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Abstract

Zero-shot learning (ZSL) aims to recognize objects of

unseen classes with available training data from another

set of seen classes. Existing solutions are focused on ex-

ploring knowledge transfer via an intermediate semantic

embedding (e.g., attributes) shared between seen and un-

seen classes. In this paper, we propose a novel projection

framework based on matrix tri-factorization with manifold

regularizations. Specifically, we learn the semantic embed-

ding projection by decomposing the visual feature matrix

under the guidance of semantic embedding and class label

matrices. By additionally introducing manifold regulariza-

tions on visual data and semantic embeddings, the learned

projection can effectively capture the geometrical manifold

structure residing in both visual and semantic spaces. To

avoid the projection domain shift problem, we devise an ef-

fective prediction scheme by exploiting the test-time man-

ifold structure. Extensive experiments on four benchmark

datasets show that our approach significantly outperforms

the state-of-the-arts, yielding an average improvement ratio

by 7.4% and 31.9% for the recognition and retrieval task,

respectively.

1. Introduction

Conventional visual recognition systems usually require

an enormous amount of manually labeled training data to

achieve good classification accuracy, typically several thou-

sand images for each class to be learned [8, 40]. Due to the

ever increasing number of available images and categories

to be recognized, it then becomes infeasible to label images

for each possible class. For example, this problem is essen-

tially crippling when classifying fine-grained object classes

[9] such as species of animals or brands of consumer prod-

ucts, since the number of labeled images for these class-

es may be far from sufficient to directly build high-quality

classifiers.

Zero-shot learning (ZSL) [19, 17] has long been believed

to hold the key to the above problem. ZSL aims to recognize

∗Corresponding author: Heng Tao Shen.

new-coming instances (e.g., images) of unseen classes with

only labeled instances of seen classes that are available for

training. Without labeled examples, classifiers for unseen

classes are obtained by transferring knowledge learned from

the seen classes. This is typically achieved by exploring a

semantic embedding space where the seen and unseen class-

es can be related in. The spaces used by most existing works

are based on attributes [11, 17, 27, 41] and word2vec repre-

sentations [12, 23, 24, 33]. In such spaces, each class name

can be represented by a high dimensional binary/continuous

vector based on a pre-defined attribute ontology, or a vast u-

nannotated text corpus by natural language processing.

Given a semantic embedding space, the semantic rela-

tion between an unseen class and each seen class can be

measured as the distance between their semantic embedding

vectors. However, as a test image is represented by a visu-

al feature vector, its similarity to unsee classes cannot be

obtained by directly measuring it with the semantic embed-

ding vectors of unseen classes. To solve this problem, sev-

eral existing ZSL approaches [1, 12, 33, 31, 42, 6, 21] rely

on directly learning a projection function between the vi-

sual feature space and the semantic embedding space from

the labeled images of seen classes. Then the prediction for a

test image can be performed by mapping the visual feature

via the projection function and measuring similarity with

the unseen classes in the semantic embedding space.

However, these projection based methods still have sev-

eral primary shortcomings. Firstly, the intrinsic manifold

structure residing in both the visual feature space and the se-

mantic embedding space are not well explored when learn-

ing the projection function. Secondly, these methods suf-

fer from the projection domain shift problem [13, 16, 37],

i.e. the visual feature mapping (projection function) learned

from the seen class data may not generalize well to the un-

seen class data. The main reason is that the test data dis-

tribution of unseen classes in the projection space could be

different from the estimation obtained by the learned pro-

jection based on the training data of seen classes. Third-

ly, existing projection-based approaches still have a large

gap with the ideal performance under the generalized ZSL

setting [7], where test data are from both seen and unseen

classes and they are required to be predicted into the joint
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Figure 1. The proposed MFMR framework for ZSL. Note that the white blocks are observed matrices, while the gray ones are unknown

matrices to be learned. At the training stage, we factorize the visual feature matrix Xs of seen instances by the semantic embedding matrix

As and label matrix Ys of seen classes and the latent projection matrix. At test stage, we use learned projection U, together with the

semantic embedding matrix Au of unseen class, to inference the label matrix Yu for the test instances by decomposing Xu. The latent

variables are constrained with manifold regularizations, which is essentially different from the work in [31].

label space of both types of classes.

