
Procedural Generation of Videos to Train Deep Action Recognition Networks

César Roberto de Souza1,3, Adrien Gaidon2, Yohann Cabon1, Antonio Manuel López3

1Computer Vision Group, Xerox Research Center Europe, Meylan, France
2Toyota Research Institute, Los Altos, CA, USA

3Centre de Visió per Computador, Universitat Autònoma de Barcelona, Bellaterra, Spain

{cesar.desouza, yohann.cabon}@xrce.xerox.com, adrien.gaidon@tri.global, antonio@cvc.uab.es

Abstract

Deep learning for human action recognition in videos is

making significant progress, but is slowed down by its de-

pendency on expensive manual labeling of large video col-

lections. In this work, we investigate the generation of syn-

thetic training data for action recognition, as it has recently

shown promising results for a variety of other computer vi-

sion tasks. We propose an interpretable parametric gener-

ative model of human action videos that relies on procedu-

ral generation and other computer graphics techniques of

modern game engines. We generate a diverse, realistic, and

physically plausible dataset of human action videos, called

PHAV for ”Procedural Human Action Videos”. It contains

a total of 39, 982 videos, with more than 1, 000 examples for

each action of 35 categories. Our approach is not limited

to existing motion capture sequences, and we procedurally

define 14 synthetic actions. We introduce a deep multi-task

representation learning architecture to mix synthetic and

real videos, even if the action categories differ. Our exper-

iments on the UCF101 and HMDB51 benchmarks suggest

that combining our large set of synthetic videos with small

real-world datasets can boost recognition performance, sig-

nificantly outperforming fine-tuning state-of-the-art unsu-

pervised generative models of videos.

1. Introduction

Understanding human behavior in videos is a key prob-

lem in computer vision. Accurate representations of both

appearance and motion require either carefully handcrafting

features with prior knowledge (e.g., the dense trajectories

of [71]) or end-to-end deep learning of high capacity mod-

els with a large amount of labeled data (e.g., the two-stream

network of [53]). These two families of methods have com-

plementary strengths and weaknesses, and they often need

Work done while A. Gaidon was at Xerox Research Centre Europe.

Figure 1: Procedurally generated human action videos

(clockwise): push, kick ball, walking hug, car hit.

to be combined to achieve state-of-the-art action recogni-

tion performance [74, 9]. Nevertheless, deep networks have

the potential to significantly improve their accuracy based

on training data. Hence, they are becoming the de-facto

standard for recognition problems where it is possible to

collect large labeled training sets, often by crowd-sourcing

manual annotations (e.g., ImageNet [10], MS-COCO [32]).

However, manual labeling is costly, time-consuming, error-

prone, raises privacy concerns, and requires massive human

intervention for every new task. This is often impractical,

especially for videos, or even unfeasible for ground truth

modalities like optical flow or depth.

Using realistic synthetic data generated from virtual

worlds alleviates these issues. Thanks to modern modeling,

rendering, and simulation software, virtual worlds allow for

the efficient generation of vast amounts of controlled and

algorithmically labeled data, including for modalities that

cannot be labeled by a human. This approach has recently

shown great promise for deep learning across a breadth

of computer vision problems, including optical flow [37],

depth estimation [32], object detection [34, 65, 78, 59, 42],

pose and viewpoint estimation [52, 41, 57], tracking [15],

and semantic segmentation [23, 49, 48].

14757

In this work, we investigate procedural generation of

synthetic human action videos from virtual worlds in or-

der to train deep action recognition models. This is an

open problem with formidable technical challenges, as it

requires a full generative model of videos with realistic ap-

pearance and motion statistics conditioned on specific ac-

tion categories. Our experiments suggest that our procedu-

rally generated action videos can complement scarce real-

world data. We report significant performance gains on tar-

get real-world categories although they differ from the ac-

tions present in our synthetic training videos.

Our first contribution is a parametric generative model

of human action videos relying on physics, scene composi-

tion rules, and procedural animation techniques like ”rag-

doll physics” that provide a much stronger prior than just

viewing videos as tensors or sequences of frames. We show

how to procedurally generate physically plausible variations

of different types of action categories obtained by MO-

CAP datasets, animation blending, physics-based naviga-

tion, or entirely from scratch using programmatically de-

fined behaviors. We use naturalistic actor-centric random-

ized camera paths to film the generated actions with care

for physical interactions of the camera. Furthermore, our

manually designed generative model has interpretable pa-

rameters that allow to either randomly sample or precisely

control discrete and continuous scene (weather, lighting, en-

vironment, time of day, etc), actor, and action variations to

generate large amounts of diverse, physically plausible, and

realistic human action videos.

Our second contribution is a quantitative experimen-

tal validation using a modern and accessible game en-

gine (Unity®Pro) to synthesize a labeled dataset of 39, 982
videos, corresponding to more than 1, 000 examples for

each of 35 action categories: 21 grounded in MOCAP

data, and 14 entirely synthetic ones defined procedurally.

Our dataset, called PHAV for ”Procedural Human Action

Videos” (cf. Figure 1 for example frames), is publicly avail-

able for download1. Our procedural generative model took

approximately 2 months of 2 engineers to be programmed

and our PHAV dataset 3 days to be generated using 4 gam-

ing GPUs. We investigate the use of this data in conjunction

with the standard UCF101 [55] and HMDB51 [29] action

recognition benchmarks. To allow for generic use, and as

predefined procedural action categories may differ from un-

known a priori real-world target ones, we propose a multi-

task learning architecture based on the recent Temporal Seg-

ment Network [75] (TSN). We call our model Cool-TSN

(cf. Figure 6) in reference to the ”cool world” of [64], as

we mix both synthetic and real samples at the mini-batch

level during training. Our experiments show that the gen-

eration of our synthetic human action videos can signifi-

cantly improve action recognition accuracy, especially with

1Data and tools available in http://adas.cvc.uab.es/phav/

small real-world training sets, in spite of differences in ap-

pearance, motion, and action categories. Moreover, we out-

perform other state-of-the-art generative video models [70]

when combined with the same number of real-world train-

ing examples.

