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Abstract

Deep Auto-Encoder (DAE) has shown its promising pow-

er in high-level representation learning. From the per-

spective of manifold learning, we propose a graph reg-

ularized deep neural network (GR-DNN) to endue tradi-

tional DAEs with the ability of retaining local geometric

structure. A deep-structured regularizer is formulated upon

multi-layer perceptions to capture this structure. The robust

and discriminative embedding space is learned to simulta-

neously preserve the high-level semantics and the geomet-

ric structure within local manifold tangent space. Theo-

retical analysis presents the close relationship between the

proposed graph regularizer and the graph Laplacian regu-

larizer in terms of the optimization objective. We also al-

leviate the growth of the network complexity by introduc-

ing the anchor-based bipartite graph, which guarantees the

good scalability for large scale data. The experiments on

four datasets show the comparable results of the proposed

GR-DNN with the state-of-the-art methods.

1. Introduction

Unsupervised representation learning via Deep Auto-

Encoder (DAE) has shown its promising power in comput-

er vision. Basically, an under-complete encoder compress-

es the input data into low-dimensional codes, and a similar

inverted decoder reconstructs the input from the codes. E-

quipped with multiple layers of non-linear transformations,

DAEs can simulate the perception of human brain to ex-

tract high-level semantic abstractions from low-level input

signals [19, 24, 9].

To capture the high-level semantics and avoid learning
the trivial suboptimal function, regularized DAEs make a
tradeoff-decision between attaining some specific proper-
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Figure 1: Toy examples of the learned embedding subspace: (a)

traditional DAEs, (b) local invariance learners, (c) our GR-DNN.

Different shapes denote the labels, and different colors denote the

neighbor relations.

ties and preserving the input information X. A regulariza-
tion term Φ is added to the reconstruction cost as follows.

Cost = Δ(X, X̃) + γΦ. (1)

The regularizations include the sparsity of the code [6], the

robustness to noise inputs [24] and the insensitivity of the

input signals [19]. These strategies penalize the sensitivity

of the code to small perturbations of the input signals, which

makes crucial contribution to the success of DAEs.

Meanwhile, a stream of successful manifold learning

methods benefit from the local invariance theory, such as the

Locally Linear Embedding (LLE) [20], Laplacian Eigen-

map [1], and Locality Preserving Projections (LPP) [18].

They emphasize that the geometric relation among neigh-

boring points on the original manifold should be maintained

in the learned embedding space, which has been widely

used in unsupervised dimensional reduction [4] and semi-

supervised learning [27].

Comparing the above DAEs (Fig. 1a) with the manifold

learning models (Fig. 1b), the former follow a global recon-

struction criterion and extract the high-level salient factors
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Figure 2: Illustrations of the network structures. Dashed arrows represent the construction of local similarity graph, while solid arrows

denote deterministic connections.

which can best approximate the whole data space, while the

latter emphasize on preserving the local geometric structure

and infer the subspace according to the affinity propaga-

tions across the local manifold tangents. In fact, the two

learning strategies complement each other. DAEs are de-

voted to extracting the inter-class structure, while the local

invariance learners focus more on modeling the intra-class

correlations. If the two learners were combined as illustrat-

ed in Fig. 1c, more discriminative representation could be

theoretically obtained, with both the global and local struc-

ture well preserved.

In recent literatures, the most widely used regularizer for

local invariance is the graph Laplacian [4, 14, 28], which

can be transformed to generalized eigenvalue problems. As

a representative work, Cai et al. [4] propose the Graph regu-

larized Nonnegative Matrix Factorization (G-NMF), which

incorporates graph Laplacian regularizer into a matrix fac-

torization objective. However, despite the popularity a-

mong shallow models, the graph Laplacian shows its lim-

itation when integrating with deep models [10]. Due to

the shallow-structure nature, it has to be treated as a basic

building block for the pre-training of each layer as shown in

Fig. 2b. This indicates that a completely new graph Lapla-

cian should be constructed based on the last hidden-layer’s

outputs, which is not scalable for deeper hierarchical archi-

tecture. As a result, it remains an open question to design a

local invariance regularizer for practical use in deep models.