In this paper, we tackle the aforementioned problem-

s in existing projection-based ZSL methods by develop-

ing a novel approach, termed Matrix tri-Factorization with

Manifold Regularizations (MFMR), as illustrated in Figure

1. Specifically, at training stage, MFMR learns a projec-

tion matrix by decomposing the visual feature matrix of

the training instances to three matrices, among which two

are explicitly provided, i.e. the matrices of semantic em-

beddings and class labels of seen classes. This constraint

ensures the learned projection matrix by MFMR effective-

ly constructs the mapping from the visual feature space to

the semantic embedding space with the prior supervised in-

formation provided by the two observed matrices. Mean-

while, two manifold regularizers that model the manifold

structure of both the visual feature space and the attribute

space are integrated to the factorization procedure, which

enhances the capability of the learned projection matrix on

preserving the geometric structures of the training data in t-

wo spaces. At test stage, MFMR directly estimates the class

label matrix of all test instance jointly via an effective pre-

diction scheme. In particular, given the observed projection

matrix (learned at the training stage) and the semantic em-

bedding matrix of unseen classes, MFMR performs similar

factorization procedure on the visual feature matrix of the

test instances while further exploiting the manifold struc-

ture in them, hence overcomes the projection domain shift

problem.

The main contributions of our work are three-folds:

• We propose a novel ZSL approach, termed MFMR,

by utilizing the matrix tri-factorization framework with

manifold regularizations on visual feature and seman-

tic embedding spaces.

• We develop an effective prediction scheme for MFMR

to jointly estimate the class labels of all test instances,

where the beneficial manifold structure of test data is

well exploited for performance improvement.

• We conduct extensive experiments on four benchmark

ZSL datasets, which validate the superiority of MFMR

over state-of-the-art approaches on zero-shot recogni-

tion and retrieval task. The robustness of MFMR on

balancing the prediction for seen and unseen classes is

also verified in additional evaluation under the gener-

alized ZSL setting.

The remainder of the paper is organized as follows. In

the next section, we briefly review the related methods for

ZSL. Then, we introduce our approach, followed by exper-

imental results with comprehensive analysis on four bench-

mark datasets. Finally, we draw the conclusion.

2. Related Work

Existing ZSL methods differ in how to transfer the

knowledge from seen to unseen classes. Given the seman-

tic embeddings of classes, most existing approaches are

grouped into similarity based and projection based meth-

ods. The similarity based approaches [30, 25] rely on learn-

ing an n-way discrete classifier for the seen classes in the

visual feature space, and then use it to compute the visual

similarity between an image of unseen class to those of the

seen classes. In contrast, the projection based approaches

first map the visual features of test instances to the semantic

space, and then determine the relatedness of unseen class-

es and test instances by various semantic relatedness mea-

sures [17, 1, 14, 42]. Specifically, with available seman-

tic embedding of classes, Akata et al. [1] proposed a mod-
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el that implicitly projects the visual features and semantic

embeddings onto a common space where the compatibili-

ty between any pair of them can be measured. In [31], a

simpler and efficient linear model with a principled choice

of regularizers was proposed to obtain much better result-

s under the same principle. Our work also seeks effective

projection by decomposing the visual feature matrix under

the guidance of semantic embedding and class label ma-

trices. The decomposition is accomplished based on ma-

trix tri-factorization, which is different from these methods.

Like the recent works [38, 20, 29, 14, 37, 6] that addressed

the importance of modeling the intrinsic manifold structure,

our work integrates two manifold regularizers to account for

the geometric information underlying the visual feature and

semantic embedding spaces. In general, our work empiri-

cally shows more accurate predictions with high efficiency.

Recently Fu et al. [13] addressed the projection domain

shift problem that potentially exists in the projection based

methods, and they proposed a transductive multi-view em-

bedding framework to solve this problem. Kodirov et al.

[16], Zhang and Saligrama [44] further studied this prob-

lem and proposed to exploit the unseen class data structure

in the learning procedure via unsupervised domain adapta-

tion scheme and structured prediction scheme, respective.

Our method also mines the test-time data information for

performance improvement. However, we should point out

that compared with the above methods, our method has no

access to the unseen class data during training, thus it is

more practical for the problem setting of ZSL.

To evaluate the models generated by ZSL, most existing

ZSL approaches [26, 39, 15, 22, 43, 6] adapt the settings

in the seminal work of Lampert et al. [17], and focus on

discriminate among unseen classes without the instances of

seen classes during the test stage. This setting may be unre-

alistic since in the real world, it is common to encounter in-

stances in both seen and unseen classes during the test stage.

Recently, Chao et al. [7] advocated a generalized ZSL set-

ting, where models generated by ZSL need to predict test

data from both seen and unseen classes in their joint label

space. This generalized setting is able to provide more ob-

jective evaluation. We evaluate our method under both set-

tings and the results shows the robustness of our method on

trading off between recognizing test data from seen classes

and unseen classes.