The rest of the paper is organized as follows. Section 2

presents a brief review of related works. In Section 3, we

present our parametric generative model, and how we use

it to procedurally generate our PHAV dataset. Section 4

presents our cool-TSN deep learning algorithm for action

recognition. We report our quantitative experiments in Sec-

tion 5 measuring the usefulness of PHAV. Finally, conclu-

sions are drawn in Section 6.

2. Related work

Synthetic data has been used to train visual models for

object detection and recognition, pose estimation, and in-

door scene understanding [34, 65, 78, 77, 52, 47, 44, 50, 1,

7, 41, 42, 22, 24, 35, 58, 57, 23]. [21] used a virtual rac-

ing circuit to generate different types of pixel-wise ground

truth (depth, optical flow and class labels). [49, 48] relied on

game technology to train deep semantic segmentation net-

works, while [15] used it for multi-object tracking, [51] for

depth estimation from RGB, and [54] for place recognition.

Several works use synthetic scenarios to evaluate the per-

formance of different feature descriptors [27, 2, 68, 67, 69]

and to train and test optical and/or scene flow estimation

methods [38, 4, 40, 37], stereo algorithms [20], or track-

ers [61, 15]. They have also been used for learning artificial

behaviors such as playing Atari games [39], imitating play-

ers in shooter games [33], end-to-end driving/navigating

[6, 80], learning common sense [66, 81] or physical in-

tuitions [31]. Finally, virtual worlds have also been ex-

plored from an animator’s perspective. Works in com-

puter graphics have investigated producing animations from

sketches [19], using physical-based models to add motion

to sketch-based animations [18], and creating constrained

camera-paths [16]. However, due to the formidable com-

plexity of realistic animation, video generation, and scene

understanding, these approaches focus on basic controlled

game environments, motions, and action spaces.

To the best of our knowledge, ours is the first work to in-

vestigate virtual worlds and game engines to generate syn-

thetic training videos for action recognition. Although some

of the aforementioned related works rely on virtual charac-

ters, their actions are not the focus, not procedurally gener-

ated, and often reduced to just walking.

The related work of [36] uses MOCAP data to induce re-

alistic motion in an ”abstract armature” placed in an empty

synthetic environment, generating 2, 000 short 3-second

clips at 320x240 and 30FPS. From these non-photo-realistic

clips, handcrafted motion features are selected as relevant

and later used to learn action recognition models for 11 ac-

4758

http://adas.cvc.uab.es/phav/

tions in real-world videos. Our approach does not just re-

play MOCAP, but procedurally generates new action cat-

egories – including interactions between persons, objects

and the environment – as well as random physically plau-

sible variations. Moreover, we jointly generate and learn

deep representations of both action appearance and motion

thanks to our realistic synthetic data, and our multi-task

learning formulation to combine real and synthetic data.

A recent alternative to our procedural generative model

that also does not require manual video labeling is the un-

supervised Video Generative Adversarial Network (VGAN)

of [70]. Instead of leveraging prior structural knowledge

about physics and human actions, the authors view videos

as tensors of pixel values and learn a two-stream GAN on

5, 000 hours of unlabeled Flickr videos. This method fo-

cuses on tiny videos and capturing scene motion assuming

a stationary camera. This architecture can be used for ac-

tion recognition in videos when complemented with pre-

diction layers fine-tuned on labeled videos. Compared to

this approach, our proposal allows to work with any state-

of-the-art discriminative architecture, as video generation

and action recognition are decoupled steps. We can, there-

fore, benefit from a strong ImageNet initialization for both

appearance and motion streams as in [75]. Moreover, we

can decide what specific actions/scenarios/camera-motions

to generate, enforcing diversity thanks to our interpretable

parametrization. For these reasons, we show in Section 5

that, given the same amount of labeled videos, our model

achieves nearly two times the performance of the unsuper-

vised features shown in [70].

3. PHAV: Procedural Human Action Videos

In this section we introduce our interpretable paramet-

ric generative model of videos depicting particular human

actions, and how we use it to generate our PHAV dataset.

3.1. Action scene composition

In order to generate a human action video, we place a

protagonist performing an action in an environment, under

particular weather conditions at a specific period of the day.

There can be one or more background actors in the scene,

as well as one or more supporting characters. We film the

virtual scene using a parametric camera behavior.

The protagonist is the main human model performing the

action. For actions involving two or more people, one is

chosen to be the protagonist. Background actors can freely

walk in the current virtual environment, while supporting

characters are actors with a secondary role necessary to

complete an action, e.g., hold hands.

The action is a human motion belonging to a predefined

semantic category originated from one or more motion data

sources (described in section 3.3), including pre-determined

motions from a MOCAP dataset, or programmatic actions

Figure 2: Orthographic view of different world regions.

defined using procedural animation techniques [11, 63],

in particular ragdoll physics. In addition, we use these

techniques to sample physically-plausible motion variations

(described in section 3.4) to increase diversity.

The environment refers to a region in the virtual world

(cf. Figure 2), which consists of large urban areas, natural

environments (e.g., forests, lakes, and parks), indoor scenes,

and sports grounds (e.g., a stadium). Each of these environ-

ments may contain moving or static background pedestri-

ans or objects – e.g., cars, chairs – with which humans can

physically interact, voluntarily or not. The outdoor weather

in the virtual world can be rainy, overcast, clear, or foggy.

