC’14 sketch track benchmark dataset is a

large-scale dataset, which contains 13680 sketches and

8987 3D shapes from 171 classes. There are 80 sketches

per class while there are about 53 3D models per class on

average. The sketches are further split into the training and

testing sub-datasets, which contain 8550 and 5130 sketches,

respectively. Fig. 4 shows some sketch and corresponding

3D shape examples in this dataset. From this figure, one

can see that for each class there are large variations with 2D

sketches and 3D shapes. Due to the large within-class vari-

ations in this dataset, the sketch-based shape retrieval task

is very challenging.

In our proposed method, for each 3D shape, 12 uni-

formly sampled rendered views every 30 degrees are used

to obtain 2D projections, i.e., V = 12. In the sketch and

view networks, the deep CNN features are extracted from

the “fc7” layer of the AlexNet, whose feature size is 4096.

For the metric network, the layers are set as 4096-1000-

300-100. Moreover, in Eq. (8), parameters α, β1 and β2

Figure 4. Sketch examples and corresponding 3D shapes in the

SHREC’14 sketch track benchmark dataset.

are set to 1, 0.0001 and 0.001, respectively. For each train-

ing sketch sample, we randomly chose two shape samples

from the same class as the positive samples and chose 12

shape samples from different classes as the negative sam-

ples. For the calculation of the Wasserstein barycenters, the

Euclidean distance is used as the ground metric and γ is

set to 80 to compute the matrix K. The parameters in the

AlexNet are initialized by the model pre-trained on Ima-

geNet images from 1K categories and the parameters in the

metric network are randomly initialized. Then, the AlexNet

and metric network are jointly learned via back propagation

to train the parameters.

We follow the experimental settings in [13] to use 50

sketches as the training samples and 30 sketches as the

queries per class. Moreover, the training samples and the

query samples do not overlap. We use the following crite-

ria to evaluate our proposed method: precision-recall curve

(PR curve), nearest neighbor (NN), first tier (FT), second

tier (ST), E-measure (E), discounted cumulated gain (DCG)

and mean average precision (mAP).

4.2. Evaluation of the proposed method

In order to demonstrate the effectiveness of the proposed

method, we compare the proposed method to the max view-

pooling operation of CNN features from multiple views on

the SHREC’14 benchmark dataset. In [23], the authors pro-

posed a multi-view CNN structure for 3D shape retrieval.

In the last convolutional layer, the element-wise maximum

operation across views is performed to form a max view-

pooling layer. The feature in the “fc7” layer is used as

the shape descriptor for 3D shape retrieval. We perform

the same max view-pooling operation across views in our

view network to obtain the deep CNN features to represent

3D shapes. Then we use the constructed metric network to

learn the final sketch and shape features for sketch-based

3D shape retrieval.

We compare our learned Wasserstein barycentric rep-

resentation method to the max view-pooling operation in
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the multi-view CNN on the SHREC’14 benchmark dataset

for sketch-based shape retrieval. The learned Wasserstein

barycentric representation method for sketch-based shape

retrieval is denoted by LWBR. Fig. 5 shows the precision-

recall curves for the max view-pooling operation and the

proposed LWBR method. As can be seen in this fig-

ure, compared to the max view-pooling operation, our pro-

posed LWBR can obtain better performance. In the max

view-pooling method, the maximum element-wise opera-

tion across views cannot exploit the information of all views

simultaneously. Nonetheless, in our proposed method, the

Wasserstein barycentric representation can be viewed as a

highly non-linear transform performed on all views, which

can make full use of the information of all views. In

the transformed non-linear space, the Wasserstein barycen-

tric representation may characterize the manifold where the

multi-view features lie better, which can lead to better re-

trieval performance.
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Figure 5. The precision-recall curves for the max view-pooling

operation and proposed LWBR method on the SHREC’14 bench-

mark dataset.

4.3. Comparison with stateoftheart methods

4.3.1 SHREC’13 benchmark dataset

For the SHREC’13 sketch track benchmark dataset, we

compare our proposed LWBR method to several state-

of-the-art methods: Fourier descriptors on 3D model sil-

houettes (FDC) [12], spatial proximity method (SP) [22],

edge-based Fourier spectra descriptor (EFSD) [12], sketch-

based retrieval method with view clustering (SBR-VC)

[12], cross domain manifold ranking method (CDMR) [10]

and Siamese network (Siamese) [27]. We evaluate these

methods using PR curve, NN, FT, ST, E, DCG and mAP.

The PR curves for the FDC, EFSD, SBR-VC and proposed

LWBR methods are plotted in Fig. 6. From this figure, one

can see that the performance of the proposed LWBR method

is significantly superior to that of these methods. We also

compare our proposed LWBR method to the CDMR, SBR-

VC, SP, FDC and Siamese methods with NN, FT, ST, E,

DCG and mAP. The comparison results are listed in Ta-

ble . 1. Compared to these methods, our proposed LWBR

method can significantly improve the retrieval performance.
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Figure 6. The precision-recall curves for the FDC, EFSD, SBR-

VC and proposed LWBR methods on the SHREC’13 benchmark

dataset.