3. The Proposed Approach

3.1. Problem Statement

Let S denotes a set of cs seen classes and U a set of cu
unseen classes. These two sets of labels are disjoint, i.e.

S ∩ U = ∅. Each of the classes in the two sets is rep-

resented by an m-dimensional semantic embedding (e.g.,

attributes) vector. These semantic embeddings of seen and

unseen classes can be denoted in matrices As = {asi}
cs
i=1

and Au = {auj }
cu
j=1, where ai and aj are the vectors for

i-th seen class and j-th unseen class, respectively. Suppose

we are given a training set DS = {(xs
i ,y

s
i )}

ns

i=1, where for

the i-th labeled image, xs
i denotes its d-dimensional feature

vector and ys
i is the one-hot class label vector with the label

belongs to S . Besides, a test set Du = {(xu
j ,y

u
j )}

nu

j=1 is

provided, where xu
j is also a d-dimensional feature vector

extracted from the j-th unlabeled test image and yu
j is the

to-be-predicted class label vector with the label from U . For

simplicity, we denote the indices of the training and test sets

as I = {s, u}.
Generally, ZSL is inherently a two stage process: train-

ing and test. At the training stage, knowledge of seen class-

es is learned from the data of Xs, As and Ys. Then at the

test stage, the learned knowledge is transferred to unseen

classes to predict Yu given Xu and Au.

3.2. The General Framework of MFMR

The main idea behind our approach MFMR is shown by

the diagram in Figure. 1. At the training stage, we learn a

projection from the labelled training instances consisting of

seen classes only, under the matrix tri-factorization frame-

work with manifold regularizers. At the test stage, the class

labels of test instances are jointly predicted by exploiting

the manifold structure residing in them.
As a projection constructs the map between the visual

feature space and the semantic embedding space which fur-

ther bridges for knowledge transfer from seen classes to un-

seen ones, we assume that an effective projection needs to

1) maximize the empirical likelihood of the visual features

of both training and test instances; and 2) preserve the ge-

ometric manifold structure residing in both visual feature

space and semantic embedding space.

3.2.1 Learning the Projection

To meet the first requirement, in MFMR, we propose to

learn a projection that serves as the common latent factors

underlying both training and test data. To achieve this goal,

we customize the matrix tri-factorization [10] framework

to the visual feature matrix Xs of the labeled training in-

stances from seen classes. The factorization procedure per-

forms feature-instance co-clustering to estimate the empir-

ical likelihood of Xs, resulting in three matrices that mini-

mize the estimation error as

min
U,Vs

∥Xs −UAsV
⊤
s ∥

2, (1)

where ∥ · ∥2 is the Frobenius norm of a matrix. In Eq. 1,

U = {ui}
m
i=1 ∈ R

d×m is the projection, each ui repre-

sents a visual feature cluster for each semantic embedding.

Vs = {vi}
cs
i=1 ∈ R

ns×cs , each vi represents an instance

cluster for each seen class (i.e. the instances of similar se-

mantics would lie in the same cluster). These two matri-

ces are the co-clustering results on the row vectors (fea-
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tures) and column vectors (instances) of Xs respectively.

The third matrix, i.e. the semantic embeddings As of seen

classes is introduced to associate U and Vs. The advan-

tage of using observed As as the bridge is that the mapping

between visual features and seen classes can be implicit-

ly constructed. Similarly, the mapping at test stage can be

accomplished when using semantic embeddings of unseen

classes. It is notable that with the class label matrix Ys of

training instances from seen classes, the instance clusters

for seen classes can be directly obtained. Therefore, a ratio-

nal strategy is to enforce Vs = Ys to ensure the instance

clusters decomposed from Xs to be consistent with the one

obtained from Ys.

3.2.2 Modeling the Manifold Structure

For the second requirement, to preserve the manifold struc-

ture, we separately consider the visual feature matrix Xs in

terms of instance space (per column) and feature space (per

row). The goal is to encode into the projection matrix the

underlying geometrical information of these spaces.