The period of the day can be dawn, day, dusk, or night.

Similar to [15, 49], we use a library of pre-made 3D

models obtained from the Unity Asset Store, which in-

cludes artist-designed human, object, and texture models,

as well as semi-automatically created realistic environments

(e.g., selected scenes from the VKITTI dataset [15]).

3.2. Camera

We use a physics-based camera which we call the Kite

camera (cf. Figure 3) to track the protagonist in a scene.

This physics-aware camera is governed by a rigid body at-

tached by a spring to a target position that is, in turn, at-

tached to the protagonist by another spring. By randomly

sampling different parameters for the drag and weight of the

rigid bodies, as well as elasticity and length of the springs,

we can achieve cameras with a wide range of shot types, 3D

transformations, and tracking behaviors, such as following

the actor, following the actor with a delay, or stationary.

Another parameter controls the direction and strength of an

initial impulse that starts moving the camera in a random di-

rection. With different rigid body parameters, this impulse

can cause our camera to simulate a handheld camera, move

in a circular trajectory, or freely bounce around in the scene

while filming the attached protagonist.

4759

Figure 3: Left: schematic representation of our Kite cam-

era. Right: human ragdoll configuration with 15 muscles.

3.3. Actions

Our approach relies on two main existing data sources

for basic human animations. First, we use the CMU MO-

CAP database [5], which contains 2605 sequences of 144

subjects divided in 6 broad categories, 23 subcategories and

further described with a short text. We leverage relevant

motions from this dataset to be used as a motion source

for our procedural generation based on a simple filtering

of their textual motion descriptions. Second, we use a large

amount of hand-designed realistic motions made by anima-

tion artists and available on the Unity Asset Store.

The key insight of our approach is that these sources

need not necessarily contain motions from predetermined

action categories of interest, neither synthetic nor target

real-world actions (unknown a priori). Instead, we propose

to use these sources to form a library of atomic motions to

procedurally generate realistic action categories. We con-

sider atomic motions as individual movements of a limb in

a larger animation sequence. For example, atomic motions

in a ”walk” animation include movements such as rising a

left leg, rising a right leg, and pendular arm movements.

Creating a library of atomic motions enables us to later re-

combine those atomic actions into new higher-level anima-

tion sequences, e.g., ”hop” or ”stagger”.

Our PHAV dataset contains 35 different action classes

(cf. Table 1), including 21 simple categories present in

HMDB51 and composed directly of some of the aforemen-

tioned atomic motions. In addition to these actions, we pro-

grammatically define 10 action classes involving a single

actor and 4 action classes involving two person interactions.

We create these new synthetic actions by taking atomic mo-

tions as a base and using procedural animation techniques

like blending and ragdoll physics (cf. Section 3.4) to com-

pose them in a physically plausible manner according to

simple rules defining each action, such as tying hands to-

gether (e.g., ”walk hold hands”), disabling one or more

muscles (e.g., ”crawl”, ”limp”), or colliding the protagonist

against obstacles (e.g., ”car hit”, ”bump into each other”).

Type # Actions

sub-HMDB 21

brush hair, catch, clap, climb stairs,

golf, jump, kick ball, push, pick,

pour, pull up, run, shoot ball, shoot

bow, shoot gun, sit, stand, swing

baseball, throw, walk, wave

One-person

synthetic
10

car hit, crawl, dive floor, flee, hop,

leg split, limp, moonwalk, stagger,

surrender

Two-people

synthetic
4

walking hug, walk hold hands, walk

the line, bump into each other

Table 1: Actions included in our PHAV dataset.

3.4. Physically plausible motion variations

We now describe procedural animation techniques [11,

63] to randomly generate large amounts of physically plau-

sible and diverse action videos, far beyond from what can

be achieved by simply replaying source atomic motions.

Ragdoll physics. A key component of our work is the use

of ragdoll physics. Ragdoll physics are limited real-time

physical simulations that can be used to animate a model

(such as a human model) while respecting basic physics

properties such as connected joint limits, angular limits,

weight and strength. We consider ragdolls with 15 mov-

able body parts (referenced here as muscles), as illustrated

in Figure 3. For each action, we separate those 15 muscles

into two disjoint groups: those that are strictly necessary

for performing the action, and those that are complemen-

tary (altering their movement should not interfere with the

semantics of the currently considered action). The presence

of the ragdoll allows us to introduce variations of differ-

ent nature in the generated samples. The other modes of

variability generation described in this section will assume

that the physical plausibility of the models is being kept by

the use of ragdoll physics. We use RootMotion’s Puppet-

Master2 for implementing and controlling human ragdolls

in Unity®Pro.

Random perturbations. Inspired by [45], we create vari-

ations of a given motion by adding random perturbations

to muscles that should not alter the semantic category of

the action being performed. Those perturbations are im-

plemented by adding a rigid body to a random subset of

the complementary muscles. Those bodies are set to or-

bit around the muscle’s position in the original animation

skeleton, drifting the movement of the puppet’s muscle to

its own position in a periodic oscillating movement. More

detailed references on how to implement variations of this

type can be found in [45, 11, 46, 63] and references therein.

Muscle weakening. We vary the strength of the avatar per-

forming the action. By reducing its strength, the actor per-

forms an action with seemingly more difficulty.

2http://root-motion.com

4760

http://root-motion.com

Figure 4: Example generation failure cases. First row:

physics violations (passing through a wall). Second row:

over-constrained joints and unintended variations.

Action blending. Similarly to modern video games, we use

a blended ragdoll technique to constrain the output of a pre-

made animation to physically-plausible motions. In action

blending, we randomly sample a different motion sequence

(coming either from the same or from a different class) and

replace the movements of current complementary muscles

with those from this new action. We limit the number of

blended actions in PHAV to be at most two.

