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Abstract

We present an unsupervised learning framework for the

task of monocular depth and camera motion estimation

from unstructured video sequences. In common with re-

cent work [10, 14, 16], we use an end-to-end learning ap-

proach with view synthesis as the supervisory signal. In

contrast to the previous work, our method is completely un-

supervised, requiring only monocular video sequences for

training. Our method uses single-view depth and multi-

view pose networks, with a loss based on warping nearby

views to the target using the computed depth and pose. The

networks are thus coupled by the loss during training, but

can be applied independently at test time. Empirical eval-

uation on the KITTI dataset demonstrates the effectiveness

of our approach: 1) monocular depth performs comparably

with supervised methods that use either ground-truth pose

or depth for training, and 2) pose estimation performs fa-

vorably compared to established SLAM systems under com-

parable input settings.

1. Introduction

Humans are remarkably capable of inferring ego-motion

and the 3D structure of a scene even over short timescales.

For instance, in navigating along a street, we can easily

locate obstacles and react quickly to avoid them. Years

of research in geometric computer vision has failed to

recreate similar modeling capabilities for real-world scenes

(e.g., where non-rigidity, occlusion and lack of texture are

present). So why do humans excel at this task? One hypoth-

esis is that we develop a rich, structural understanding of the

world through our past visual experience that has largely

consisted of moving around and observing vast numbers of

scenes and developing consistent modeling of our observa-

tions. From millions of such observations, we have learned

about the regularities of the world—roads are flat, buildings

are straight, cars are supported by roads etc., and we can

apply this knowledge when perceiving a new scene, even

from a single monocular image.

∗The majority of the work was done while interning at Google.
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(a) Training: unlabeled video clips.

(b) Testing: single-view depth and multi-view pose estimation.

Figure 1. The training data to our system consists solely of un-

labeled image sequences capturing scene appearance from differ-

ent viewpoints, where the poses of the images are not provided.

Our training procedure produces two models that operate inde-

pendently, one for single-view depth prediction, and one for multi-

view camera pose estimation.

In this work, we mimic this approach by training a model

that observes sequences of images and aims to explain its

observations by predicting likely camera motion and the

scene structure (as shown in Fig. 1). We take an end-to-

end approach in allowing the model to map directly from

input pixels to an estimate of ego-motion (parameterized as

6-DoF transformation matrices) and the underlying scene

structure (parameterized as per-pixel depth maps under a

reference view). We are particularly inspired by prior work

that has suggested view synthesis as a metric [44] and recent

work that tackles the calibrated, multi-view 3D case in an

end-to-end framework [10]. Our method is unsupervised,

and can be trained simply using sequences of images with

no manual labeling or even camera motion information.

Our approach builds upon the insight that a geomet-
ric view synthesis system only performs consistently well
when its intermediate predictions of the scene geometry
and the camera poses correspond to the physical ground-
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truth. While imperfect geometry and/or pose estimation
can cheat with reasonable synthesized views for certain
types of scenes (e.g., textureless), the same model would
fail miserably when presented with another set of scenes
with more diverse layout and appearance structures. Thus,
our goal is to formulate the entire view synthesis pipeline
as the inference procedure of a convolutional neural net-
work, so that by training the network on large-scale video
data for the ‘meta’-task of view synthesis the network is
forced to learn about intermediate tasks of depth and cam-
era pose estimation in order to come up with a consistent
explanation of the visual world. Empirical evaluation on
the KITTI [15] benchmark demonstrates the effectiveness
of our approach on both single-view depth and camera pose
estimation. Our code will be made available at https:

//github.com/tinghuiz/SfMLearner.

2. Related work

Structure from motion The simultaneous estimation of

structure and motion is a well studied problem with an estab-

lished toolchain of techniques [12, 50, 38]. Whilst the traditional

toolchain is effective and efficient in many cases, its reliance on ac-

curate image correspondence can cause problems in areas of low

texture, complex geometry/photometry, thin structures, and occlu-

sions. To address these issues, several of the pipeline stages have

been recently tackled using deep learning, e.g., feature match-

ing [18], pose estimation [26], and stereo [10, 27, 53]. These

learning-based techniques are attractive in that they are able to

leverage external supervision during training, and potentially over-

come the above issues when applied to test data.