Consider two instances xs
∗i, x

s
∗j from Xs (i.e. two col-

umn vectors). If they are close on the intrinsic data mani-

fold, then their instance clusters should be close as well (i.e.

belong to the same class). Under the manifold assumption

[5], the geometric structure can be modeled by a nearest

neighbor graph in the instance space. Consider an instance

graph GI
s with ns vertices (instances). Then the affinity ma-

trix WI
s ∈ R

ns×ns in GI
s can be defined based on the visual

similarities of pairwise instances [3], as

(WI
s)ij =

{

cos(xs
∗i,x

s
∗j) xs

∗i ∈ Nk(x
s
∗j), or x

s
∗j ∈ Nk(x

s
∗i)

0, otherwise
(2)

where Nk(x) denotes the top-k nearest neighbors of the ith

instance xs
∗i. By denoting QI

s = diag(
∑

i(W
I
s)ij), then

preserving the visual feature manifold structure in Ds is de-

rived to minimize the instance manifold regularizer

RI
s =

1

2

∑

ij

∥vi−vj∥
2(WI

s)ij = tr(V⊤
s (Q

I
s −WI

s)Vs).

(3)

Then consider each dimension of the features in Xs (i.e.

each row), they are assumed to be sampled from a distri-

bution supported by the semantic embedding space [29].

Therefore, we construct a feature graph GF
s with d vertices

and each representing a feature in set Ds. Similarly, the

affinity matrix WF
s ∈ R

d×d in GF
s can be defined as

(WF
s )ij =

{

cos(xs
i∗,x

s
j∗) xs

i∗ ∈ Np(x
s
j∗), or x

s
j∗ ∈ Np(x

s
i∗)

0, otherwise
(4)

where Nk(x
s
i∗) denotes the top-k nearest neighbors of the

ith dimension of feature xs
i∗. Let QF

s = diag(
∑

i(W
F
s )ij),

preserving the geometric structure in the Xs further in-

cludes minimizing the feature manifold regularizer

RF
s =

1

2

∑

ij

∥ui−uj∥
2(WF

s )ij = tr(U⊤(QF
s −W

F
s )U).

(5)

As each dimension of the features is clustered onto the se-

mantic embedding space, the feature manifold regularizer in

Eq. 5 implicitly reflects the manifold structure of semantic

embedding space.

3.2.3 Objective Function

By integrating the two manifold regularizers into Eq. 1, the

final objective function for learning the projection in MFM-

R can be formulated as

min
U,Vs≥0

Os = ∥Xs −UAsV
⊤
s ∥

2 + γRI
s + λRF

s ,

s.t. U⊤1d = 1m, V⊤
s 1ns

= 1cs . (6)

where γ, λ are regularization coefficients, and 1∆, ∆ ∈
{d,m, cs} is the vector of ones. The ℓ1 normalization con-

straints on each column of U and Vs are used to make the

optimization well-defined. It indicates that learning the pro-

jection function in Eq. 6 seamlessly incorporates the man-

ifold structure of both the visual feature space and the se-

mantic embedding space, underlying the co-clustering pro-

cedure on Xs.

As discussed in Section 3.2.1, the formulation in Eq. 6

can be further simplified by setting Vs equal to Ys as in

[20]. Due to the observed Ys, RI
s becomes a constant vari-

able, thus Eq. 6 reduces to optimize the parameter U as

min
U≥0
Os = ∥Xs −UAsY

⊤
s ∥

2 + λRF
s , (7)

s.t. U⊤1d = 1m.

3.2.4 Solution

We now discuss the solution to the optimization problem of

Eq. 7. As Eq. 7 belongs to the constrained optimization

problem, we add Lagrange functions for the parameters U

to it, which is then formulated as

min
U

Os + tr(Ωs(U
⊤1d − 1m)(U⊤1d − 1m)⊤), (8)

where Ωs ∈ R
m×m is the Lagrange multipliers for the con-

straints to U. Similar as the derivations in [20], the updat-

ing rules for U can be achieved by using the Karush-Kuhn-

Tucker (KKT) complementarity condition [4] and setting its

derivations to zero, which leads to the following updating

formula:

U← U ◦

√

XsYsA⊤
s + λWI

sU

UAsY⊤
s YsA⊤

s + λQI
sUs

, (9)

where ◦ denotes the element-wise operations for the matrix

computation.
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Algorithm 1 MFMR with common prediction scheme.

Input: Matrices Xs, As and Ys from Ds, matrices Xu,

Au from Du, and parameters k, λ.

Output: Yu for instances in test set Du.

1: Normalize Xs and Xu with ℓ2 normalization, build fea-

ture graphs GF
s , initialize U as random positive matrix

and set Vs = Ys.

2: repeat

3: Update U by Eq. 9.

4: Normalize each column of U by ℓ1 normalization.

5: until Objective function of Eq. 7 converges.

6: Compute Y according to Eq. 10, given Xu, Au and U.