Objects. The last physics-based source of variation is the

use of objects. First, we manually annotated a subset of the

MOCAP actions marking the instants in time where the ac-

tor started or ended the manipulation of an object. Second,

we use inverse kinematics to generate plausible program-

matic interactions. For reproducibility, our annotated subset

of MOCAP actions, as well as the code for interacting with

objects for particular actions will be available upon request.

Failure cases. Although our approach uses physics-based

procedural animation techniques, unsupervised generation

of large amounts of random variations with a focus on di-

versity inevitably causes edge cases where physical models

fail. This results in glitches reminiscent of typical video

game bugs (cf. Figure 4). Using a random 1% sample of

our dataset, we manually estimated that this corresponds to

less than 10% of the videos generated. Although this could

be improved, our experiments in Section 5 show that this

noise does not prevent us from improving the training of

deep action recognition networks using this data.

Extension to complex activities. Using ragdoll physics

and a large enough library of atomic actions, it is possi-

ble to create complex actions by hierarchical composition.

For instance, our ”Car Hit” action is procedurally defined

by composing atomic actions of a person (walking and/or

doing other activities) with those of a car (entering in a

collision with the person), followed by the person falling

in a physically plausible fashion. However, while atomic

actions have been validated as an effective decomposition

for the recognition of potentially complex actions [14], we

have not studied how this approach would scale with the

complexity of the actions, notably due to the combinatorial

nature of complex events. We leave this as future work.

Parameter # Possible values

Human Model (H) 20 models designed by artists

Environment (E) 7 simple, urban, green, middle, lake,

stadium, house interior

Weather (W) 4 clear, overcast, rain, fog

Period of day (D) 4 night, dawn, day, dusk

Variation (V) 5 ∅, muscle perturbation and weak-

ening, action blending, objects

Table 2: Overview of key random variables of our paramet-

ric generative model of human action videos.

Figure 5: Simplified graphical model for our generator.

3.5. Interpretable parametric generative model

We define a human action video as a random variable

X = 〈H,A,L,B, V, C,E,D,W 〉, where H is a human

model, A an action category, L a video length, B a set

of basic motions (from MOCAP, manual design, or pro-

grammed), V a set of motion variations, C a camera, E

an environment, D a period of the day, W a weather condi-

tion, and possible values for those parameters are shown in

Table 2. Our generative model (cf. Figure 5, more details in

supplementary material) for an action video X is given by:

P (X) =P (H) P (A) P (L | B) P (B | A)

P (Θv | V) P (V | A) P (Θe | E) P (E | A)

P (Θc | C) P (C | A,E)

P (Θd | D) P (D) P (Θw | W) P (W)

(1)

where Θw is a random variable (r.v.) on weather-specific pa-

rameters (e.g., intensity of rain, clouds, fog), Θc is a r.v. on

camera-specific parameters (e.g., weights and stiffness for

Kite camera springs), Θe is a r.v. on environment-specific

parameters (e.g., current waypoint, waypoint locations,

background pedestrian starting points and destinations), Θd

is a r.v. on period-specific parameters (e.g., amount of sun-

light, sun orientation), and Θv is a r.v. on variation-specific

parameters (e.g., strength of each muscle, strength of per-

turbations, blending muscles). The probability functions

associated with categorical variables (e.g., A) can be ei-

ther uniform, or configured manually to use pre-determined

weights. Similarly, probability distributions associated with

continuous values (e.g., Θc) are either set using a uniform

distribution with finite support, or using triangular distri-

butions with pre-determined support and most likely value.

All values used are disclosed in the supplementary material.

4761

Figure 6: Our ”Cool-TSN” deep multi-task learning architecture for end-to-end action recognition in videos.

3.6. PHAV generation details

We generate videos with lengths between 1 and 10 sec-

onds, at 30FPS, and resolution of 340x256 pixels. We use

anti-aliasing, motion blur, and standard photo-realistic cin-

ematic effects. We have generated 55 hours of videos, with

approximately 6M frames and at least 1,000 videos per ac-

tion category. Our parametric model can generate fully-

annotated action videos (including depth, flow, semantic

segmentation, and human pose ground-truths) at 3.6 FPS

using one consumer-grade gaming GPU (NVIDIA GTX

1070). In contrast, the average annotation time for data-

annotation methods such as [48, 8, 3] are significantly be-

low 0.5 FPS. While those works deal with semantic seg-

mentation where the cost of annotation is higher, we can

generate all modalities for roughly the same cost as RGB.

4. Cool Temporal Segment Networks

We propose to demonstrate the usefulness of our PHAV

dataset via deep multi-task representation learning. Our

main goal is to learn an end-to-end action recognition model

for real-world target categories by combining a few exam-

ples of labeled real-world videos with a large number of

procedurally generated videos for different surrogate cate-

gories. Our hypothesis is that, although the synthetic ex-

amples differ in statistics and tasks, their realism, quan-

tity, and diversity can act as a strong prior and regular-

izer against overfitting, towards data-efficient representa-

tion learning that can operate with few manually labeled

real videos. Figure 6 depicts our learning algorithm inspired

by [53], but adapted for the recent state-of-the-art Temporal

Segment Networks (TSN) of [75] with ”cool worlds” [64],

i.e. mixing real and virtual data during training.

4.1. Temporal Segment Networks

The recent TSN architecture of [75] improves signifi-

cantly on the original two-stream architecture of [53]. It

processes both RGB frames and stacked optical flow frames

using a deeper Inception architecture [60] with Batch Nor-

malization [25] and DropOut [56]. Although it still requires

massive labeled training sets, this architecture is more data

efficient, and therefore more suitable for action recognition

in videos. In particular, [75] shows that both the appearance

and motion streams of TSNs can benefit from a strong ini-

tialization on ImageNet, which is one of the main factors

responsible for the high recognition accuracy of TSN.