Warping-based view synthesis One important application

of geometric scene understanding is the task of novel view syn-

thesis, where the goal is to synthesize the appearance of the scene

seen from novel camera viewpoints. A classic paradigm for view

synthesis is to first either estimate the underlying 3D geometry

explicitly or establish pixel correspondence among input views,

and then synthesize the novel views by compositing image patches

from the input views (e.g., [4, 55, 43, 6, 9]). Recently, end-to-

end learning has been applied to reconstruct novel views by trans-

forming the input based on depth or flow, e.g., DeepStereo [10],

Deep3D [51] and Appearance Flows [54]. In these methods, the

underlying geometry is represented by quantized depth planes

(DeepStereo), probabilistic disparity maps (Deep3D) and view-

dependent flow fields (Appearance Flows), respectively. Unlike

methods that directly map from input views to the target view

(e.g., [45]), warping-based methods are forced to learn intermedi-

ate predictions of geometry and/or correspondence. In this work,

we aim to distill such geometric reasoning capability from CNNs

trained to perform warping-based view synthesis.

Learning single-view 3D from registered 2D views Our

work is closely related to a line of recent research on learning

single-view 3D inference from registered 2D observations. Garg et

al. [14] propose to learn a single-view depth estimation CNN us-

ing projection errors to a calibrated stereo twin for supervision.

Concurrently, Deep3D [51] predicts a second stereo viewpoint

from an input image using stereoscopic film footage as training

data. A similar approach was taken by Godard et al. [16], with

the addition of a left-right consistency constraint, and a better ar-

chitecture design that led to impressive performance. Like our

approach, these techniques only learn from image observations of

the world, unlike methods that require explicit depth for training,

e.g., [20, 42, 7, 27, 30].

These techniques bear some resemblance to direct methods for

structure and motion estimation [22], where the camera parame-

ters and scene depth are adjusted to minimize a pixel-based error

function. However, rather than directly minimizing the error to

obtain the estimation, the CNN-based methods only take a gradi-

ent step for each batch of input instances, which allows the net-

work to learn an implicit prior from a large corpus of related im-

agery. Several authors have explored building differentiable ren-

dering operations into their models that are trained in this way,

e.g., [19, 29, 34].

While most of the above techniques (including ours) are mainly

focused on inferring depth maps as the scene geometry output, re-

cent work (e.g., [13, 41, 46, 52]) has also shown success in learn-

ing 3D volumetric representations from 2D observations based on

similar principles of projective geometry. Fouhey et al. [11] fur-

ther show that it is even possible to learn 3D inference without 3D

labels (or registered 2D views) by utilizing scene regularity.

Unsupervised/Self-supervised learning from video An-

other line of related work to ours is visual representation learning

from video, where the general goal is to design pretext tasks for

learning generic visual features from video data that can later be

re-purposed for other vision tasks such as object detection and se-

mantic segmentation. Such pretext tasks include ego-motion esti-

mation [2, 24], tracking [49], temporal coherence [17], temporal

order verification [36], and object motion mask prediction [39].

While we focus on inferring the explicit scene geometry and

ego-motion in this work, intuitively, the internal representation

learned by the deep network (especially the single-view depth

CNN) should capture some level of semantics that could gener-

alize to other tasks as well.

Concurrent to our work, Vijayanarasimhan et al. [48] indepen-

dently propose a framework for joint training of depth, camera

motion and scene motion from videos. While both methods are

conceptually similar, ours is focused on the unsupervised aspect,

whereas their framework adds the capability to incorporate super-

vision (e.g., depth, camera motion or scene motion). There are

significant differences in how scene dynamics are modeled during

training, in which they explicitly solve for object motion whereas

our explainability mask discounts regions undergoing motion, oc-

clusion and other factors.

3. Approach

Here we propose a framework for jointly training a single-view

depth CNN and a camera pose estimation CNN from unlabeled

video sequences. Despite being jointly trained, the depth model

and the pose estimation model can be used independently during

test-time inference. Training examples to our model consist of

short image sequences of scenes captured by a moving camera.

While our training procedure is robust to some degree of scene
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Figure 2. Overview of the supervision pipeline based on view syn-

thesis. The depth network takes only the target view as input, and

outputs a per-pixel depth map D̂t. The pose network takes both the

target view (It) and the nearby/source views (e.g., It−1 and It+1)

as input, and outputs the relative camera poses (T̂t→t−1, T̂t→t+1).