Once the projection U is learned, at the test stage, giv-

en the visual feature vector xu
j for the j-th test instance,

its class label yu
j can be obtained via a common predic-

tion scheme similar to previous projection based approaches

[1, 18, 16]. Specifically, for xu
j , its projection in the seman-

tic embedding space be computed as U−1xu
j , which is then

compared with the semantic embedding vectors {alu}
cu
l=1 of

unseen classes by cosine distance measure. Finally, yu
j can

be obtained as follows:

yu
j = argmin

l
dist(U−1xu

j ,a
u
l ), l ∈ [1, cu]. (10)

where dist(, ) denotes the cosine distance metric.
Algorithm 1 summarizes the details of MFMR with this

common prediction scheme. The learning procedure of

MFMR primarily performs the updating rule of Eq. 9,

which requires time complexity ofO(dmnsT +d2ns) with

T being the number of total iterations (generally T ≤ 100 in

our experiments), Therefore, the time complexity of MFMR

is linear to the number of training instances, which is effi-

cient in practice.

3.3. Joint Prediction for Testtime Data

Due to the projection domain shift from training data

to test data, the recognition performance using the com-

mon prediction scheme is suboptimal. Indeed, estimating

the test-time data distribution benefits the learned projec-

tions to elaborately adapt the projected features of the test

instances with the semantic embeddings of corresponding

unseen classes. Specifically, we develop a joint prediction

scheme, where the labels of the test instances are predicted

jointly, to effectively exploit the manifold structure residing

in the test data. Specifically, we factorize the visual feature

matrix Xu of the test instances similar to the training stage

in Eq. 6 as,

min
Vu≥0

Ou = ∥Xu −UAuV
⊤
u ∥

2 + γRI
u, (11)

s.t. V⊤
u 1nu

= 1cu .

The parameter to be solved in Eq. 11 is the class label ma-

trix Vu of all test instances. Note that RI
u is the instance

manifold regularizer constructed from the test instances.

Algorithm 2 MFMR with joint prediction scheme.

Input: Matrices Xu, Au and U, parameters p, γ;

Output: Yu for the instances in test set Dt.

1: Normalize Xu with ℓ2 normalization, build instance

graph GI
u, initialize Vu as random positive matrix.

2: repeat

3: Update Vu by Eq. 13.

4: Normalize each column of Vu by ℓ1 normalization.

5: until Objective function of Eq. 11 converges.

6: Compute Yu according to Eq. 14, given Vu.

Similarly, to solve Vu, we also add Lagrange mutipliers

Θu ∈ R
cu×cu in Eq. 11 as

min
Vu

Ou+tr(Θu(V
⊤
u 1nu

−1cu)(V
⊤
u 1nu

−1cu)
⊤). (12)

By setting the derivation of Vu to zero, its updating formula

is formulated as

Vu ← Vu ◦

√

X⊤
uUAu + γWF

uVu

VuA⊤
uU

⊤UAu + γQF
uVu

. (13)

With the learned Vs at the test stage, the labels of the

test instances can be obtained by selecting the entity with

the largest score in each row (Vl
u) of Vu as

Yu = argmax
l

(Vl
u), l ∈ [1, cu]. (14)

Algorithm 2 depicts the details of MFMR with join-

t prediction scheme. At the test stage, the joint prediction

scheme mainly performs the updating rule in Eq. 13, with

time complexity of O(dmnuT + dn2
u) (including the near-

est neighbor graph construction cost).

4. Experiments

4.1. Experimental Setup

Datasets. We use four popular benchmark datasets:

1) Animals with Attributes (AwA) [17], 2) Caltech UCS-

D Birds (CUB) [36], 3) aPascal-aYahoo (aPY) [11] and 4)

SUN Attribute (SUN) [28] in our experiments. The dataset-

s are diverse enough to contain coarse-grained and fine-

grained categories in different domains, including animal-

s, vehicles and natural scenes. Table 1 summarizes the s-

tatistics in each dataset. Note that we adopt the same s-

plits of training/test instances and seen/unseen classes as in

[1, 31, 6, 42, 43].
Semantic embeddings. For AwA and aPY dataset-

s, we directly utilize the provided class-level attribute vec-

tor of continuous value. For CUB and SUN datasets which

have binary attribute vector image-level, we take the mean

of attribute vectors of all images from the same classes to

generate class-level attribute vector.
Visual features. It has been shown in literature that

the deep features work remarkably better than the low-level

features as they lead to good intra-class separation [2]. Thus
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Table 1. Statistics of different datasets, where “*/*” in columns

of “Images” and “Classes” stands for the number of training/test

images and seen/unseen classes, respectively.