This paper proposes a graph regularized deep neural

network (GR-DNN) for unsupervised image representation

learning, where both the high-level semantics and local ge-

ometric structure of the data manifold are simultaneously

learned. In details, a deep-structured regularizer is formu-

lated upon multi-layer perception (MLP) to leverage the

DAEs with the local invariant theory to explicitly recon-

struct the geometric similarity graph. As illustrated in

Fig. 2d, GR-DNN is a dual-pathway network composed of

one encoder and two decoders. The encoder transforms

the input data into low-dimensional codes, and one data-

decoder reconstructs the original input. Moreover, an ad-

ditional graph-decoder is introduced as the local invariance

regularizer to reconstruct a pre-constructed local similari-

ty graph. The two decoders share a bottleneck code lay-

er, and the loss function of GR-DNN is the weighted sum

of reconstruction errors from both the decoders. Further,

we alleviate the complexity-growth of the network struc-

ture by introducing the anchor-based bipartite graph, while

the complexity of traditionally reconstructing the similarity

graph grows dramatically w.r.t. the data volume. The ex-

periments on four public datasets show the promising per-

formance of our proposed model, and demonstrate that the

proposed graph regularizer could be an effective module to

enhance traditional DAEs. To summarize, our main contri-

butions are as follows:

• A graph regularized deep neural network is proposed

to effectively leverage DAEs with the local invariant

theory for unsupervised image representation learning,

where both the high-level semantics and local geomet-

ric structure of the embedding subspace are simultane-

ously learned.

• A deep-structured graph regularizer is introduced with

solid theoretical analysis. Compared with traditional

graph Laplacian regularizer, it achieves both the lower

computational complexity and superior learning per-

formance.

2. Background

Representation learning attempts to transform the orig-

inal input to new feature representation which is more ro-

bust and compact to explain the data structure. Given a ma-

trix containing n data points X = [x1, ...,xn]
⊤ ∈ R

n×m,
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where m is the dimension of the input space, our task is to

find H = [h1, ...,hn]
⊤ ∈ R

n×k with lower dimension k,

i.e., k < m.

2.1. Deep Auto-Encoders

DAE attempts to extract high-level semantic abstractions

using architectures composed of multiple layer perceptions

(MLP). Typically, deeper layers are expected to represent

more abstract features, i.e., better capturing the high-level

data distribution. As shown in Fig. 2a, the network contains

two symmetrical sub-networks. The encoder transforms the

input data X into low-dimensional code matrix H, and a

decoder network reconstructs the data from the code.

To learn more robust features and avoid the non-smooth

suboptimal input-feature mappings, regularized DAEs at-

tain some nice properties by introducing a regularization

term Φ to the reconstruction cost shown in Eq. (1). Specifi-

cally, the denoising DAE (D-DAE) [24] is trained to discov-

er salient features which can recover the original data from

partially corrupted signals. A penalty term is added in Con-

tractive DAE (C-DAE) [19] which minimizes the Frobenius

norm of the Jacobian matrix of the code with respect to the

input. The learned representation better captures the local

manifold directions dictated by the data. To sum up, these

techniques obtain the robustness by encouraging the insen-

sitivity of the code to small perturbations of the input sig-

nals. In contrast, our work aims to enhance the DAEs by

explicitly enforcing the internal geometric structure, which

is performed based on the similarity metrics.

2.2. Local Invariance Regularizer

The local invariance theory [1, 8, 18] requires that the

points on the manifold with short geodesic distances should

be mapped close. Most of the existing methods adopt the

graph Laplacian regularizer [4, 10, 15], which is defined

based on an undirected weighted graph G = (V,E), where

V = {x1,x2, ...,xn} is the node set and E = {eij} is the

edge set. The graph structure is encoded into a similarity

matrix denoted by S ∈ R
n×n where [S]ij ≥ 0 denotes the

similarity of xi and xj . In practice, the K-Nearest Neighbor

(K-NN) graph is constructed, where the similarity is defined

using Gaussian kernels with the bandwidth parameter σ:

[S]ij=

{

exp
(

−‖xi−xj‖
σ

)

, if xi and xj are connected

0 , otherwise

(2)

Specifically, we connect xi and xj if one of them is among

the K-Nearest Neighbors of the other according to a giv-

en distance measurement, i.e., usually Euclidean distance

[13]. With the above defined similarity matrix S, the local

geometrical structure of the learned representation H can

be preserved by minimizing the following term:

Ω(H) = 1
2

n
∑

i,j=1

‖hi − hj‖
2
[S]ij

=
n
∑

i=1

h
⊤
i hi[D]ii −

n
∑

i,j=1

h
⊤
i hj [S]ij

= Tr(H⊤
DH)− Tr(H⊤

SH) = Tr(H⊤
LH),

(3)

where Tr(.) denotes the trace of a matrix and D is a diag-

onal matrix whose entries are [D]ii =
∑

j [S]ij . Moreover,

L = D− S, which is called graph Laplacian. By minimiz-

ing the term Ω(H), we expect that if two data points xi and

xj are close (i.e., [S]ij is large), hi and hj are mapped close

to each other in the new space.

As a representative work, Cai et al. [4] proposes the

Graph regularized Nonnegative Matrix Factorization (G-

NMF), which incorporates graph Laplacian regularizer into

a matrix reconstruction objective as shown in Eq. (4).

Cost = ∆(X, X̃) + γΩ(H). (4)

It has been shown that the learning performance can be sig-

nificantly enhanced if the geometric structure is exploited.

As the most related work (shown in Fig. 2b), Laplacian

regularized auto-encoder (LAE) [10, 15] formalizes the ter-

m ∆(X, X̃) of Eq. (4) using DAEs. However, the shallow-

structured regularizer Ω(H) suffers from the following lim-

itation. When integrating with deep models, the shallow-

structured regularizer has to be treated as a basic building

block for pre-training each layer. As shown in Fig. 2b,

a completely new graph Laplacian should be constructed

based on the last hidden-layer’s outputs. Note that both con-

structing and solving the graph Laplacian need a quadratic

computational complexity w.r.t. the data volume, traditional

graph Laplacian regularizer is not scalable for deeper archi-

tectures.

3. Methodology

To endue traditional DAEs with the extra ability to p-

reserve the local geometric structure, we propose a graph

regularized deep neural network (GR-DNN). In details, we

formulate a deep-structured regularizer on the multi-layer

perception to explicitly capture the local geometric struc-

ture.
GR-DNN is composed of one encoder and two decoder-

s as shown in Fig. 2d. The encoder transforms a input data
item into a low-dimensional code, and the first data-decoder
reconstructs the original input. Inspired by the graph auto-
encoders [23], we introduce a graph-decoder which explic-
itly enforces the internal geometric structure by reconstruct-
ing the similarity matrix S. The two decoders are connected
by a middle-bottleneck code layer. As shown in Eq. (5), the
loss function is the weighted sum of reconstruction errors of
the dual pathways. The learned codes simultaneously cap-
ture the high-level global abstractions, and attains the latent
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geometric structure within local manifold tangents.

Cost = Δ(X, X̃) + γΦ
︸ ︷︷ ︸

traditional (regularized)DAE

+ ηΔ( S , S̃ )
︸ ︷︷ ︸

graph regularizer

(5)

To learn the geometrical-aware representation, good ini-

tial codes are first generated based on the global reconstruc-

tive objective. Then, the codes are further refined accord-

ing to the affinity propagation within local manifold region-

s. From the perspective of manifold learning, the graph-

decoder exerts a force to repel or attract the mapped points

depending on whether they are geometrically close. From

the perspective of multi-modal learning [17, 21, 25], the o-

riginal image data and the local geometric graph are taken

as two views or modalities to complement each other. Ac-

cordingly, compared with traditional DAEs in Fig. 2a, more

compact and discriminative representation could be learned

by the proposed structure.

