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Abstract

In this paper, balanced two-stage residual networks (BT-

SRN) are proposed for single image super-resolution. The

deep residual design with constrained depth achieves the

optimal balance between the accuracy and the speed for

super-resolving images. The experiments show that the bal-

anced two-stage structure, together with our lightweight

two-layer PConv residual block design, achieves very

promising results when considering both accuracy and

speed. We evaluated our models on the New Trends in

Image Restoration and Enhancement workshop and chal-

lenge on image super-resolution (NTIRE SR 2017). Our fi-

nal model with only 10 residual blocks ranked among the

best ones in terms of not only accuracy (6th among 20 final

teams) but also speed (2nd among top 6 teams in terms of

accuracy). The source code both for training and evalua-

tion is available in https://github.com/ychfan/

sr_ntire2017.

1. Introduction

Deep neural networks have achieved great success in the

recent years for many key computer vision and image pro-

cessing tasks such as image classification, object detection,

and image super-resolution (SR) [11][16]. Recent work

in training very deep networks suggests that, usually the

deeper the network structure is, the better performance it

can achieve. Many state-of-the-art approaches therefore fo-

cus on training deeper neural networks with techniques such

as deep residual learning [11], batch normalization [13].

While deep models tend to yield high accuracy, they lead

to very heavy computation in the task of searching the best

deep network architecture as well as training and testing the

deep neural networks. This is undesirable when compu-

tational resources are limited, and when the short training

time or real-time testing performance are required.

∗Authors contributed equally to this work

In this paper, we focus on applying deep networks for

single image super-resolution. We adopt the deep residual

design to ensure the model accuracy but also constrain the

model depth to only 10 residual blocks to ensure the ef-

ficiency for training and testing our models. Our experi-

ments further show that we can achieve the best trade-offs

between predicting accuracy and speed by using a relatively

balanced two-stage structure

Our contribution is therefore novel balanced two-stage

residual networks (BTSRN) with limited depths for single

image SR. We explore the trade-offs between model ac-

curacy and efficiency. Particularly, our models using 10

residual blocks perform the best with relatively balanced

6+4 two-stage structure for image SR task. Our models

are tested in the 2017 New Trends in Image Restoration

and Enhancement workshop and challenge on image super-

resolution (NTIRE SR 2017) [33]. Our final model using

only 10 residual blocks ranked among the top ones, both in

accuracy (6th among 20 final teams) and speed (2nd among

top 6 teams in terms of accuracy).

Besides the proposed the novel architecture for the chal-

lenge, we also perform extensive experiments in regard to

up-sampling strategy, batch normalization, residual blocks

etc., and discover a lightweight and efficient residual block

design that best suites our proposed model.

The rest of the paper is organized as follows. Sec. 2 re-

views the related work in image SR, Sec. 3 provides the

details of our model, Sec. 4 describes our results and imple-

mentations, and Sec. 5 concludes the whole paper.

2. Related Work

Image SR has been studied in the research community

over the past few decades, and a large number of papers

have been published in this field. In this section we will

focus on only single image SR and elaborate the neural net-

work based approaches as a major trend towards solving

this problem.

Single image SR is the task of recovering a HR image

from only one LR observation. A recent comprehensive
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review for this task can be found in the work of Yang et

al. [40]. Existing methods can be broadly classified into

three categories: interpolation based [5], image statistics

based [6, 32] and example based methods [42, 34, 36].

Interpolation based methods include linear, bicubic and

Lanczos filtering [5], which usually run very fast due to the

low complexity of algorithm. However, the simplicity of

these methods leads to the failure of modeling the complex

mapping between the LR feature space and the correspond-

ing HR feature space, generating overly-smoothed unsatis-

factory regions.

Image statistics based methods utilize the statistical

edge information to reconstruct HR images, for example,

in [6, 32]. They rely on the priors of edge statistics in im-

ages while facing the shortcoming of losing high-frequency

detail information especially in the case of large upscaling

factors.

The current most popular and successful approaches are

built on example based learning techniques, which aim to

learn the correspondence between LR feature space and HR

feature space through a large number of representative ex-

ample pairs. The pioneer work in this area includes [8].