The outputs of both networks are then used to inverse warp the

source views (see Sec. 3.2) to reconstruct the target view, and the

photometric reconstruction loss is used for training the CNNs. By

utilizing view synthesis as supervision, we are able to train the

entire framework in an unsupervised manner from videos.

motion, we assume that the scenes we are interested in are mostly

rigid, i.e., the scene appearance change across different frames is

dominated by the camera motion.

3.1. View synthesis as supervision

The key supervision signal for our depth and pose prediction

CNNs comes from the task of novel view synthesis: given one

input view of a scene, synthesize a new image of the scene seen

from a different camera pose. We can synthesize a target view

given a per-pixel depth in that image, plus the pose and visibility

in a nearby view. As we will show next, this synthesis process can

be implemented in a fully differentiable manner with CNNs as the

geometry and pose estimation modules. Visibility can be handled,

along with non-rigidity and other non-modeled factors, using an

“explanability” mask, which we discuss later (Sec. 3.3).

Let us denote < I1, . . . , IN > as a training image sequence

with one of the frames It being the target view and the rest being

the source views Is(1 ≤ s ≤ N, s 6= t). The view synthesis

objective can be formulated as

Lvs =
∑

s

∑

p

|It(p)− Îs(p)| , (1)

where p indexes over pixel coordinates, and Îs is the source view

Is warped to the target coordinate frame based on a depth image-

based rendering module [8] (described in Sec. 3.2), taking the pre-

dicted depth D̂t, the predicted 4×4 camera transformation matrix1

T̂t→s and the source view Is as input.

Note that the idea of view synthesis as supervision has also

been recently explored for learning single-view depth estima-

tion [14, 16] and multi-view stereo [10]. However, to the best of

our knowledge, all previous work requires posed image sets dur-

ing training (and testing too in the case of DeepStereo), while our

1In practice, the CNN estimates the Euler angles and the 3D translation

vector, which are then converted to the transformation matrix.
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Figure 3. Illustration of the differentiable image warping process.

For each point pt in the target view, we first project it onto the

source view based on the predicted depth and camera pose, and

then use bilinear interpolation to obtain the value of the warped

image Îs at location pt.

framework can be applied to standard videos without pose infor-

mation. Furthermore, it predicts the poses as part of the learning

framework. See Figure 2 for an illustration of our learning pipeline

for depth and pose estimation.

3.2. Differentiable depth imagebased rendering

As indicated in Eq. 1, a key component of our learning frame-

work is a differentiable depth image-based renderer that recon-

structs the target view It by sampling pixels from a source view Is
based on the predicted depth map D̂t and the relative pose T̂t→s.

Let pt denote the homogeneous coordinates of a pixel in the

target view, and K denote the camera intrinsics matrix. We can

obtain pt’s projected coordinates onto the source view ps by2

ps ∼ KT̂t→sD̂t(pt)K
−1pt (2)

Notice that the projected coordinates ps are continuous values. To

obtain Is(ps) for populating the value of Îs(pt) (see Figure 3),

we then use the differentiable bilinear sampling mechanism pro-

posed in the spatial transformer networks [23] that linearly in-

terpolates the values of the 4-pixel neighbors (top-left, top-right,

bottom-left, and bottom-right) of ps to approximate Is(ps), i.e.

Îs(pt) = Is(ps) =
∑

i∈{t,b},j∈{l,r} w
ijIs(p

ij
s ), where wij is

linearly proportional to the spatial proximity between ps and pijs ,

and
∑

i,j
wij = 1. A similar strategy is used in [54] for learning

to directly warp between different views, while here the coordi-

nates for pixel warping are obtained through projective geometry

that enables the factorization of depth and camera pose.