Comparing GR-DNN with regularized denoising DAE

and contractive DAE, all of them could capture the local

manifold structure of the input data space. Differently, the

denoising DAE and contractive DAE achieve this by enforc-

ing the robustness and insensitiveness of the learned code

w.r.t. small perturbations of the input signals. Our GR-

DNN directly encodes the latent manifold structure by per-

forming affinity propagation on the similarity graph, which

captures the geometric information more accurately.

Moreover, comparing with the siamese-network [5],

both of them could achieve weighted metric learning. How-

ever, the siamese-network is usually adopted in supervised

learning, which requires strong supervised information on

whether pairs of input samples are close or not. In contrast,

our deep graph regularizer softly encodes the local geomet-

ric structure of the original data space, and usually cooper-

ates with reconstructive criterion for unsupervised learning.

3.0.1 Relationship with graph Laplacian regularizer

We first analyze the close relationship in terms of the opti-

mization objective. Then, we discuss the superior property

of the proposed model.

Theorem 1 ([1]). The solution of finding

arg min
H⊤DH=I

Tr(H⊤
LH) (6)

is provided by the matrix of eigenvectors corresponding to

the lowest eigenvalues of the generalized eigenvalue prob-

lem Lh = λDh.

In the above theorem, the constraint H
⊤
DH = I re-

moves an arbitrary scaling factor in the embedding space,

which can be omitted when used as regularization. Since

L = D− S and based on the Eckart-Young-Mirsky theo-

rem [7], we obtain the same corollary as in [23].

Corollary 2. H ∈ R
n×k contains the k eigenvectors which

provide the best rank-k reconstruction of S under the Frobe-

nuis norm.

Thus, we get the following conclusion for the graph
Laplacian regularizer, where g2 denotes the quadric func-
tion of H:

min
H⊤DH=I

Tr(H⊤
LH) → min

rank(H)=k

∥
∥S−HH

⊤
∥
∥
2

F

→ min
rank(H)=k,g2

‖S− g2(H)‖2F

(7)

On the other hand, for a DAE which reconstructs S by

minimizing the Frobenuis norm, we get Eq. (8), where f
and g are multiple layers of nonlinear encoder and decoder

respectively:

min
f,g

‖S− g(f(S))‖
2
F → min

H=f(S),g
‖S− g(H)‖

2
F (8)

As we can see, both of the proposed graph-decoder and

the graph Laplacian regularizer aim to find the best recon-

struction of the input graph similarity matrix. With the more

flexible non-linear decoder g rather than the quadric g2, the

graph-decoder can be regarded as a more generalized ver-

sion of the graph Laplacian regularizer, and can uncover the

intrinsic graph structure with theoretical guarantees.

Compared with the graph Laplacian regularizer [10], the

proposed graph regularizer has the following advantages.

First, the MLP-based graph-decoder is more flexible for pa-

rameterizing complex non-linear functions, and provides a

more smooth way of enforcing the local geometric structure.

Second, the similarity matrix S ∈ R
n×n can be regarded as

n regular n-dimensional input samples to perform the stan-

dard layer-wise pre-training. The local affinity graph only

needs to be constructed once, which is more applicable in

deep models with arbitrary number of layers.

3.1. Implementation Details

3.1.1 Anchor graph (AG) for large-scale data

As conventional graph-based methods, the similarity graph

is not directly applicable for large-scale data. In GR-DNN,

the K-NN similarity matrix S ∈ R
n×n is regarded as n

data samples: [s1, ..., sn]
⊤, where each sample si ∈ R

n

is an n-dimensional input data vector. This indicates that

the size of the input and output layer of a DAE grows lin-

early w.r.t. the data volume n. Considering this, we adopt

the efficient approximation method in [13] and construct the

anchor-based graph (AG) instead. The key idea is to use a

small set of representative anchor points {a1,a2, ...,aNa
}

(ai ∈ R
m) to approximate the graph structure. First,

the anchor points can be sampled through many strategies,

e.g., randomly selected or chosen to be the k-means clus-

ter centroids. We adopt the latter because of its effective-

ness and convenience. Then, the approximated K-NN graph
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Ŝ ∈ R
n×Na is constructed between the original data points

{x1,x2, ...,xn} and the anchor points {a1,a2, ...,aNa
} ac-

cording to Eq. (2). As a result, the size of the input and

output layer of a DAE can be fixed to Na, and the construc-

tion of the graph becomes extremely efficient since now we

only need to consider O(nNa) distances.