Given the origin of example pairs, these methods can

be further categorized into three classes: self-example

based [9, 7], external-example based methods [42, 34] and

the joint of them [39]. Self-example based methods only

exploit the single input LR image as references, and extract

example pairs merely from the KR image across different

scales to predict the HR image. This type of methods usu-

ally works well in the images containing repetitive patterns

or textures but lacks the richness of image structures out-

side the input image and thus fails to generate satisfactory

prediction for images of other classes. Huang et al. [12] ex-

tends the idea of self-example based SR, by building self

dictionaries for handling geometric transformations.

External-example based methods first utilize the exam-

ple pairs extracted from an external dataset, in order to

learn the universal image characteristics between LR fea-

ture space and HR feature space, and then apply the learned

the mapping for SR. Usually, the representative patches

from external datasets are compactly embodied by pre-

trained dictionaries. One representative approach is the

sparse coding based method [42, 41, 38]. For example,

in [41] two coupled dictionaries are trained for LR feature

space and HR patch feature space, respectively, such that

the LR patch over LR dictionary and its corresponding HR

patch over HR dictionary share the same sparse represen-

tation. Although it is able to capture the universal LR-HR

correspondence from external datasets and recover fine de-

tails and sharpened edges, it suffers the high computational

cost for solving complicated non-linear optimization prob-

lems.

Timofte et al. [34, 35] propose a neighboring embed-

ding approach for SR, and formulate the problem as opti-

mizing a least square with l2 norm regularization, which

drastically reduces the computation complexity compared

with [42, 41]. Neighboring embedding approaches approx-

imate HR patches as a weighted average of similar training

patches in a low dimensional manifold.

Random forest can be built for SR without dictionary

learning in the work of [29, 28]. These methods embrace the

fast inference time but usually suffer from the huge model

size.

Recently, inspired by the achievement of many computer

vision tasks obtained by deep learning, neural networks

have been successfully applied for image SR. Dong et al.

[3] first exploit a three layer convolutional neural network,

termed SRCNN, to regress the complex non-linear mapping

between the LR image and the HR counterpart. A neural

network that encodes the sparse representation prior for im-

age SR is designed by Wang et al. [37, 20] demonstrating

the benefit of domain expertise from sparse coding in the

task of image SR. Kim et al. [15] propose a very deep CNN

with residual architecture to achieve outstanding SR perfor-

mance, which utilizes broader contextual information with

larger model capacity. Another network is designed by Kim

et al. [16], which has recursive architectures with skip con-

nection for image SR to boost performance while only ex-

ploiting a small number of model parameters. Liu et al. [19]

utilize a mixture of network models to enhance the power

of single network model.

Shi et al. [30] use a compact network model to con-

duct convolutions on LR images directly and learn an ar-

ray of upscaling filters in the last layer, which considerably

reduces the computation cost for real-time SR. Similarly,

Dong et al. [4] adopt deconvolution layers to accelerate SR-

CNN in combination with smaller filter sizes and more con-

volution layers.

More recently, the research of various evaluation met-

ric of SR has drawn increasing attention in the community.

Different loss functions for neural networks have been stud-

ied. Since the conventional pixel-wise loss such as mean

squared error (MSE) tends to find the average of possible

HR candidates and leads to overly-smoothed results, John-

son et al. [14] propose perceptual loss for large upscaling

SR in order to generate realistic details in HR prediction.

In the works of [18, 25], this idea is combined with genera-

tive adversarial network (GAN) [10] to further enhance the

details of HR prediction.

Among the aforementioned methods, the very deep

residual networks proposed by Kim et al. [15] is the cur-

rent state-of-the-art in terms of accuracy for image SR tasks.

However, the expensive computational load for training and

testing of such models encourages us to find more efficient

yet accurate models towards real-time applications. Our

proposed method is trying to find a better balanced solu-
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tion between the trade-offs of accuracy and speed and will

be introduced in the following sections.

3. Method

We propose balanced two-stage residual networks (BT-

SRN) for image super-resolution. The proposed model, as

shown in Figure 1, mainly contains two stages: low reso-

lution (LR) stage and high resolution (HR) stage. In the

low and high resolution stages, the residual networks [11]

are deployed with 6 and 4 residual blocks respectively. The

two stages are connected with up-sampling layers.