3.3. Modeling the model limitation

Note that when applied to monocular videos the above view

synthesis formulation implicitly assumes 1) the scene is static

without moving objects; 2) there is no occlusion/disocclusion be-

tween the target view and the source views; 3) the surface is Lam-

bertian so that the photo-consistency error is meaningful. If any

of these assumptions are violated in a training sequence, the gra-

dients could be corrupted and potentially inhibit training. To im-

prove the robustness of our learning pipeline to these factors, we

additionally train a explainability prediction network (jointly and

simultaneously with the depth and pose networks) that outputs a

per-pixel soft mask Ês for each target-source pair, indicating the

2For notation simplicity, we omit showing the necessary conversion to

homogeneous coordinates along the steps of matrix multiplication.
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(a) Single-view depth network (b) Pose/explainability network

Figure 4. Network architecture for our depth/pose/explainability prediction modules. The width and height of each rectangular block indi-

cates the output channels and the spatial dimension of the feature map at the corresponding layer respectively, and each reduction/increase

in size indicates a change by the factor of 2. (a) For single-view depth, we adopt the DispNet [35] architecture with multi-scale side pre-

dictions. The kernel size is 3 for all the layers except for the first 4 conv layers with 7, 7, 5, 5, respectively. The number of output channels

for the first conv layer is 32. (b) The pose and explainabilty networks share the first few conv layers, and then branch out to predict 6-DoF

relative pose and multi-scale explainability masks, respectively. The number of output channels for the first conv layer is 16, and the kernel

size is 3 for all the layers except for the first two conv and the last two deconv/prediction layers where we use 7, 5, 5, 7, respectively. See

Section 3.5 for more details.

network’s belief in where direct view synthesis will be success-

fully modeled for each target pixel. Based on the predicted Ês,

the view synthesis objective is weighted correspondingly by

Lvs =
∑

<I1,...,IN>∈S

∑

p

Ês(p)|It(p)− Îs(p)| . (3)

Since we do not have direct supervision for Ês, training with the

above loss would result in a trivial solution of the network always

predicting Ês to be zero, which perfectly minimizes the loss. To

resolve this, we add a regularization term Lreg(Ês) that encour-

ages nonzero predictions by minimizing the cross-entropy loss

with constant label 1 at each pixel location. In other words, the

network is encouraged to minimize the view synthesis objective,

but allowed a certain amount of slack for discounting the factors

not considered by the model.

3.4. Overcoming the gradient locality

One remaining issue with the above learning pipeline is that the

gradients are mainly derived from the pixel intensity difference be-

tween I(pt) and the four neighbors of I(ps), which would inhibit

training if the correct ps (projected using the ground-truth depth

and pose) is located in a low-texture region or far from the current

estimation. This is a well known issue in motion estimation [3].

Empirically, we found two strategies to be effective for overcom-

ing this issue: 1) using a convolutional encoder-decoder architec-

ture with a small bottleneck for the depth network that implicitly

constrains the output to be globally smooth and facilitates gradi-

ents to propagate from meaningful regions to nearby regions; 2)

explicit multi-scale and smoothness loss (e.g., as in [14, 16]) that

allows gradients to be derived from larger spatial regions directly.

We adopt the second strategy in this work as it is less sensitive to

architectural choices. For smoothness, we minimize the L1 norm

of the second-order gradients for the predicted depth maps (similar

to [48]).

Our final objective becomes

Lfinal =
∑

l

Ll
vs + λsL

l
smooth + λe

∑

s

Lreg(Ê
l
s) , (4)

where l indexes over different image scales, s indexes over source

images, and λs and λe are the weighting for the depth smoothness

loss and the explainability regularization, respectively.

3.5. Network architecture

Single-view depth For single-view depth prediction, we adopt

the DispNet architecture proposed in [35] that is mainly based on

an encoder-decoder design with skip connections and multi-scale

side predictions (see Figure 4). All conv layers are followed by

ReLU activation except for the prediction layers, where we use

1/(α∗sigmoid(x)+β) with α = 10 and β = 0.1 to constrain the

predicted depth to be always positive within a reasonable range.

We also experimented with using multiple views as input to the

depth network, but did not find this to improve the results. This is

in line with the observations in [47], where optical flow constraints

need to be enforced to utilize multiple views effectively.
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Pose The input to the pose estimation network is the target view

concatenated with all the source views (along the color channels),

and the outputs are the relative poses between the target view and

each of the source views. The network consists of 7 stride-2 con-

volutions followed by a 1×1 convolution with 6∗ (N −1) output

channels (corresponding to 3 Euler angles and 3-D translation for

each source view). Finally, global average pooling is applied to

aggregate predictions at all spatial locations. All conv layers are

followed by ReLU except for the last layer where no nonlinear

activation is applied.

