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Abstract

We introduce a method to compute optical flow at

multiple scales of motion, without resorting to multi-

resolution or combinatorial methods. It addresses the

key problem of small objects moving fast, and resolves

the artificial binding between how large an object is and

how fast it can move before being diffused away by clas-

sical scale-space. Even with no learning, it achieves

top performance on the most challenging optical flow

benchmark. Moreover, the results are interpretable, and

indeed we list the assumptions underlying our method

explicitly. The key to our approach is the matching pro-

gression from slow to fast, as well as the choice of in-

terpolation method, or equivalently the prior, to fill in

regions where the data allows it. We use several off-

the-shelf components, with relatively low sensitivity to

parameter tuning. Computational cost is comparable to

the state-of-the-art.

1. Introduction

Most existing optical flow algorithms struggle with

small things that move fast, even those explicitly de-

signed for large displacement. This phenomenon does

not have a dramatic impact on the benchmarks, since

the problem being with small objects makes it such algo-

rithms are not penalized too harshly. Nevertheless, small

objects are important: humans can effortlessly pick out

a bee flying at a distance.

In analyzing the root causes for the failure by most al-

gorithms to capture small things moving fast, we honed

in on a fundamental problem with classical scale-space,

which trades off spatial frequencies (by blurring and

down-sampling images) with temporal anti-aliasing (to

compute temporal derivatives). This ties the size of ob-

jects to the speed at which they can move before being

blurred-away in the multi-resolution pyramid that is rou-

tinely used in multi-scale/multi-resolution stages com-

mon to most variational optical flow techniques.1 This

multi-scale structure is also common in convolutional

neural network architectures, so optical flow schemes

based on them are typically subject to similar failure

modes.

We propose a novel scheme for multi-scale match-

ing, where the scale-space variable is not the amount of

diffusion/subsampling of spatial resolution, but instead

the size of the interest region on which local match-

ing is based, at the native resolution. Thus, like others

have done before, we perform multi-scale without multi-

resolution. The iteration is instead over the radius of

the region-of-interest, whereby regions with larger and

larger radii operate on smaller and smaller subsets of the

image domains. Slower objects are matched first, and

then faster and smaller ones, hence the name S2F.

Clearly, the prior or regularization model plays a key

role in optical flow. Rather than delegating it to a dataset

and a generic function approximator, we discuss the spe-

cific model assumptions made in our method, and the

topology with respect to which we consider pixels to be

“nearby.” In other words, we hand-engineer the prior,

almost anathema in the age of Deep Learning.

Despite the absence of any learning, our algorithm

achieves top performance in the most challenging opti-

cal flow benchmark, Sintel. More importantly, we can

at least try to explain the performance, which we do in

Sect. 3. Before doing so, we relate our work to the

current art in Sect. 1.1, summarize the motivations and

the actual algorithm in Sect. 1.3, and describe empirical

tests in Sect. 2

1.1. Related work

Optical flow has been a core concern in Computer Vi-

sion for over two decades, with too many contributions

to review here. It is a building block in many low-level

vision tasks, and plays a role in a large number of ap-

plications, from autonomous navigation to video post-

1Combinatorial matching methods are not subject to this limitation.
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production, only to mention a few. The interested reader

can get an overview of recent developments in [18].

The case of fast motion has been tackled head-on in

many recent works on large-displacement optical flow,

for instance [4, 17, 1, 21, 25, 7, 2, 8, 30] and refer-

ences therein. Several methods are proposed, mixing

sparse matching with interpolation [26, 17], a philoso-

phy we adopt. However, to the best of our knowledge,

none addresses specifically the interplay of size and mo-

tion in multi-scale processing, and proposes an iteration

that increases the region-of-interest, acting on a decreas-

ing residual domain on the image. In particular, [21]

addresses matching from small to large displacements,

however it follows the standard scale-space of [4], and

focuses on a novel descriptor inspired by sparse coding.

Also, [26] learns a regularizer from the computed flow,

which however follows a standard approach to scale-

space. Both significantly underperform our method on

the benchmarks.