Another improvement of TSN is the explicit use of long-

range temporal structure by jointly processing random short

snippets from a uniform temporal subdivision of a video.

TSN computes separate predictions for K different tempo-

ral segments of a video. These partial predictions are then

condensed into a video-level decision using a segmental

consensus function G. We use the same parameters as [75]:

a number of segments K = 3, and the consensus function:

G = 1

K

∑K

k=1
F(Tk;W), where F(Tk;W) is a function

representing a CNN architecture with weight parameters W

operating on short snippet Tk from video segment k.

4.2. Multitask learning in a Cool World

As illustrated in Figure 6, the main differences we intro-

duce with our ”Cool-TSN” architecture are at both ends of

the training procedure: (i) the mini-batch generation, and

(ii) the multi-task prediction and loss layers.

Cool mixed-source mini-batches. Inspired by [64, 49], we

build mini-batches containing a mix of real-world videos

and synthetic ones. Following [75], we build minibatches

4762

of 256 videos divided in blocks of 32 dispatched across

8 GPUs for efficient parallel training using MPI3. Each

32 block contains 10 random synthetic videos and 22 real

videos in all our experiments, as we observed it roughly bal-

ances the contribution of the different losses during back-

propagation. Note that although we could use our gener-

ated ground truth flow for the PHAV samples in the motion

stream, we use the same fast optical flow estimation algo-

rithm as [75] (TVL1 [79]) for all samples in order to fairly

estimate the usefulness of our generated videos.

Multi-task prediction and loss layers. Starting from the

last feature layer of each stream, we create two separate

computation paths, one for target classes from the real-

world dataset, and another for surrogate categories from the

virtual world. Each path consists of its own segmental con-

sensus, fully-connected prediction, and softmax loss layers.

As a result, we obtain the following multi-task loss:

L(y,G) =
∑

z∈{real,virtual}

δ{y∈Cz}wzLz(y,G) (2)

Lz(y,G) = −
∑

i∈Cz

yi

(

Gi − log
∑

j∈Cz

expGj

)

(3)

where z indexes the source dataset (real or virtual) of the

video, wz is a loss weight (we use the relative proportion of

z in the mini-batch), Cz denotes the set of action categories

for dataset z, and δ{y∈Cz} is the indicator function that re-

turns one when label y belongs to Cz and zero otherwise.

We use standard SGD with backpropagation to minimize

that objective, and as every mini-batch contains both real

and virtual samples, every iteration is guaranteed to update

both shared feature layers and separate prediction layers in

a common descent direction. We discuss the setting of the

learning hyper-parameters (e.g., learning rate, iterations) in

the following experimental section.

5. Experiments

In this section, we detail our action recognition experi-

ments on widely used real-world video benchmarks.

5.1. Real world action recognition datasets

We consider the two most widely used real-world pub-

lic benchmarks for human action recognition in videos.

The HMDB-51 [29] dataset contains 6,849 fixed resolu-

tion videos clips divided between 51 action categories. The

evaluation metric for this dataset is the average accuracy

over three data splits. The UCF-101 [55, 26] dataset con-

tains 13,320 video clips divided among 101 action classes.

Like HMDB, its standard evaluation metric is the average

mean accuracy over three data splits. Similarly to UCF-

101 and HMDB-51, we generate three random splits on our

PHAV dataset, with 80% for training and the rest for testing,

and report average accuracy when evaluating on PHAV.

3https://github.com/yjxiong/temporal-segment-networks

Target Model Spatial Temporal Full

PHAV TSN 65.9 81.5 82.3

UCF-101 [75] 85.1 89.7 94.0

UCF-101 TSN 84.2 89.3 93.6

UCF-101 TSN-FT 86.1 89.7 94.1

UCF-101 Cool-TSN 86.3 89.9 94.2

HMDB-51 [75] 51.0 64.2 68.5

HMDB-51 TSN 50.4 61.2 66.6

HMDB-51 TSN-FT 51.0 63.0 68.9

HMDB-51 Cool-TSN 53.0 63.9 69.5

Table 3: Impact of our PHAV dataset using Cool-TSN. [75]

uses TSN with cross-modality training.

5.2. Temporal Segment Networks

In our first experiments (cf. Table 3), we reproduce the

performance of the original TSN in UCF-101 and HMDB-

51 using the same learning parameters as in [75]. For sim-

plicity, we use neither cross-modality pre-training nor a

third warped optical flow stream like [75], as their impact

on TSN is limited with respect to the substantial increase in

training time and computational complexity, degrading only

by −1.9% on HMDB-51, and −0.4% on UCF-101.

We also estimate performance on PHAV separately, and

fine-tune PHAV networks on target datasets. Training and

testing on PHAV yields an average accuracy of 82.3%,

which is between that of HMDB-51 and UCF-101. This

sanity check confirms that, just like real-world videos, our

synthetic videos contain both appearance and motion pat-

terns that can be captured by TSN to discriminate between

our different procedural categories. We use this network

to perform fine-tuning experiments (TSN-FT), using its

weights as a starting point for training TSN on UCF101 and

HMDB51 instead of initializing directly from ImageNet as

in [75]. We discuss learning parameters and results below.