Explainability mask The explainability prediction network

shares the first five feature encoding layers with the pose network,

followed by 5 deconvolution layers with multi-scale side predic-

tions. All conv/deconv layers are followed by ReLU except for

the prediction layers with no nonlinear activation. The number of

output channels for each prediction layer is 2 ∗ (N − 1), with ev-

ery two channels normalized by softmax to obtain the explainabil-

ity prediction for the corresponding source-target pair (the second

channel after normalization is Ês and used in computing the loss

in Eq. 3).

4. Experiments

Here we evaluate the performance of our system, and compare

with prior approaches on single-view depth as well as ego-motion

estimation. We mainly use the KITTI dataset [15] for benchmark-

ing, but also use the Make3D dataset [42] for evaluating cross-

dataset generalization ability.

Training Details We implemented the system using the pub-

licly available TensorFlow [1] framework. For all the experiments,

we set λs = 0.5/l (l is the downscaling factor for the correspond-

ing scale) and λe = 0.2. During training, we used batch normal-

ization [21] for all the layers except for the output layers, and the

Adam [28] optimizer with β1 = 0.9, β2 = 0.999, learning rate of

0.0002 and mini-batch size of 4. The training typically converges

after about 150K iterations. All the experiments are performed

with image sequences captured with a monocular camera. We re-

size the images to 128 × 416 during training, but both the depth

and pose networks can be run fully-convolutionally for images of

arbitrary size at test time.

4.1. Singleview depth estimation

We train our system on the split provided by [7], and exclude

all the frames from the testing scenes as well as static sequences

with mean optical flow magnitude less than 1 pixel for training.

We fix the length of image sequences to be 3 frames, and treat the

central frame as the target view and the ±1 frames as the source

views. We use images captured by both color cameras, but treated

them independently when forming training sequences. This results

in a total of 44, 540 sequences, out of which we use 40, 109 for

training and 4, 431 for validation.

To the best of our knowledge, no previous systems exist that

learn single-view depth estimation in an unsupervised manner

from monocular videos. Nonetheless, here we provide comparison

with prior methods with depth supervision [7] and recent methods

that use calibrated stereo images (i.e. with pose supervision) for

Input image Our prediction

Figure 5. Our sample predictions on the Cityscapes dataset using

the model trained on Cityscapes only.

Input image Ours (CS + KITTI)Ours (CS)

Figure 7. Comparison of single-view depth predictions on the

KITTI dataset by our initial Cityscapes model and the final model

(pre-trained on Cityscapes and then fine-tuned on KITTI). The

Cityscapes model sometimes makes structural mistakes (e.g. holes

on car body) likely due to the domain gap between the two

datasets.

training [14, 16]. Since the depth predicted by our method is de-

fined up to a scale factor, for evaluation we multiply the predicted

depth maps by a scalar ŝ that matches the median with the ground-

truth, i.e. ŝ = median(Dgt)/median(Dpred).

Similar to [16], we also experimented with first pre-training the

system on the larger Cityscapes dataset [5] (sample predictions are

shown in Figure 5), and then fine-tune on KITTI, which results in

slight performance improvement.

KITTI Here we evaluate the single-view depth performance on

the 697 images from the test split of [7]. As shown in Table 1,

our unsupervised method performs comparably with several su-

pervised methods (e.g. Eigen et al. [7] and Garg et al. [14]), but

falls short of concurrent work by Godard et al. [16] that uses cal-

ibrated stereo images (i.e. with pose supervision) with left-right

cycle consistency loss for training. For future work, it would be in-

teresting to see if incorporating the similar cycle consistency loss

into our framework could further improve the results. Figure 6
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Eigen et al. (depth sup.) Garg et al. (pose sup.) Ours (unsupervised)Ground-truthInput

Figure 6. Comparison of single-view depth estimation between Eigen et al. [7] (with ground-truth depth supervision), Garg et al. [14]

(with ground-truth pose supervision), and ours (unsupervised). The ground-truth depth map is interpolated from sparse measurements for

visualization purpose. The last two rows show typical failure cases of our model, which sometimes struggles in vast open scenes and

objects close to the front of the camera.

provides examples of visual comparison between our results and

some supervised baselines over a variety of examples. One can

see that although trained in an unsupervised manner, our results

are comparable to that of the supervised baselines, and sometimes

preserve the depth boundaries and thin structures such as trees and

street lights better.