Nevertheless, many of these methods are effective at

capturing the fast motion of small regions, see for in-

stance Fig. 10 of [4]. Our work follows these trends and

makes a further step to improve results on fast-moving

small objects (Fig. 1); [28] addresses the problem of lost

details in the coarse-to-fine matching by not completely

relying on the flow propagated from the upper levels.

Some have used coarse-to-fine matching that main-

tains the native resolution [16, 1, 13], or other multi-

scale approaches in a combinatorial setting [21, 9].

Other samples of relevant related work include [24, 27,

3, 29, 6]. None of these works, however, perform multi-

scale processing quite in the manner we do: Processing

smaller and smaller regions that move faster and faster.

Our cost function is entirely hand-engineered to ad-

dress known shortcomings and violations of the assump-

tions underlying the basic brightness constancy con-

straint. In part, this is because the phenomenology of

correspondence is well understood, and therefore we are

not compelled to learn it anew. To be fair, while phe-

nomena like occlusions, scaling and domain deforma-

tions are well understood, the complex interaction of

light and matter in non-Lambertian materials is difficult

to model. This is where data-driven approaches such as

[20, 22, 15, 11] have the most potential.

1.2. Summary of contributions and organization
of the paper

We present yet another algorithm for optical flow,

that focuses on the specific problem of coupling spa-

tial and temporal statistics implicit in multi-scale/multi-

resolution methods.

Our algorithm performs multi-scale inference by se-

quentially hypothesizing dense flow, and testing viola-

tion of the assumptions, on a shrinking domain, that is

tested for increasingly large displacements.

When tested on benchmark datasets, our algorithm

performs competitively. At the time of writing, it was

the top performer on Sintel [5], which includes sev-

eral examples of large displacement of small structures.

It ranks middle-of-the-pack on Middlebury [19], which

however is a very limited benchmark with only 12 im-

age pairs, only 8 of which with ground truth. Interest-

ingly, the only image pairs with large displacement of

small objects are the four with no ground truth, which

are therefore not part of the evaluation score. We also

test on KITTI [12], where our approach is competitive

despite no fine-tuning to the dataset being performed.

In the next section, we describe our approach in sum-

mary, then report empirical tests in Sect. 2 to show how

it works, and in Sect. 3 we venture an explanation of

why it works.

1.3. Rationale and underlying assumptions

Given two (grayscale) images I1, I2 : D ⊂ R
2 →

R
+, optical flow is a map w : R2 → R

2 defined at points

x ∈ D ⊂ R
2 implicitly by I1(x) = I2(w(x)) + n(x),

where n(x) is an uninformative (white) residual. Op-

tical flow is related to motion field (the projection of the

displacement of points in space when seen in I1 and I2
[23]) under several assumptions on the scene around the

(pre-image) point X ∈ R
3 of x ∈ D, including: (i)

Lambertian reflection and constant illumination, (ii) co-

visibility. When (i) is violated, there is in general no

relation between optical flow and motion field. When

(ii) is violated (occlusion) there exists no transformation

w mapping x in image I1 onto a corresponding point in

image I2. When w exists, it may not be unique, i.e., (iii)

flow can be non-identifiable, which happens when the

irradiance (“intensity”) is not sufficiently exciting (e.g.,

constant). This issue is usually addressed via regular-

ization, by allowing a prior to fill in the flow from suffi-

ciently exciting areas. A final assumption that is not nec-

essary but common to many algorithms, is (iv) small dis-

placement w(x) ≃ x. This allows using differential op-

erations (regularized gradient) that facilitate variational

optimization. This issue is not present in a combinatorial

setting, where any large displacement is allowed, but at

a prohibitive computational cost. In the variational set-

ting, the issue is usually addressed via multi-scale meth-

ods, where temporal anti-aliasing is performed by spa-

tial smoothing, through the creation of multi-resolution

image pyramids (smoothed and sub-sampled versions of
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an image [14]), where large displacements at fine-scale

correspond to small displacements at coarse-scale.