5.3. Cool Temporal Segment Networks

In Table 3 we also report results of our Cool-TSN

multi-task representation learning, which additionally uses

PHAV to train UCF-101 and HMDB-51 models. We stop

training after 3, 000 iterations for RGB streams and 20, 000
for flow streams, all other parameters as in [75]. Our results

suggest that leveraging PHAV through either Cool-TSN or

TSN-FT yields recognition improvements for all modalities

in all datasets, with advantages in using Cool-TSN espe-

cially for the smaller HMDB-51. This provides quantitative

experimental evidence supporting our claim that procedu-

ral generation of synthetic human action videos can indeed

act as a strong prior (TSN-FT) and regularizer (Cool-TSN)

when learning deep action recognition networks.

We further validate our hypothesis by investigating the

impact of reducing the number of real world training videos

(and iterations), with or without the use of PHAV. Our re-

4763

https://github.com/yjxiong/temporal-segment-networks

Figure 7: Impact of using subsets of the real world training

videos (split 1), with PHAV (Cool-TSN) or without (TSN).

sults reported in Figure 7 confirms that reducing training

data from the target dataset impacts more severely TSN than

Cool-TSN. HMDB displays the largest gaps. We partially

attribute this to the smaller size of HMDB and also because

some categories of PHAV overlap with some categories of

HMDB. Our results show that it is possible to replace half

of HMDB with procedural videos and still obtain compara-

ble performance to using the full dataset (65.8 vs. 67.8). In

a similar way, and although actions differ more, we show

that reducing UCF-101 to a quarter of its original training

set still yields a Cool-TSN model that rivals the state-of-the-

art [76, 53, 74]. This shows that our procedural generative

model of videos can indeed be used to augment different

small real-world training sets and obtain better recognition

accuracy at a lower cost in terms of manual labor.

5.4. Comparison with the state of the art

In this section, we compare our model with the state of

the art in action recognition (Table 4). We separate the

current state of the art into works that use one or multiple

sources of training data (such as by pre-training, multi-task

learning or model transfer). We note that all works that use

multiple sources can potentially benefit from PHAV with-

out any modifications. Our results indicate that our methods

are competitive with the state of the art, including methods

that use much more manually labeled training data like the

Sports-1M dataset [28]. Our approach also leads to better

performance than the current best generative video model

VGAN [70] on UCF101, for the same amount of manu-

ally labeled target real-world videos. We note that while

VGAN’s more general task is quite challenging and differ-

ent from ours, [70] has also explored VGAN as a way to

learn unsupervised representations useful for action recog-

nition, thus enabling our comparison.

UCF-101 HMDB-51

Method %mAcc %mAcc

O
N

E
S

O
U

R
C

E iDT+FV [73] 84.8 57.2

iDT+StackFV [43] - 66.8

iDT+SFV+STP [72] 86.0 60.1

iDT+MIFS [30] 89.1 65.1

VideoDarwin [13] - 63.7

M
U

L
T

IP
L

E
S

O
U

R
C

E
S

2S-CNN [53] 88.0 59.4

TDD [74] 90.3 63.2

TDD+iDT [74] 91.5 65.9

C3D+iDT[62] 90.4 -

Actions∼Trans [76] 92.0 62.0

2S-Fusion [12] 93.5 69.2

Hybrid-iDT [9] 92.5 70.4

TSN-3M [75] 94.2 69.4

VGAN [70] 52.1 -

Cool-TSN 94.2 69.5

Table 4: Comparison against the state of the art.

6. Conclusion

In this work, we have introduced PHAV, a large syn-

thetic dataset for action recognition based on a procedu-

ral generative model of videos. Although our model does

not learn video representations like VGAN, it can gener-

ate many diverse training videos thanks to its grounding

in strong prior physical knowledge about scenes, objects,

lighting, motions, and humans.

We provide quantitative evidence that our procedurally

generated videos can be used as a simple drop-in comple-

ment to small training sets of manually labeled real-world

videos. Importantly, we show that we do not need to gen-

erate training videos for particular target categories fixed a

priori. Instead, surrogate categories defined procedurally

enable efficient multi-task representation learning for po-

tentially unrelated target actions that might have only few

real-world training examples.

Our approach combines standard techniques from Com-

puter Graphics (procedural generation) with state-of-the-art

deep learning for action recognition. This opens interest-

ing new perspectives for video modeling and understand-

ing, including action recognition models that can leverage

algorithmic ground truth generation for optical flow, depth,

semantic segmentation, or pose, or the combination with

unsupervised generative models like VGAN [70] for dy-

namic background generation, domain adaptation, or real-

to-virtual world style transfer [17].

Acknowledgements. Antonio M. Lopez is supported by

the Spanish MICINN project TRA2014-57088-C2-1-R, by

the Secretaria d’Universitats i Recerca del Departament

d’Economia i Coneixement de la Generalitat de Catalunya

(2014-SGR-1506), and the CERCA Programme / Generali-

tat de Catalunya.

4764

References

[1] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.

Seeing 3D chairs: exemplar part-based 2d-3d alignment us-

ing a large dataset of CAD models. In CVPR, 2014. 2

[2] M. Aubry and B. Russell. Understanding deep features with

computer-generated imagery. In ICCV, 2015. 2

[3] G. Brostow, J. Fauqueur, and R. Cipolla. Semantic object

classes in video: A high-definition ground truth database.

Pattern Recognition Letters, 30(20):88–89, 2009. 6

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

ECCV, pages 611–625, 2012. 2

[5] Carnegie Mellon Graphics Lab. Carnegie Mellon University

Motion Capture Database, 2016. 4

[6] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. DeepDriving:

Learning affordance for direct perception in autonomous

driving. In ICCV, 2015. 2

[7] L.-C. Chen, S. Fidler, and R. Yuille, Alan L. Urtasun. Beat

the MTurkers: Automatic image labeling from weak 3D su-

pervision. In CVPR, 2014. 2

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 6

[9] C. R. de Souza, A. Gaidon, E. Vig, and A. M. López. Sym-

pathy for the Details: Dense Trajectories and Hybrid Clas-

sification Architectures for Action Recognition. In ECCV,

pages 1–27, 2016. 1, 8

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009. 1

[11] A. Egges, A. Kamphuis, and M. Overmars, editors. Motion

in Games, volume 5277 of Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

3, 4

[12] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

Two-Stream Network Fusion for Video Action Recognition.