3.1.2 Training

As the most popular strategy for training deep network, the

layer-wise pre-training [2] has been proven to be helpful in

achieving local optimal solutions.

The training of our model is composed of three parts,

i.e., (1) The layer-wise pre-training, (2) The path-wise fine-

tuning (Fig. 2c) and (3) The joint fine-tuning (Fig. 2d). For

the dual-pathway, we define a set of input pairs {xi
d, ŝ

i
g}

Na

i=1,

where x
i
d is the i-th data and ŝ

i
g is the corresponding row

vector of pre-constructed anchor graph Ŝ. First, as shown

in Fig. 2c, we layer-wisely pre-train a regular data-DAE

and a graph-DAE as in [2]. Then, we unroll and fine-tune

them separately. In the end, as shown in Fig. 2d, a joint

fine-tuning procedure is performed according to Eq. (5) to

get the optimal solution. We only choose the encoder of

data-DAE as the final encoder of GR-DNN. Compared with

multi-modal networks [17, 21], it effectively extends our

network to handle out-of-sample data, i.e., no graph needs

to be constructed when encoding the test data.

3.2. Complexity Analysis

Training the GR-DNN consists of three stages, i.e., (1)
generating the anchor points using k-means, (2) construct-

ing a AG graph Ŝ and (3) training the network. The first
stage takes O(t1nNam) time, where t1 is the iterations
for running k-means, m is the original feature dimension,
and n is the total data volume and Na is the number of
anchor-points. The second stage takes O(nNam) to con-
struct the graph matrix.For the training stage, we suppose
there are t2 epochs. The computational cost of updating the
parameters for the l-th layer in each encoder and decoder
is O(nt2(s

l
ps

l+1
p )), where p ∈ {d, g} represents the data-

pathway and graph-pathway respectively, and slp is the size
of the l-th layer. Then the overall complexity is

O(t1nNam) +O(nNam) +O(nt2
∑

p∈{d,g}

∑

l

slps
l+1
p )

≈ O(n(t1Nam+ t2
∑

p∈{d,g}

∑

l

slps
l+1
p ))

,

whose complexity is nearly O(n), since Na,m ≪ n. Notic-

ing that the pre-training and path-wise fine-tuning of the two

pathways can be parallelized, the additional computational

cost of GR-DNN over traditional DAEs mainly lies in the

first two stages. Comparing with GR-DNN, the additional

computational cost of LAE is O((L−1)n2), where L is the

depth of the network.

Table 1: Summary of the datasets

Dataset Size: train,test Dimension # of classes

COIL20 1440 : 1000, 440 1024 20

YaleB 5850 : 5000, 850 1200 10

MNIST 70k : 60k, 10k 784 10

MNIST2 120k : 100k, 20k 784 10

4. Experiments

To verify the performance of the proposed GR-DNN,

we respectively conduct k-means clustering and nearest-

neighbor search experiments based on the learned repre-

sentation. For the clustering task, two standard evaluation

metrics, i.e., Accuracy (ACC) [3] and Normalized Mutual

Information(NMI), are reported. For the nearest-neighbor

search task, given a query sample, we retrieve the top k
nearest neighbors according to Euclidean distance. The

retrieval performance is evaluated using the mean average

precision (mAP), e.g., mAP@10 measures the mAP for the

top 10 retrieved samples. In all the evaluations, the num-

ber of clusters is set to be the true number of classes of the

dataset. For each method, all the experiments are repeated

for 20 times and the best mean results are reported. Our im-

plementation is publicly available 1 based on Theano [22].