Small things moving fast

There is a fundamental problem with multi-scale ap-

proaches based on classical scale-space, in that it cou-

ples spatial and temporal frequencies. In other words,

it ties the size of objects to their allowable speed. This

is manifested in typical failure cases with small things

moving fast (Fig. 1). In general, the size of an object

and the speed at which it moves are independent, and

they should be treated as such, rather than be coupled

for mathematical convenience. How then to address the

spatial variability of image velocity?

Multi-scale without multi-resolution

Our approach to avoid the pitfall of multi-resolution,

while addressing the intrinsically space-varying scale of

motion and respecting the assumptions underlying opti-

cal flow computation, is to design a method that is multi-

scale but not multi-resolution.

It operates at the native resolution, using increasingly

large regions-of-interest operating on a decreasing sub-

set of the image domain. Instead of using spatial blur-

ring as the scale parameter, it uses speed, or magni-

tude of displacement. This is the key to our method,

and explains the name “slow-to-fast”. The next section

sketches a generic implementation of our algorithm, and

subsequent sections detail our choices of components

and parameters.

Sketch of S2F-IF

Call φ(x;w, I1, I2) the point-wise cost function used

by any baseline optical flow algorithm, for instance

φ(x; ŵ, I1, I2) = |I1(x) − I2(ŵ(x))|, where we may

omit some of the arguments when obvious from the con-

text. Then:

1. Choose an initial radius r > 0;

2. Use a baseline optical flow algorithm to com-

pute putative forward ŵ and backward ŵ−1 dis-

placements; point-wise residual ρ, where ŵ =
argminw

∫
D
φ(x;w, I1, I2)dx, ρ(x) = φ(x; ŵ),

and ŵ−1 = argminw
∫
D
φ(x;w, I2, I1)dx. Also

compute forward-backward (f-b) compatibility

b(x)
.
= ‖I2×2 − ŵ ◦ ŵ−1(x)‖.

Test violations of (i) and (ii) using the residual ρ(x)
and f-b compatibility b(x) respectively, aggregated

on a region/window B(r) with radius r, using a

conservative threshold.

This leaves a (typically sparse) set of points D =

{xi}
N(r)
i=1 , and yields their (by assumption, typi-

cally small) displacements wi = w(xi).

3. Interpolate the sparse matches to fill unmatched re-

gions D\D that violated (i)-(iv), based on a choice

of prior/regularizer, leading again to a dense field

w̃ and point-wise residual ρ̃(x) = φ(x; w̃). Given

flow at each point, check f-b compatibility after

warping; large residuals are considered occlusions

(violations of (ii)).

4. Optionally partition I1 into piecewise constant re-

gions {Sj}
M
j=1 (super-pixels), to facilitate compu-

tation, and expand D to include simply-connected

regions with small residual Sj ∩ χ(ρ̃ < ǫr).

5. Mask the matched regions D from the images,

I1 ← I1 · χ(D\D), and similarly for the warped

I2 ◦ w̃, where the dot indicates point-wise multipli-

cation (matched regions are now black).

6. r ← r + δ, and go to step 2. We use δ ≥ 1 pixels,

and terminate when r reaches the size of the image,

or no more matches could be found.

Several comments are now in order:

• We choose r = 5, 8 pixels in (1.) for KITTI and

Sintel respectively as in [1]; we use [1] as a baseline

optical flow in (2.), and the census transform to test

compatibility with (i)-(ii). We reject points that fail

either the residual (ǫr = 30) or the f-b test(ǫc =
1, 5). We choose [17] for interpolation in 3, and

[10] for superpixelization. Finally, we use δ = 1, 2
pixels for the scale increment.

• Step 2 implements a conservative sparse matching

procedure for regions of size r, that leads to a set of

sparse matches. Our choice [1] can be replaced by

any other conservative sparse matching.

• The matched region D typically grows monotoni-

cally, so the procedure either terminates with a non-

empty unmatched set, if no further matches could

be found, or each pixel is matched D = D.