We show sample predictions made by our initial Cityscapes

model and the final model (pre-trained on Cityscapes and then

fine-tuned on KITTI) in Figure 7. Due to the domain gap between

the two datasets, our Cityscapes model sometimes has difficulty

in recovering the complete shape of the car/bushes, and mistakes

them with distant objects.

We also performed an ablation study of the explainability mod-

eling (see Table 1), which turns out only offering a modest per-

formance boost. This is likely because 1) most of the KITTI

scenes are static without significant scene motions, and 2) the oc-

clusion/visibility effects only occur in small regions in sequences

across a short time span (3-frames), which make the explainabil-

ity modeling less essential to the success of training. Nonetheless,

our explainability prediction network does seem to capture the fac-

tors like scene motion and visibility well (see Sec. 4.3), and could

potentially be more important for other more challenging datasets.

Make3D To evaluate the generalization ability of our single-

view depth model, we directly apply our model trained on

Cityscapes + KITTI to the Make3D dataset unseen during train-

ing. While there still remains a significant performance gap be-

tween our method and others supervised using Make3D ground-

truth depth (see Table 2), our predictions are able to capture the
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Method Dataset Supervision Error metric Accuracy metric

Depth Pose Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean K X 0.403 5.530 8.709 0.403 0.593 0.776 0.878

Eigen et al. [7] Coarse K X 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [7] Fine K X 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [32] K X 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [16] K X 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Godard et al. [16] CS + K X 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Ours (w/o explainability) K 0.221 2.226 7.527 0.294 0.676 0.885 0.954

Ours K 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Ours CS 0.267 2.686 7.580 0.334 0.577 0.840 0.937

Ours CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Garg et al. [14] cap 50m K X 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Ours (w/o explainability) cap 50m K 0.208 1.551 5.452 0.273 0.695 0.900 0.964

Ours cap 50m K 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Ours cap 50m CS 0.260 2.232 6.148 0.321 0.590 0.852 0.945

Ours cap 50m CS + K 0.190 1.436 4.975 0.258 0.735 0.915 0.968

Table 1. Single-view depth results on the KITTI dataset [15] using the split of Eigen et al. [7] (Baseline numbers taken from [16]). For

training, K = KITTI, and CS = Cityscapes [5]. All methods we compare with use some form of supervision (either ground-truth depth or

calibrated camera pose) during training. Note: results from Garg et al. [14] are capped at 50m depth, so we break these out separately in

the lower part of the table.

Input Ground-truth Ours

Figure 8. Our sample predictions on the Make3D dataset. Note

that our model is trained on KITTI + Cityscapes only, and directly

tested on Make3D.

global scene layout reasonably well without any training on the

Make3D images (see Figure 8).

4.2. Pose estimation

To evaluate the performance of our pose estimation network,

we applied our system to the official KITTI odometry split (con-

taining 11 driving sequences with ground truth odometry obtained

through the IMU/GPS readings, which we use for evaluation pur-

pose only), and used sequences 00-08 for training and 09-10 for

testing. In this experiment, we fix the length of input image se-

quences to our system to 5 frames. We compare our ego-motion

estimation with two variants of monocular ORB-SLAM [37] (a

well-established SLAM system): 1) ORB-SLAM (full), which

recovers odometry using all frames of the driving sequence (i.e.

Method Supervision Error metric

Depth Pose Abs Rel Sq Rel RMSE RMSE log

Train set mean X 0.876 13.98 12.27 0.307

Karsch et al. [25] X 0.428 5.079 8.389 0.149

Liu et al. [33] X 0.475 6.562 10.05 0.165

Laina et al. [31] X 0.204 1.840 5.683 0.084

Godard et al. [16] X 0.544 10.94 11.76 0.193

Ours 0.383 5.321 10.47 0.478

Table 2. Results on the Make3D dataset [42]. Similar to ours, Go-

dard et al. [16] do not utilize any of the Make3D data during train-

ing, and directly apply the model trained on KITTI+Cityscapes to

the test set. Following the evaluation protocol of [16], the errors

are only computed where depth is less than 70 meters in a central

image crop.

allowing loop closure and re-localization), and 2) ORB-SLAM

(short), which runs on 5-frame snippets (same as our input

setting). Another baseline we compare with is the dataset mean

of car motion (using ground-truth odometry) for 5-frame snippets.