4.1. Dataset and Parameter Setting

As in Table 1, four benchmark datasets are used. (1)

The COIL20 image library [16] contains 32 × 32 gray im-

ages viewed from varying angles. (2) The YaleB dataset

contains face images over 10 categories. (3) The MNIST

handwritten digits dataset [11] contains 28 × 28 gray scale

images. (4) MNIST2: Following [26], we add 50000 noisy

MNIST digits which are rotated at angles uniformly sam-

pled from between [−π
4 ,

π
4 ] of the original MNIST. We take

the normalized pixel intensities (in the interval of [0, 1]) as

the input image for all the datasets. Specifically, the val-

idation sets are used for watching the early stopping, and

we evaluate all the performances on test set. For all the

auto-encoders, we adopt the more widely-used binary cross-

entropy instead of the Frobenuis norm for reconstruction.

4.1.1 Comparison Methods

(1) KMEANS: K-means clustering on raw inputs. (2) N-

MF: Nonnegative matrix factorization [12]. (3) GNM-

F: Graph-regularized nonnegative matrix factorization [4].

(4) DAE: standard DAE without any regularizer. (5) D-

DAE: Denoising-DAE [24]. (6) C-DAE: Contractive-DAE

[19]. (7) LAE: Laplacian auto-encoders [10]. (8) GR-

DNN(DAE): The proposed model built upon a standard

DAE. (9) GR-DNN(D-DAE): The proposed model built up-

on a D-DAE (Eq. (5)). (10) GR-DNN(C-DAE): The pro-

posed model built upon a C-DAE (Eq. (5)).

1https://github.com/ysjakking/GR-DNN
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Table 2: Clustering and Nearest-neighbor search results(%): NMI, ACC and mAP

YaleB COIL20 MNIST MNIST2

Methods NMI ACC mAP NMI ACC mAP NMI ACC mAP NMI ACC mAP

KMEANS (Raw) 70.69 65.47 70.56 73.43 63.78 70.46 49.78 53.70 66.21 47.92 46.74 63.72

NMF 70.72 66.80 71.14 72.68 64.81 72.59 50.82 53.76 67.97 48.90 46.49 64.24

GNMF 75.43 67.81 75.25 83.51 71.33 75.17 59.27 61.09 69.52 52.85 53.70 68.92

DAE 85.53 86.34 81.21 83.05 71.53 76.54 65.65 62.36 74.91 58.75 57.36 74.39

D-DAE 90.66 87.71 82.61 83.78 72.04 77.61 68.87 64.10 75.82 59.22 59.87 75.71

C-DAE 91.32 86.94 81.70 83.70 71.58 77.49 68.69 63.78 76.12 61.12 58.81 75.82

LAE 91.71 88.21 82.29 84.13 71.71 80.18 69.76 65.22 77.82 64.46 60.63 76.47

GR-DNN(DAE) 92.21 89.97 83.32 84.95 71.88 81.12 70.61 65.76 78.98 65.75 60.85 76.89

GR-DNN(D-DAE) 92.55 89.77 83.73 85.73 72.02 82.23 70.94 66.02 79.15 65.86 60.76 77.43

GR-DNN(C-DAE) 92.51 90.56 83.52 84.70 72.11 81.18 70.32 65.90 79.20 65.73 61.94 77.31

Table 3: Summary of the network structures for GR-DNN

Dataset Data pathway Graph pathway

COIL20 1024−1200−500−250−20 1000−1200−500−100−20

YaleB 1200−1300−500−250−10 5000−5100−1000−100−10

MNIST 784−1000−500−250−10 1000−1200−500−100−10

MNIST2 784−1000−500−250−10 2000−2200−1000−100−10

4.1.2 Parameter Setting

Since GNMF, LAE and C-DAE share the framework of

Eq. (1), the trade-off parameter of the regularization ter-

m is set by searching the grid of {0.01, 0.1, 1, 10, 100}.