Datasets Images Attributes Classes

AwA 24,295 / 6,180 85 40 / 10

CUB 8,855 / 2,933 312 150 / 50

aPY 12,695 / 2,644 64 20 / 12

SUN 14,140 / 200 102 707 / 10

for all the datasets, we utilize the deep features extracted

from popular CNN architecture. Specifically, we use two

types of deep features: 4096-dim VGG [32] features for all

datasets provided from [42] and 1024-dim GoogLeNet [34]

features for AwA, CUB and SUN available from [6].

Implementation details. In our experiments, we de-

note the two variants of our methods according to the pre-

diction scheme used as MFMR and MFMR-joint, which

use the common and joint prediction scheme, respective-

ly. Three model parameters in the two methods are worth

investigation: the manifold regularization coefficients λ, γ,

and the number k of feature and instance clusters. We re-

port their averaged results over five runs with the optimal

parameters chosen on each dataset. For each dataset, we

randomly selected the images of 20% of the seen classes to

formulate the validation set and used the remaining images

for training. Our evaluation is rather comprehensive as we

compared our methods with 10 existing ZSL methods. We

not only refer to the published results but also re-evaluate

some of those methods with provided implementation codes

to provide objective assessment. All the experiments are

conducted on a PC which has 4-core 3.3GHz CPUs with

16GB RAM.

4.2. Benchmark Comparison

4.2.1 Results on Zero-shot Recognition

The recognition task concerns the correctness of each task

instance. Thus, we use accuracy to measure the overal-

l recognition performance. Our methods are compared a-

gainst various state-of-the-art alternatives: 1) the classifi-

cation based method, i.e. ConSE [25]; 2) the projection

based methods, i.e. DAP [17], ALE [1], ESZSL [31], SSE-

INT/ReLU [42], JSLE [43] and SynC [6]; 3) the transduc-

tive method, i.e. TMV-HLP [13].

The performance of different methods, evaluated on al-

l datasets using two different deep features, is summarized

in Table 2. Generally, for our two methods and most of

the counterparts, using VGG features obtains better perfor-

mance than using GoogLeNet features on AwA and SUN

datasets but worse on CUB. Therefore, it indicates that both

two deep features have advantages relying on the specific

dataset. Our MFMR performs much better than the typ-

ical projection-based approaches of ALE and ESZSL, in-

dicating that MFMR learns more effective projection than

these methods. Since MFMR incorporates the pairwise vi-

sual similarities when constructing the affine matrices for

modeling manifold structure of the training data, it is also

superior to the similarity-based approach of ConSE. Over-

all our MFMR can achieve slightly better performance on

average against recent proposed methods such as SynC-

struct and JSLE, showing the effectiveness of the matrix

tri-factorization on learning projection and the advantage of

modeling the manifold structure.

When using the joint prediction scheme, our MFMR-

joint significantly outperforms JSLE on all datasets using

VGG features. On average, MFMR-joint gains 7.4% per-

formance compared with SynC-structure using VGG fea-

tures on all datasets. It is notable that our MFMR-joint also

clearly outperforms TMV-HLP which benefits from explor-

ing the data structure of test instances. Thus our method

is more effective to enhance the learned projection and to

overcome the test-time projection domain shift problem as

opposed to TMV-HLP which incorporates test instance in

learning procedure under the transductive setting.

4.2.2 Results on Zero-shot Retrieval

In the retrieval task, a semantic embedding vector of an un-

seen class is used as a query to retrieve top matched test im-

ages. The performance is measured by mean average preci-

sion (mAP). As the retrieval task is not widely evaluated in

prior studies, it’s also an important contribution of this work

provide a comprehensive comparison with the state-of-the-

art methods of SSE-INT/SSE-ReLU, JSLE and SynC.

Table 3 lists comparative results in terms of mAP for all

datasets using VGG features. We can see that our MFM-

R obtains mAP score of 56.2% compared with the result

(51.1%) from the best counterpart of SynC-struct. It thus

again validates the superiority of our MFMR on learning

more effective projection. Furthermore, our MFMR-joint

significantly and consistently gains dramatic performance

improvement against SynC-struct by 31.9% on average.

The superior performance of MFMR-joint in retrieval is

due to the useful manifold structure explored in the test

instances, which enhances the learned projection to better

match the test instances to the semantic embeddings of un-

seen classes.

Table 3. Retrieval performance comparison (%) in terms of mAP.

The best results on each dataset are highlighted in bold font.