• In theory, the process should be terminated before

each pixel is matched, as displacement is not de-

fined in occluded region. In practice, all pixels are

typically matched, exploiting the regularizer im-

posed by the interpolation step.
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• The first regions of the scene to be matched are the

ones that are (i) Lambertian, with (ii) sufficiently

exciting radiance, are (iii) co-visible, and (iv) mov-

ing slowly. As iterations progress, smaller and

smaller regions that are moving faster and faster

are matched. For this reason, we call this scheme

Slow-To-Fast (S2F) Interpolator Flow (IF), as the

final solution is influenced heavily by the prior.

• The crucial characteristic of the algorithm above,

which is responsible for edging the state-of-the-art,

is its lossless multi-scale nature, that is the search

at multiple scales of motion, without changing the

resolution of the images.

• The algorithm is relatively insensitive to the choice

of component algorithms at each step, although the

most crucial is the choice of interpolation, which

we discussed at in Sect. 3.2

2. Experiments

2.1. Qualitative results

Fig. 1 illustrates the key characteristic of our method

in comparison to most alternate methods, which we

choose to represent with a close-to state-of-the-art base-

line [18]. Small objects that move fast are diffused away

by scale-space by the time their displacement becomes

small enough for a variational optical flow algorithm to

resolve. Modifying spatial frequencies (smoothing and

down-sampling) to achieve temporal anti-aliasing (to en-

able approximation of temporal derivatives with first dif-

ferences) ties the size of objects with their speed, in

ways that are detrimental. Our approach treats them as

independent, thus enabling us to capture their motion.

It should be mentioned that combinatorial search-base

schemes are not subject to this limitation, but suffer from

prohibitive computational complexity.

Fig. 2 illustrates the various stages of evolution of

our algorithm, corresponding to the sketch in Sect. 1.3.

Fig. 3 shows the evolution of the matched domain,

which typically shrinks monotonically to encompass the

entire image domain, with the last, unmatched region

filled in by the regularizer.

2.2. Benchmark comparisons

Fig. 4 shows representative samples for the bench-

marks used. The Middlebury dataset [19] comprises 12

pairs of images of mostly static man-made scenes seen

under a short baseline. There are few small objects, and

none moves fast in the only 8 ground-truthed pairs. The

only pairs showing large displacement of small objects

Figure 1. Small things moving fast (top-left) two images from

the Middlebury dataset (shown superimposed) with the fast-

moving ball highlighted, are a classic failure mode of multi-

resolution optical flow (top-right; the inset color wheel shows

the map from color to image displacement). Small objects dis-

appear at coarse resolution, where large motions are computed

(bottom row), and are never recovered in a differential-based

variational scheme [18] (top-right).

Method Avg. Rank Method Avg. Rank

CPM-Flow 53.7 EpicFlow 57.4

DeepFlow2 54.0 FlowNetS 80.4

S2F-IF 38.6 FlowFields 41.2

Table 1. Average endpoint error on Middlebury for the top-

performing algorithms on Sintel. Full ranking can be accessed

directly on the Middlebury flow page http://vision.

middlebury.edu/flow/eval/.

are the 4 with no ground truth, including the one shown

in Fig. 4, which are unfortunately not included in the

evaluation. Our algorithm estimates flow more accu-

rately on these sequences. In overall performance, our

method ranks in the middle-of-the-pack on this dataset.

As a sanity check, we use the Middlebury dataset to

compare against the algorithms that report top perfor-

mance on Sintel, which is a larger dataset showing a

wider variety of motions, including large displacement

of small objects. The results in Table 1, show our algo-

rithms comparing favorably. The fact that top perform-

ers on Sintel are different from top performers on Mid-

dlebury suggests that one of the datasets, or both, are

easily overfit. Middlebury only has 12 image pairs, only

8 of which with ground truth, none of them with large

displacement.