Table 1. Retrieval results on the SHREC’13 benchmark dataset.
Methods NN FT ST E DCG mAP

CDMR [10] 0.279 0.203 0.296 0.166 0.458 0.250

SBR-VC [12] 0.164 0.097 0.149 0.085 0.348 0.116

SP [22] 0.017 0.016 0.031 0.018 0.240 0.026

FDC [12] 0.110 0.069 0.107 0.061 0.307 0.086

Siamese [27] 0.405 0.403 0.548 0.287 0.607 0.469

LWBR 0.712 0.725 0.785 0.369 0.814 0.752

Among these methods, CDMR, Siamese and the pro-

posed LWBR methods employ metric learning for sketch-

based 3D shape retrieval. In the CDMR and Siamese meth-

ods, the features from multiple views are learned separately

and the minimum distance between the query sketch and

multiple views of the 3D shape in the feature space is used

as similarity for retrieval, which means that the views are

independently used to characterize 3D shapes. Different

from these methods, by learning the Wasserstein barycen-

ters of multiple views, our proposed LWBR method can

simultaneously aggregate the information of all views to

form a discriminative representation for 3D shapes. Thus,

our proposed LWBR method can obtain better performance.

For example, our proposed method can obtain the mAP of

0.752 while the CDMR and Siamese methods can obtain the

mAPs of 0.250 and 0.469, respectively.

4.3.2 SHREC’14 benchmark dataset

We also compare our proposed LWBR method to several

state-of-the-art methods on the SHREC’14 sketch track

benchmark dataset: cross domain manifold ranking method

(CDMR) [10], sketch-based retrieval method with view
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clustering (SBR-VC) [12], depth-buffered vector of locally

aggregated tensors (DB-VLAT) [24], overlapped pyramid

of histograms of orientation gradients (SCMR-OPHOG)

[14], BOF junction-based extended shape context (BOF-

JESC) [14], Siamese network (Siamese) [27]. We also use

PR curve, NN, FT, ST, E, DCG and mAP to evaluate these

methods. From the PR curves plotted in Fig. 7, we can

see that when the recall is less than about 0.75 the precision

of the proposed method is higher than that of these meth-

ods. Nonetheless, when the recall is larger than about 0.75,

the precision of the proposed method is slightly lower than

that of the SCMR-OPHOG method. The comparison re-

sults with NN, FT, ST, E, DCG and mAP are also listed in

Table. 2 . Although the SHREC’14 sketch track benchmark

dataset is very challenging, our proposed method can sig-

nificantly outperform these methods. Particularly, in com-

parison to the deep learning based method such as Siamese,

the proposed LWBR can achieve the mAP of 0.401 while

the Siamese method can achieve the mAP of 0.228.
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Figure 7. The precision-recall curves for the CDMR, SBR-VC,

SCMR-OPHOG, BOF-JESC and proposed LWBR methods on the

SHREC’14 benchmark dataset.

Table 2. Retrieval results on the SHREC’14 benchmark dataset.
Methods NN FT ST E DCG mAP

CDMR [10] 0.109 0.057 0.089 0.041 0.328 0.054

SBR-VC [12] 0.095 0.050 0.081 0.037 0.319 0.050

DB-VLAT [24] 0.160 0.115 0.170 0.079 0.376 0.131

Siamese [27] 0.239 0.212 0.316 0.140 0.496 0.228

LWBR 0.403 0.378 0.455 0.236 0.581 0.401

Finally, we conduct sketch-based 3D shape retrieval ex-

periments on the SHREC’14 benchmark dataset by setting

different numbers of rendered views. Different numbers of

rendered views can be obtained by varying the number of

placed virtual cameras around the 3D shape. In this exper-

iment, we set the view number V to 3, 4, 6 and 12, corre-

sponding to placing virtual cameras every 120, 90, 60 and

30 degrees. In the cases of 3, 4, 6 and 12 rendered views,

the final mAPs are 0.325, 0.363, 0.390 and 0.401, respec-

tively. One can see that when the view number increases

the retrieval performance can be improved. Nonetheless, if

the rendered views are too much, the computational cost is

expensive.

5. Conclusions

In this paper, we proposed to learn Wasserstein barycen-

tric representations of 3D shapes for sketch-based 3D shape

retrieval. We employed two AlexNets to extract deep CNN

features of sketches and projections of 3D shapes, respec-

tively. The Wasserstein barycenters of the deep CNN fea-

tures of multiple projections are computed to represent 3D

shapes. We then constructed a metric network to learn

the Wasserstein barycenters for retrieval by formulating a

discriminative loss across the sketch and shape domains.

The outputs of the metric network are used as the final

features for retrieval. Experimental results demonstrate

that our proposed method can yield good performance on

the SHREC’13 and SHREC’14 sketch track benchmark

datasets.

In future, we will investigate to employ the anisotropic

Wasserstein barycentric representations to characterize

multiple projections of 3D shapes. Moreover, we will

study how to effectively learn the anisotropic Wasserstein

barycenters of 3D shapes for retrieval.
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