The K-NN and AG graphs with the bandwidth parameter

σ = mean
i,j

([S]ij/ log 0.5) are built for GNMF, LAE and

GR-DNN. The value of K is selected to be {20, 20, 30, 30}
respectively for COIL20, YaleB, MNIST and MNIST2 by

experimental search. Specifically, regular K-NN graphs are

built on COIL20 and YaleB, and we built AG graphs with

1000 and 2000 anchor points on MNIST and MNIST2 as

the input of GR-DNN. GR-DNN(*) share all the hyper-

parameter settings with LAE, D-DAE and C-DAE during

training. In greedy layer-wise pre-training, each layer is

pre-trained for 50 epochs and the corruption rate is 20%
for denoising networks, For all networks, the SGD batch-

size and the learning rate are set by searching the grid of

{50, 100, 200} and {0.001, 0.005, 0.01, 0.05, 0.1}, respec-

tively.

Due to the large freedom of deep structures, we empiri-

cally design a series of 5-layer structures for all the datasets

shown in Table 3, and avoid dataset-specific tuning as much

as possible. As the work of [9], we put a bit more neurones

on the first hidden layer than inputs, and decrease slowly

until the last hidden layer. All the last hidden layer’s size

is set to be the true number of classes of the datasets, and

all the baseline networks (i.e., D-DAE, C-DAE and LAE)

and the data-pathway network of GR-DNN share the same

structure at all the time. For GR-DNN, the output-size of

the graph-decoder equals to the node-volume of the anchor

graph, and the impact of its size will be further discussed.
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Figure 3: The top # mAP score on MNIST.
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Figure 4: The top # mAP score on MNIST2
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Figure 5: (a) Parameter analysis on MNIST. (b) The mAP of different methods on MNIST. (c) Clustering results w.r.t. number

of layers.

4.2. K-NN Search Results

The K-NN search experiments aim to verify that the

proposed GR-DNN can preserve the local geometric struc-

ture of the data manifolds. We show the mAP score with

respect to different nearest-search scales in Fig. 3 and 4.

Compared with other methods, the mAP of GR-DNN(*)

decreases more slowly with the increase of retrieved sam-

ples, which indicates that cleaner neighborhoods within lo-

cal regions are better obtained. We present the statistics of

mAP@100,@100,@1000,@1000 on four datasets respec-

tively on Table 2. The mAP of GR-DNN(*) has an compre-

hensive improvement compared with all the baselines. For

example, the mAP scores of GR-DNN(C-DAE) are 0.8352,

0.7920 and 0.7731 on YaleB, MNIST and MNIST2 respec-

tively, while C-DAE achieves 0.8170, 0.7612 and 0.7582,

respectively. The relative improvements are 2.23%,4.05%
and 1.97%, which shows that the proposed graph regulariz-

er could be an effective module to enhance C-DAE. More-

over, GR-DNN(DAE) outperforms over C-DAE, D-DAE

and LAE. The superior performance indicates that the deep

graph regularizer provides more effective regularization in-

fluence and a more compact way to enforce the local struc-

ture than existing regularizer.

4.3. Clustering Results

The clustering experiments are conducted to demonstrate

that GR-DNN not only can preserve the local geometric

structure but also can better extract the global high-level

semantics. Table 2 shows that the performance of GR-

DNN(*) has an comprehensive improvement in terms of

both NMI and ACC. Comparing GR-DNN(*) with DAE, D-

DAE and C-DAE, both the average NMI and ACC are im-

proved with a margin on YaleB, MNIST, and MNIST2. For

example, GR-DNN(D-DAE) achieves relatively 3.01% N-

MI improvement over D-DAE on MNIST, and 2.17% NMI

improvement over LAE on MNIST2. It reveals that better

semantic structures are captured with the help of the deep

graph regularizer, and the preserved local geometric struc-

ture gives rise to the better clustering quality and more dis-

criminative embedding space. Comparing GR-DNN(DAE)

with D-DAE and C-DAE, we see that explicitly perform-

ing affinity propagation can better capture the geometric

structure than implicitly enforcing the insensitivity of the

code. The superior performance of GR-DNN(DAE) over

LAE shows that the proposed deep graph regularizer has

more merit in capturing complex geometric structure than

the shallow-structured Laplacian regularizer.

4.4. Discussions on the anchor graphs

Anchor graph (AG) is an approximation method for

building regular K-Nearest Neighbor (K-NN) graphs.