A better benchmark is the KITTI dataset [12], which

consists of outdoor driving sequences, with sparse

ground truth. Quantitative comparisons with competing

algorithms is shown in Table 2. We use default param-
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Figure 2. Visualization of the stages of our algorithm: Original images (left), initial sparse matches (middle-left, step 2), interpolated

flow (middle-left, step 3), super-pixelization (middle-right, step 4), matched set (middle-right, step 5) and residual masked image

(right) after the first iteration.

Figure 3. Matched regions as the iteration evolves from the first

(top row) to the last (bottom rows). The unmatched region

(white) shrinks in size, until it converges to regions that are

compatible with the hypotheses, but where there is no unique

match (third row). On these, the regularizer has license to fill

in (bottom), where we highlight details on the legs of the di-

nosaur, where the overall procedure corrects initial matching

errors of the baseline flow algorithm.

eters, not fine-tuned for the dataset, and show competi-

tive performance. As expected, we outperform the base-

line flow algorithm we use as a component, shown as

the last line on the table as FlowField-. It should

be noticed that the same algorithm has been fine-tuned

to the KITTI dataset by the authors, shown on the ta-

ble as FlowFields, with a considerable improvement

in performance, suggesting that this dataset can also be

overfit. Since the parameters chosen for the test are not

disclosed, we use the same parameters of the baseline

as released, with no fine-tuning for the dataset. We feel

that this test is more representative than reporting the

best score with different parameters for each dataset.

Again, we use the same settings as in [1] on the Sin-

Method Out-Noc Out-All Avg-Noc Avg-All

CPM-Flow 5.79 % 13.70 % 1.3 px 3.2 px

EpicFlow 7.88 % 17.08 % 1.5 px 3.8 px

DeepFlow2 6.61 % 17.35 % 1.4 px 5.3 px

FlowNetS 37.05 % 44.49 % 5.0 px 9.1 px

FlowFields 5.77 % 14.01 % 1.4 px 3.5 px

S2F-IF 6.20 % 15.68 % 1.4 px 3.5 px

FlowField- 6.49 % 15.94 % 1.5 px 3.9 px

Table 2. Comparison on the KITTI dataset. Our method uses

as a component FlowField- for flow computation. As ex-

pected, it improves its performance. The same algorithm, how-

ever, fine-tuned to the dataset (indicted as FlowFields, for

which no parameters are disclosed) further improves perfor-

mance. We do not fine-tune ours, and simply report our per-

formance with the same tuning for all datasets. Out-Noc in-

dicates the percentage of pixels with error larger than 3 pixels

in non-occluded regions, whereas Out-All indicates percentage

of outliers among all pixels. Avg denotes the average end-point

error, again for non-occluded, or all pixels.

tel dataset [5], which is a synthetic one, but challenging

in that it includes fast motion, motion blur, and has pre-

cise ground truth. We report the performance in the offi-

cial benchmark in Table 3, with our algorithm exhibiting

top performance in overall end-point error at the time of

writing.

These results illustrate the benefit in specifically han-

dling multi-scale phenomena without sacrificing resolu-

tion and confusing spatial statistics with temporal ones.

Several representative sample results are shown in the

Supplementary Material, and the up-to-date ranking on

the benchmark can be verified on the Sintel website

http://sintel.is.tue.mpg.de/results.

The next section gives more details on our choice of

component methods for the generic algorithm described

in Sect. 1.3.
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Figure 4. Representative samples from various datasets: Middlebury (row 1), KITTI (rows 2, 3, 4), SINTEL (rows 5,6). We compare

the component flow [1] (FlowFields), with ours (S2F). More examples are shown in the Supplementary Material; Small objects

moving fast are highlighted in the yellow box.

3. Technical Details

The basic algorithm was described in Sect. 1.3,

and consists of sparse matching, followed by interpo-

lation, followed by testing for violation of the hypothe-

ses, where the iteration is with respect to a growing ra-

dius for the region of interest, which operates on smaller

and smaller residual unmatched portion of the image do-

main.