Method aPY AwA CUB SUN Ave.

SSE-INT [42] 15.4 46.25 4.7 58.9 31.3

SSE-ReLU [42] 14.1 42.6 3.7 44.6 26.2

JSLE [43] 32.7 66.5 23.9 76.5 49.9

SynC-ovo [6] 29.6 64.3 30.4 72.1 49.1

SynC-struct [6] 30.4 65.4 34.3 74.3 51.1

MFMR 45.6 70.8 30.6 77.4 56.2

MFMR-joint 55.9 82.8 47.5 83.2 67.4
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Table 2. Comparison in terms of accuracy (%) for zero-shot recognition task on all datasets using deep features of VGG and GoogLeNet

(numbers in parentheses). Here ‡ means the numbers of the method are cited from the original paper, while § means partial numbers are

obtained from our implementation. “-” means no repeated result available yet. The best results on each dataset are highlighted in bold font.

Method aPY AwA CUB SUN Average

DAP [17]‡ 38.2 (-) 57.2 (60.5) 44.5 (39.1) 72.0 (44.5) - (-)

ALE [1]‡ - (-) 61.9 (53.8) 40.3 (40.8) - (53.8) - (-)

ConSE [25]§ 37.6 (-) 61.6 (63.3) - (36.2) - (51.9) - (-)

ESZSL [31]§ 24.2 (22.1) 75.2 (64.5) 44.5 (34.5) 82.1 (76.7) 56.5 (49.4)

TMV-HLP [13]‡ - (-) 80.5 (-) 47.9 (-) - (-) - (-)

SSE-INT [42]§ 44.2 (39.7) 71.5 (73.2) 30.2 (29.3) 82.2 (77.4) 57.0 (54.9)

SSE-ReLU [42]§ 46.2 (43.1) 76.3 (74.9) 30.4 (28.6) 82.5 (78.1) 58.9 (56.2)

JSLE [43]§ 50.4 (48.2) 79.1 (77.8) 41.8 (38.6) 83.8 (84.0) 63.8 (62.1)

SynC-ovo [6]§ 47.2 (41.3) 77.3 (69.7) 48.8 (53.4) 79.5 (78.0) 63.2 (60.6)

SynC-struct [6]§ 48.9 (44.2) 78.6 (72.9) 50.3 (54.5) 81.5 (80.0) 64.8 (62.9)

MFMR 48.2 (46.4) 79.8 (76.6) 47.7 (46.2) 84.0 (81.5) 64.9 (62.7)

MFMR-joint 56.8 (54.3) 83.5 (79.3) 53.6 (51.4) 84.5 (83.0) 69.6 (67.0)

4.2.3 Results on Generalized Zero-shot Recognition

The generalized zero-shot recognition measures the capa-

bility of the recognition system on trading off the prediction

of seen and unseen classes. In our experiment, we reorga-

nize the AwA dataset by composing test data as a combina-

tion of images from both seen and unseen classes. Specifi-

cally, we extract 20% of the data points from the seen class-

es and merge them with the data from the unseen classes to

form the test set, resulting in a new training/test split with

19,452 images of seen classes for training, 4,843 images of

seen classes combined with 6,180 images of unseen classes

for test.

Let T = S ∪ U denote the joint label space of seen and

unseen classes, we evaluate the recognition performance in

terms of accuracy on U → U , S → S , U → T , S → T , and

the Area Under Seen-Unseen accuracy Curve (AUSUC).

Detailed definitions of these metrics can be referred to [7],

and all of them assess the recognition model on balancing

the prediction of seen and unseen classes in the T .

We compare our methods with the counterparts ConSE

and SynC under the generalized ZSL setting, with the com-

parative results on AwA with VGG features provided in Ta-

ble 4.2.3. In general, the performance of all the methods

degrades under the generalized ZSL setting, i.e. the accu-

racy scores of U → U and S → S are larger than those of

U → T and S → T . Nevertheless, it is notable that the per-

formance decay of our methods is less serious than ConSE

and SynC, especially on the metrics of U → U and U → T .

In addition, our methods obtain larger AUSUC scores com-

pared with the counterparts, and MFMR-joint achieves the

best performance on all the five metrics. It indicates that our

methods are more robust to trade off the prediction between

the seen and unseen classes. Besides, modelling the test-

time manifold structure is consistently beneficial under the

generalized ZSL setting. Figure. 2 plots the Seen-Unseen

accuracy Curves [7] of all the methods on AwA under the

generalized ZSL setting. It can be observed that our meth-

ods generally have larger areas (corresponding to AUSUC

score in Table 4) compared with the counterparts, which a-

gain indicates that our methods is more effective to balance

U → T and S → T .