To resolve scale ambiguity during evaluation, we first optimize

the scaling factor for the predictions made by each method to best

align with the ground truth, and then measure the Absolute Trajec-

tory Error (ATE) [37] as the metric. ATE is computed on 5-frame

snippets and averaged over the full sequence.3 As shown in Table 3

and Fig. 9, our method outperforms both baselines (mean odome-

try and ORB-SLAM (short)) that share the same input setting

as ours, but falls short of ORB-SLAM (full), which leverages

whole sequences (1591 for seq. 09 and 1201 for seq. 10) for loop

closure and re-localization.

For better understanding of our pose estimation results, we

3For evaluating ORB-SLAM (full) we break down the trajectory of

the full sequence into 5-frame snippets with the reference coordinate frame

adjusted to the central frame of each snippet.
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Method Seq. 09 Seq. 10

ORB-SLAM (full) 0.014± 0.008 0.012± 0.011

ORB-SLAM (short) 0.064± 0.141 0.064± 0.130
Mean Odom. 0.032± 0.026 0.028± 0.023
Ours 0.021± 0.017 0.020± 0.015

Table 3. Absolute Trajectory Error (ATE) on the KITTI odome-

try split averaged over all 5-frame snippets (lower is better). Our

method outperforms baselines with the same input setting, but falls

short of ORB-SLAM (full) that uses strictly more data.
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Figure 9. Absolute Trajectory Error (ATE) at different left/right

turning magnitude (coordinate difference in the side-direction be-

tween the start and ending frame of a testing sequence). Our

method performs significantly better than ORB-SLAM (short)

when side rotation is small, and is comparable with ORB-SLAM

(full) across the entire spectrum.

show in Figure 9 the ATE curve with varying amount of side-

rotation by the car between the beginning and the end of a se-

quence. Figure 9 suggests that our method is significantly bet-

ter than ORB-SLAM (short) when the side-rotation is small

(i.e. car mostly driving forward), and comparable to ORB-SLAM

(full) across the entire spectrum. The large performance

gap between ours and ORB-SLAM (short) suggests that our

learned ego-motion could potentially be used as an alternative to

the local estimation modules in monocular SLAM systems.

4.3. Visualizing the explainability prediction

We visualize example explainability masks predicted by our

network in Figure 10. The first three rows suggest that the network

has learned to identify dynamic objects in the scene as unexplain-

able by our model, and similarly, rows 4–5 are examples of ob-

jects that disappear from the frame in subsequent views. The last

two rows demonstrate the potential downside of explainability-

weighted loss: the depth CNN has low confidence in predicting

thin structures well, and tends to mask them as unexplainable.

5. Discussion

We have presented an end-to-end learning pipeline that utilizes

the task of view synthesis for supervision of single-view depth

and camera pose estimation. The system is trained on unlabeled

videos, and yet performs comparably with approaches that require

ground-truth depth or pose for training. Despite good performance

on the benchmark evaluation, our method is by no means close to

solving the general problem of unsupervised learning of 3D scene

Target view Explanability mask Source view

Figure 10. Sample visualizations of the explainability masks.

Highlighted pixels are predicted to be unexplainable by the net-

work due to motion (rows 1–3), occlusion/visibility (rows 4–5), or

other factors (rows 7–8).

structure inference. A number of major challenges are yet to be

addressed: 1) our current framework does not explicitly estimate

scene dynamics and occlusions (although they are implicitly taken

into account by the explainability masks), both of which are crit-

ical factors in 3D scene understanding. Direct modeling of scene

dynamics through motion segmentation (e.g. [48, 40]) could be a

potential solution; 2) our framework assumes the camera intrinsics

are given, which forbids the use of random Internet videos with un-

known camera types/calibration – we plan to address this in future

work; 3) depth maps are a simplified representation of the under-

lying 3D scene. It would be interesting to extend our framework

to learn full 3D volumetric representations (e.g. [46]).

Another interesting area for future work would be to investi-

gate in more detail the representation learned by our system. In

particular, the pose network likely uses some form of image cor-

respondence in estimating the camera motion, whereas the depth

estimation network likely recognizes common structural features

of scenes and objects. It would be interesting to probe these, and

investigate the extent to which our network already performs, or

could be re-purposed to perform, tasks such as object detection

and semantic segmentation.
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