3.1. Sparse matching

Step 2 of our algorithm results in a sparse set of re-

gions being matched over short displacements. This is

not because we actively seek for sparse matches with

small displacement. On the contrary, we start with a

dense flow, specifically [1], but then conservatively re-

ject all regions that fail hypotheses (i)-(ii) based on

residual or f-b compatibility. This naturally results in

a sparse set, because sufficient excitation conditions

(which are tested through f-b compatibility) require

large gradients in two independent directions, which is

typically only satisfied on a sparse subset of the image

domain. Conceptually, any other sparse matching would

do, and the algorithm is not very sensitive to the choice

of method for this step, which we therefore do not fur-

ther discuss.
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Method EPE all EPE matched EPE unmatched d0-10 d10-60 d60-140 s0-10 s10-40 s40+

FlowFields 5.810 2.621 31.799 4.851 2.232 1.682 1.157 3.739 33.890

FlowFields+ 5.707 2.684 30.356 4.691 2.117 1.793 1.131 3.330 34.167

SPM-BPv2 5.812 2.754 30.743 4.736 2.255 1.933 1.048 3.468 35.118

FullFlow 5.895 2.838 30.793 4.905 2.506 1.913 1.136 3.373 35.592

CPM-Flow 5.960 2.990 30.177 5.038 2.419 2.143 1.155 3.755 35.136

EpicFlow 6.285 3.060 32.564 5.205 2.611 2.216 1.135 3.727 38.021

DeepFlow2 6.928 3.093 38.166 5.207 2.819 2.144 1.182 3.859 42.854

S2F-IF 5.417 2.549 28.795 4.745 2.198 1.712 1.157 3.468 31.262

Table 3. Comparison on the Sintel dataset. Refer to http://sintel.is.tue.mpg.de/results for details and for links to

the various methods listed on the left. EPE stands for end-point error, among all, matched, and unmatched pixels (second through

third column). dX-Y stands for error restricted to pixels between X and Y of objects boundaries, thus discounting error at occluded

regions. sX-Y stands for pixels with displacements between X and Y pixels. Our method is competitive on all counts, and shines

for large displacements, as expected.

3.2. Interpolation

The algorithm is sensitive to the choice of prior,

which in our case corresponds to the choice of interpola-

tion algorithm. To describe and motivate our choice, let

x, y ∈ D ⊂ R
2 be two points on the pixel lattice, with

distance d(x, y) for some choice of norm. We are inter-

ested in inferring the value of the displacement w(x) at

x from observations performed at y. We assume a para-

metric form for the likelihood function

pθ(w(x)|y) = N (Ax+ b; Σ(x, y)) . (1)

whereby the displacement w at x is a Gaussian random

vector having as mean an affine deformation, depends

on y, of the point x, with an uncertainty

Σ(x, y) = β2 exp (d(x, y)) I2×2 (2)

that grows exponentially with the distance of the obser-

vation point. The parameters θ = {A, b} can be in-

ferred via maximum-likelihood, given a sample D =
{xi, wi}

N
i=1, where wi = w(xi), as

Â, b̂ = argmax
θ

N∏
i=1

pθ(wi|x)

= argmax
A,b

N∏
i=1

N (Axi + b; Σ(xi, x))

= argmin
A,b

N∑
i=1

‖wi −Axi − b‖22
β2 exp (d(xi, x))

(3)

leaving β as a tuning parameter. This is essentially the

locally-weighted (LA) estimator in Eq. (2) of [17]. Note

that pθ(w(x)|x) = N (Ax+ b;β2I2×2) and the parame-

ters θ (which are the sufficient statistics of the dataset D
for the displacement w(x)) are a function of the location

x. We make this explicit by writing θ = {A(x), b(x)}.
A point-estimate, for instance the conditional mean, of

the displacement can be obtained at each point x,

w(x) = A(x)x+ b(x). (4)

This approach follows [17] to avoid solving a varia-

tional optimization problem with explicit regularization,

which is instead implicit in the finite-dimensional class

of transformations (affine) and the finite data sample D.

The behavior of this interpolation method hinges criti-

cally on the choice of distance d in (3), which we de-

scribe next.