Table 4. Comparative results of our methods and several alterna-

tives for AwA under the generalized ZSL setting. The best results

on each measure are highlighted in bold font.
Method U → U S → S U → T S → T AUSUC

ConSE [25] 72.1 72.1 9.8 69.8 0.438
SynC-ovo [6] 76.4 77.6 1.1 75.7 0.509

SynC-struct [6] 79.6 76.8 1.8 76.1 0.533

MFMR 79.9 76.1 13.4 75.6 0.550
MFMR-joint 81.2 76.9 18.4 75.6 0.571

U → T

0 0.2 0.4 0.6 0.8

S
→

T

0

0.2

0.4

0.6

0.8

ConSE: 0.438

SynC-ova: 0.509

SynC-struct: 0.533

MFMR: 0.550

MFMR-joint: 0.571

Figure 2. Comparison of The Seen-Unseen accuracy Curves be-

tween our methods and several alternatives for AwA under the

generalized ZSL setting.

4.3. Detailed Analysis

4.3.1 Effects of the Learned Projection

To better understand the effects of the learned projection by

our methods, we employ t-SNE [35] to visualize the pro-

jected features of the test instances in the semantic embed-

ding space. Figure. 3 illustrates the visualized distributions
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Figure 4. Parameter sensitivity of MFMR and MFMR-joint on AwA and CUB datasets.

(a) MFMR (b) MFMR-joint

Figure 3. t-SNE visualization comparison of the projected features

obtained by MFMR and MFMR-joint in semantic embedding s-

pace on aPY.

of the projected VGG features of the test instances on aPY

dataset by our MFMR and MFMR-joint. As we can ob-

serve, in Figure. 3 (a), the projected features by MFMR

prone to forming separate clusters for the twelve unseen

classes with considerable small overlaps, showing the ef-

fectiveness of the learned projection for recognition. More-

over, the cluster of each unseen class becomes more com-

pact and the gaps between each class are much clearer in Fig

3 (b) of MFMR-joint. The reason is that MFMR-joint well

explores the manifold structure of the test instance, which

benefits the learned projections to correctly align the pro-

jected features of the test instances with the semantic em-

beddings of their corresponding unseen classes.

4.3.2 Parameter Sensitivity Analysis

To study the effects of the parameters in our methods on

the unseen class data, we take the zero-shot recognition re-

sults in terms of accuracy on AwA and CUB datasets with

respect to different parameters values. Specifically, MFMR

and MFMR-joint share two parameters λ and k at the train-

ing stage, and MFMR-joint owns an additional parameter

γ that accounts for the joint prediction scheme. In our ex-

periments, we vary one parameter at each time while fixing

the others to their optimal values for both methods by using

VGG features.

The three sub-figures in Figure. 4 illustrate the impact

of each parameter on our methods. We can observe that

for different method, the optimal value of each parame-

ter is variant, sometimes depending on the specific dataset.

For example, MFMR is robust to a large range of λ (e.g.,

λ ∈ [0.01, 10]) on the two datasets, while MFMR-joint is

sensitive to specific range of λ (e.g., λ ∈ [0.1, 100] and

λ ∈ [0.1, 1] on AwA and CUB, respectively). In addition,

the value of parameter k has more effect on MFMR-joint

than MFMR, that k ∈ [10, 20] is optimal for MFMR-joint

on two datasets. Since the test-time data distribution shift-

s from the estimation based on the projection learned by

the training data, MFMR-joint requires to adapt appropri-

ate value of k to correctly model the manifold structure of

the test instances. At last, with considerable larger value

of γ, e.g., γ ∈ [5, 100], MFMR-joint gains performance

improvement consistently on the two datasets, as larger γ

again forces MFMR-joint to associate the projections of the

test instances to the semantic embeddings of corresponding

unseen classes more accurately.

5. Conclusion

In this paper, we described a simple yet effective frame-

work for ZSL that was able to outperform the curren-

t state-of-the-art approaches on a standard collection of ZS-

L datasets. The main idea was to leverage the sophisticat-

ed technique of matrix tri-factorization with manifold reg-

ularizers to alleviate the limitations in previous projection

based ZSL approaches. Furthermore, an effective predic-

tion scheme was developed to exploit the manifold structure

of test data that accounts for the risk of test-time domain

shift. Extensive evaluations validated the efficacy of our

framework on the conventional ZSL problem, and showed

its robustness on the generalized ZSL problem.
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