In CVPR, 2016. 8

[13] B. Fernando, E. Gavves, M. Oramas, A. Ghodrati, T. Tuyte-

laars, and K. U. Leuven. Modeling video evolution for action

recognition. In CVPR, 2015. 8

[14] A. Gaidon, Z. Harchaoui, and C. Schmid. Temporal local-

ization of actions with actoms. IEEE Trans. Pattern Anal.

Mach. Intell., 35(11):2782–95, nov 2013. 5

[15] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual Worlds

as Proxy for Multi-Object Tracking Analysis. CVPR, pages

4340–4349, 2016. 1, 2, 3

[16] Q. Galvane, M. Christie, C. Lino, and R. Ronfard. Camera-

on-rails : Automated Computation of Constrained Camera

Paths. ACM SIGGRAPH Conference on Motion in Games,

pages 151–157, 2015. 2

[17] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. CVPR, pages 2414–

2423, 2016. 8

[18] M. Guay, R. Ronfard, M. Gleicher, and M.-P. Cani. Adding

dynamics to sketch-based character animations. Sketch-

Based Interfaces and Modeling (SBIM) 2015, 2015. 2

[19] M. Guay, R. Ronfard, M. Gleicher, and M.-P. Cani. Space-

time sketching of character animation. ACM Trans. Graph.,

34(4):118:1–118:10, July 2015. 2

[20] R. Haeusler and D. Kondermann. Synthesizing real world

stereo challenges. In Proceedings of the German Conference

on Pattern Recognition, 2013. 2

[21] H. Haltakov, C. Unger, and S. Ilic. Framework for generation

of synthetic ground truth data for driver assistance applica-

tions. In Proceedings of the German Conference on Pattern

Recognition, 2013. 2

[22] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and

R. Cipolla. SynthCam3D: Semantic understanding with syn-

thetic indoor scenes. CoRR, arXiv:1505.00171, 2015. 2

[23] A. Handa, V. Patraucean, V. Badrinarayanan, S. Stent, and

R. Cipolla. Understanding real world indoor scenes with

synthetic data. In CVPR, 2016. 1, 2

[24] H. Hattori, V. Naresh Boddeti, K. M. Kitani, and T. Kanade.

Learning scene-specific pedestrian detectors without real

data. In CVPR, 2015. 2

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 6

[26] Y.-G. Jiang, J. Liu, a. Roshan Zamir, I. Laptev, M. Piccardi,

M. Shah, and R. Sukthankar. THUMOS Challenge: Action

Recognition with a Large Number of Classes, 2013. 7

[27] B. Kaneva, A. Torralba, and W. Freeman. Evaluation of im-

age features using a photorealistic virtual world. In ICCV,

2011. 2

[28] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 8

[29] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In ICCV, 2011. 2, 7

[30] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj. Be-

yond gaussian pyramid : Multi-skip feature stacking for ac-

tion recognition. In CVPR, 2015. 8

[31] A. Lerer, S. Gross, and R. Fergus. Learning physical intu-

ition of block towers by example. In ICML, 2016. 2

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, pages 740–755, 2014. 1

[33] J. Llargues, J. Peralta, R. Arrabales, M. González, P. Cortez,

and A. López. Artificial intelligence approaches for the gen-

eration and assessment of believable human-like behaviour

in virtual characters. Expert Systems With Applications,

41(16):7281–7290, 2014. 2

[34] J. Marı́n, D. Vázquez, D. Gerónimo, and A. López. Learning

appearance in virtual scenarios for pedestrian detection. In

CVPR, 2010. 1, 2

[35] F. Massa, B. Russell, and M. Aubry. Deep exemplar 2D-3D

detection by adapting from real to rendered views. In CVPR,

2016. 2

[36] P. Matikainen, R. Sukthankar, and M. Hebert. Feature seed-

ing for action recognition. In ICCV, 2011. 2

[37] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers,

A. Dosovitskiy, and T. Brox. A large dataset to train convo-

4765

lutional networks for disparity, optical flow, and scene flow

estimation. In CVPR, 2016. 1, 2

[38] S. Meister and D. Kondermann. Real versus realistically ren-

dered scenes for optical flow evaluation. In CEMT, 2011. 2

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing Atari

with deep reinforcement learning. In NIPS, Workshop on

Deep Learning, 2013. 2

[40] N. Onkarappa and A. Sappa. Synthetic sequences and

ground-truth flow field generation for algorithm validation.

Multimedia Tools and Applications, 74(9):3121–3135, 2015.

2

[41] J. Papon and M. Schoeler. Semantic pose using deep net-

works trained on synthetic RGB-D. In ICCV, 2015. 1, 2

[42] X. Peng, B. Sun, K. Ali, and K. Saenko. Learning deep ob-

ject detectors from 3D models. In ICCV, 2015. 1, 2

[43] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition

with stacked fisher vectors. In ECCV, 2014. 8

[44] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3D

geometry to deformable part models. In CVPR, 2012. 2

[45] K. Perlin. Real time responsive animation with personality.

T-VCG, 1(1):5–15, 1995. 4

[46] K. Perlin and G. Seidman. Autonomous Digital Actors. In

Motion in Games, pages 246–255. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2008. 4

[47] L. Pishchulin, A. Jain, C. Wojek, M. Andriluka,

T. Thormählen, and B. Schiele. Learning people detection

models from few training samples. In CVPR, 2011. 2

[48] S. Richter, V. Vineet, S. Roth, and K. Vladlen. Playing for

data: Ground truth from computer games. In ECCV, 2016.