3.3. Topology

The distance between two points d(x, y) can be based

on the topology of the image domain, for instance

d2(x, y) = ‖x − y‖2, where nearby pixels are con-

sidered close, or the topology of the image range, for

instance dI(x, y) = ‖I(x) − I(y)‖, where pixels with

similar intensity are considered close. Ideally, we would

like to use the topology of the scene, and consider points

x, y ∈ D close if the distance between their pre-images

(back-projection) onto the scene X,Y ∈ R
3 is close.

This would be a geodesic distance, assuming the scene

to be multiply-connected and piecewise smooth, infinite

if X,Y are on different connected components.

Since we do not have a model of the scene, we use

a proxy, whereby the distance between two points on

the same connected component X,Y is the distance be-

tween their projections x = π(X), y = π(Y ) on the

image, whereas the distance between points on differ-

ent connected components adds a term proportional to

their depth differential relative to the distance from the

camera.

While we do not know their depth, disconnected

components result in occlusion regions with area propor-

2093

http://sintel.is.tue.mpg.de/results


tional to the relative depth differential, where the optical

flow residual φ(x) = minw ‖I1(x)− I2(w(x))‖ is gen-

erally large. Therefore, we can take the path-integral of

optical flow residual as a proxy of the geodesic distance:

dw(x, y)
.
= min

γ

∫
γx→y

φ(z)dz (5)

where γx→y is any path from x to y.

We can also assume that objects are smoothly col-

ored, and therefore large intensity changes can be at-

tributed to points being on different objects. Clearly this

is not always the case, as smooth objects can have sharp

material transitions, but nevertheless one can restrict the

topology to simply connected components of the piece-

wise smooth albedo, and define dI as

dI(x, y)
.
= min

γ

∫
γx→y

|∇I(z)|dz (6)

and similarly bypass the minimization by using a cordal

distance. Various product distances, and various approx-

imations to the geodesic, can be derived, for instance

those in [17]. We use (6) in our algorithm.

3.4. Hypotheses (i)(iv) testing

The key to our algorithm is the multi-scale iteration,

starting from large regions that move slowly, eventually

matching small regions that move fast. At each itera-

tion, hypotheses of (i) Lambertian reflection and con-

stant illumination, and (ii) co-visibilty (large residual)

are tested conservatively relative to a fixed radius of the

region of interest. Furthermore, backward-forward com-

patibility tests (iii) sufficient excitation; where failed, the

regularizer (which in our case is implicit in the interpo-

lation scheme) has license to take over.

While it would be desirable to have an integrated

Bayesian framework where the thresholds are automat-

ically determined by competing hypotheses, in practice

these stages boil down to threshold selection. Impor-

tantly, the algorithm is not extremely sensitive to choice

of thresholds. For reproducibility purposes, all parame-

ters are reported in the Supplementary Material, and our

implementation can be found at: http://vision.

ucla.edu/s2f.html.

3.5. Computational cost

The computational cost of our algorithm is essen-

tially dictated by the choice of components. Run-time

depends on the complexity of the motion, since the

length of our iteration is data-dependent. On average,

it takes about 1m per pair of frames in Sintel, where im-

ages are of size 1024 × 436, on a commodity 4-core

3.1GHz desktop. We have observed convergence in as

little as 20s, and as long as 2m. This includes all com-

ponent elements of our pipeline.

On smaller images, for instance Middlebury’s, (300×
400), our algorithm runs in about 15s/pair of frames.

On KITTI, that has 400× 1234 pixels per image, our

algorithm runs, on average, at 1.5m per pair of frames.

4. Discussion

Our algorithm uses off-the-shelf components (sparse

matching, interpolation, superpixelization), but in a

manner that allows us to break free of the limitations of

classical scale-space, that ties spatial frequency degrada-

tion to temporal anti-aliasing. Instead, we iterate match-

ing over larger and larger domains of interest, on smaller

and smaller regions at the native resolution. This is the

key, together with a choice of regularizer designed to re-

spect the phenomenology of correspondence, including

occlusions, domain deformations, and relatively rudi-

mentary illumination changes.
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