When building an AG, the parameter K and the number of

anchor points Na have an impact on its “locality” property.

We formulate the improvement of mAP as ∆(mAP@#) =
mAP@#(GR-DNN)−mAP@#(D-DAE) to evaluate this

impact. First, as shown in Fig. 6a, we investigate different

Ks of K-NN graphs while fixing Na = 1k. With the incre-

ment of K, ∆(mAP@10) and ∆(mAP@100) are gradu-

ally decreased while ∆(mAP@2k) and ∆(mAP@5k) are

increased a lot. It indicates that small K emphasizes more

on the local structure, and large value respects more on the

global structure. However, there is a trade-off between these

two impacts. Then we investigate different Nas while fixing

K = 30 as illustrated in Fig. 6b. On the contrary, the more

local structure is captured as the increase of Na, and the

enforcement of the global structure is gradually lost. More-

over, both the overly small and overly large values of Na

show relatively poor performance of GR-DNN. Overly s-

mall value of Na overemphasizes the global structure, while

overly large value results in highly sparse AG, and the affin-

ity information is lost too much.
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Figure 6: (a) Relative mAP improvement w.r.t. K. (b) Rel-

ative mAP improvement w.r.t. Na.

4.5. Discussions on the graph regularizer depth

Here we give some discussion on how the depth of da-

ta and graph pathway affect the learning performance. For

this purpose, we empirically tune the number of layers for

each pathway with the searching grid of {3, 4, 5, 6} and the

corresponding performance is shown in Fig. 5c. We ob-

serve that more layers lead to a better performance. It is

also shown that the depth of the graph-decoder has stronger

impact on the performance than the data-decoder. This re-

confirms the regularizing influence of the graph regularizer.

4.6. Parameter Analysis

For the parameters to be tuned for GR-DNN, we ana-

lyze the most crucial η and the code dimension due to the

space limit. From Fig. 5a, we see that both overly small and

overly large values of η show relatively poor performance

of GR-DNN. This is consistent with the impact of η in the

presented models. Overly small values of η eliminates the

influence of local invariance criterion, while too large val-

ues overemphasize the local correlations and ignores the in-

dividuality of the data. As a result, η can be chosen be-

tween interval of [0.5, 10] in practice. Fig. 5b shows that

GR-DNN consistently outperforms other methods w.r.t. d-

ifferent code dimensions. Unlike the stable mAP@10 and

mAP@100, the mAP@1k decreases significantly as we in-

crease the code dimension. This indicates that large code

size introduces more noise, and additional codes tend to

model less discriminative visual information ( e.g., recon-

structing background pixels), which degrades the clustering

performance.

4.7. Visualization

We qualitatively investigate the learned embedding by

projecting them into a 2D space. The resulting visualiza-

tions are given in Fig. 7. In comparison, the proposed graph

regularizer exerts a force to repel or attract the mapped

points depending on whether they are geometrically close

0

1

2

3

4

5

6

7

8

9

Figure 7: The left and right panel shows the 2-dimensional

codes produced by D-DAE and GR-DNN(D-DAE) on the

MNIST test data using a 784-1000-500-250-2 encoder re-

spectively.

Figure 8: The top, middle and bottom panel respectively

shows the original samples, the reconstructed samples by

D-DAE and GR-DNN(D-DAE).

within local regions, and thus a discriminative embedding

result can be achieved. Visualizations of the reconstructed

samples of different methods are presented in Fig. 8. Our

method achieves more clear and accurate reconstruction.

5. Conclusion

In this work, we propose a graph regularized deep neural

network (GR-DNN) to endow the DAEs with the ability of

retaining the local geometric structure. A robust and com-

pact embedding space is learned to simultaneously preserve

the high-level semantics and the geometric structure with-

in local manifolds. Theoretical analysis presents the close

relationship between the proposed graph regularizer and the

graph Laplacian regularizer in terms of the optimization ob-

jective. The proposed model achieves linear computational

complexity and empirical study shows the promising learn-

ing performance. In future work, we will focus on tailoring

the model to learn compact hash codes for retrieval task and

extending it to multi-view scenarios.
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