1, 2, 6

[49] G. Ros, L. Sellart, J. Materzyska, D. Vázquez, and A. López.

The SYNTHIA dataset: a large collection of synthetic im-

ages for semantic segmentation of urban scenes. In CVPR,

2016. 1, 2, 3, 6

[50] S. Satkin, J. Lin, and M. Hebert. Data-driven scene under-

standing from 3D models. In BMVC, 2012. 2

[51] A. Shafaei, J. Little, and M. Schmidt. Play and learn: Using

video games to train computer vision models. In BMVC,

2016. 2

[52] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-

chio, R. Moore, A. Kipmanand, and A. Blake. Real-time

human pose recognition in parts from a single depth image.

In CVPR, 2011. 1, 2

[53] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 1,

6, 8

[54] E. Sizikova1, V. K. Singh, B. Georgescu, M. Halber, K. Ma,

and T. Chen. Enhancing place recognition using joint inten-

sity - depth analysis and synthetic data. In ECCV, VARVAI

Workshop, 2016. 2

[55] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A

dataset of 101 human actions classes from videos in the wild.

arXiv:1212.0402, December 2012. 2, 7

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: A simple way to prevent neural

networks from overfitting. JMLR, 15:1929–1958, 2014. 6

[57] H. Su, C. Qi, Y. Yi, and L. Guibas. Render for CNN: view-

point estimation in images using CNNs trained with rendered

3D model views. In ICCV, 2015. 1, 2

[58] H. Su, F. Wang, Y. Yi, and L. Guibas. 3D-assisted feature

synthesis for novel views of an object. In ICCV, 2015. 2

[59] B. Sun and K. Saenko. From virtual to reality: Fast adap-

tation of virtual object detectors to real domains. In BMVC,

2014. 1

[60] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 6

[61] G. Taylor, A. Chosak, and P. Brewer. OVVV: Using vir-

tual worlds to design and evaluate surveillance systems. In

CVPR, 2007. 2

[62] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In CVPR, 2014. 8

[63] H. van Welbergen, B. J. H. Basten, a. Egges, Z. M. Ruttkay,

and M. H. Overmars. Real Time Character Animation: A

Trade-off Between Naturalness and Control. Eurographics -

State-of-the-Art-Report, xx:45–72, 2009. 3, 4

[64] D. Vázquez, A. López, D. Ponsa, and J. Marı́n. Cool world:

domain adaptation of virtual and real worlds for human de-

tection using active learning. In NIPS, Workshop on Domain

Adaptation: Theory and Applications, 2011. 2, 6

[65] D. Vazquez, A. M. López, J. Marı́n, D. Ponsa, and

D. Gerónimo. Virtual and real world adaptation for pedes-

trian detection. T-PAMI, 36(4):797 – 809, 2014. 1, 2

[66] R. Vedantam, X. Lin, T. Batra, C. Zitnick, and D. Parikh.

Learning common sense through visual abstraction. In

ICCV, 2015. 2

[67] V. Veeravasarapu, R. Hota, C. Rothkopf, and R. Visvanathan.

Model validation for vision systems via graphics simulation.

CoRR, arXiv:1512.01401, 2015. 2

[68] V. Veeravasarapu, R. Hota, C. Rothkopf, and R. Vis-

vanathan. Simulations for validation of vision systems.

CoRR, arXiv:1512.01030, 2015. 2

[69] V. Veeravasarapu, C. Rothkopf, and R. Visvanathan. Model-

driven simulations for deep convolutional neural networks.

CoRR, arXiv:1605.09582, 2016. 2

[70] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating

videos with scene dynamics. In NIPS, 2016. 2, 3, 8

[71] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Dense tra-

jectories and motion boundary descriptors for action recog-

nition. IJCV, 103:60–79, 2013. 1

[72] H. Wang, D. Oneata, J. Verbeek, and C. Schmid. A ro-

bust and efficient video representation for action recognition.

IJCV, pages 1–20, July 2015. 8

[73] H. Wang and C. Schmid. Action recognition with improved

trajectories. In ICCV, 2013. 8

[74] L. Wang, Y. Qiao, and X. Tang. Action recognition with

trajectory-pooled deep-convolutional descriptors. In CVPR,

2015. 1, 8

[75] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and

L. V. Gool. Temporal Segment Networks: Towards Good

Practices for Deep Action Recognition. In ECCV, 2016. 2,

3, 6, 7, 8

4766

[76] X. Wang, A. Farhadi, and A. Gupta. Actions ∼ Transforma-

tions. In CVPR, 2015. 8

[77] J. Xu, S. Ramos, D. Vázquez, and A. López. Domain

adaptation of deformable part-based models. T-PAMI,

36(12):2367–2380, 2014. 2

[78] J. Xu, D. Vázquez, A. López, J. Marı́n, and D. Ponsa. Learn-

ing a part-based pedestrian detector in a virtual world. T-ITS,

15(5):2121–2131, 2014. 1, 2

[79] C. Zach, T. Pock, and H. Bischof. A duality based approach

for realtime tv-l1 optical flow. In DAGM-Symposium, 2007.

7

[80] Y. Zhu, R. Mottaghi, E. Kolve, J. Lim, and A. Gupta. Target-

driven visual navigation in indoor scenes using deep rein-

forcement learning. CoRR, arXiv:1609.05143, 2016. 2

[81] C. Zitnick, R. Vedantam, and D. Parikh. Adopting ab-

stract images for semantic scene understanding. T-PAMI,

38(4):627–638, 2016. 2

4767