3.1. Balanced Two Stages

Deep residual structures are necessary in both the low

and high resolution stages. In the low resolution stages, the

feature maps have relatively small size. Receptive fields

are extended effectively to capture enough spatial context

and high level information with stacked convolution layers.

In the high resolution stages, the bigger feature maps con-

tain more information and are more correlated to output im-

ages. Multiple residual blocks refine interaction between

neighbor pixels and reduce checkerboard artifacts [22] by

up-sampling. However, the feature maps need s
2 times pro-

cessing time and memory space in each layer for super-

resolution with magnification factor s. The balance of resid-

ual block numbers between low and high resolution stages

is expected to achieve a good trade-off between accuracy

and speed. Compared with VDSR [15], the proposed ap-

proach takes low resolution image as input and reduces the

computational redundancy; compared with ESPCN [30],

SRGAN [18] and EnhanceNet [25], the proposed networks

perform better refinement in the high resolution space and

yield fewer artifacts.

3.2. Upsampling

For the up-sampling layers, the element sum of near-

est neighbor up-sampling and deconvolution is employed.

Deconvolution can up-sample feature maps with linear ker-

nels. The kernels may overlap for up-sampled feature maps.

The overlap may be uneven with unpaired stride and size of

kernels. The uneven overlap will cause checkerboard arti-

facts [22] in both output and gradient. To reduce the ar-

tifacts, the stride and size of kernels are equal to scaling

factor for x2 and x3, and two x2 up-sampling are applied

for x4 scaling. The skip connections in up-sampling layers

are achieved by nearest neighbor up-sampled feature maps.

The gradient can bypass deconvolution and be directly feed-

backed to low resolution stage.

3.3. Residual Blocks

Residual networks are stacked by residual blocks with

skip connections. The design of residual blocks decides

the performance of the networks. Multiple settings of the

residual blocks were investigated in Figure 1, including

residual blocks in PixelCNN [24], gated convolution blocks

in advanced PixelCNN [23], gated convolution blocks in

PixelCNN++ [26], and the proposed projected convolution

(PConv) structure.

In PixelCNN, the original proposed structure consists of

stacked convolutional layers with ReLU as non-linear ac-

tivation. The three layers are 1x1, 3x3, and 1x1 convo-

lutions respectively. Later the gated convolotional struc-

ture is proposed in PixelCNN for better performance. After

the first 3x3 convolutional layer, channels are divided into

two branches. Hyperbolic tangent and sigmoid operations

are applied to the feature map respectively and appended

with element-wise multiplication. One difference in Pix-

elCNN++ is that the hyperbolic tangent branch is replaced

by identity mapping. All of these structures are designed

for specific tasks and the details can be find in Figure 1.

We proposed a simple and efficient residual block structure

called projected convolution (PConv) that has 1x1 convolu-

tion as feature map projection to reduce input size of 3x3

convolution. The proposed model achieves good trade-off

between the accuracy and the speed.

3.4. Batch Normalization

Batch normalization [13] technique is not adopted in our

proposed model architecture. Batch normalization is first

introduced in [13] and designed to reduce internal covari-

ate shift. It turns out that batch normalization can reduce

the gradient vanishing problems thus makes training much

faster. And its widely used in previous super-resolution

models [18] [31]. However, we found batch normalization

is not suitable for super-resolution task. As shown in [1],

batch normalization makes the networks invariant to data

re-centering and re-scaling. Because super-resolution is a

regressing task, the target outputs are highly correlated to

inputs first order statistics. Actually, weight normalization

networks are still sensitive to input mean and variance. But

our experiments showed that there are no noticeable dif-

ferences in performance between models with and without

weight normalization [27].

3.5. Training

The deep networks predict the residual images between

the ground truth (high-resolution images) and the bicubic-

upscaled images, as shown in Figure 1. Patches from train-

ing image pairs are batched and fed into the neural net-

works. The loss function is defined as the mean square er-

ror on RGB channels between the neural network outputs

F (XLR; Θ) and corresponding residual images (XHR −
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Figure 1: Architecture of the proposed network

(a) Residual block in Pixel-

CNN

(b) Gated conv in Pixel-

CNN

(c) Gated conv in Pixel-

CNN++

(d) PConv block in pro-

posed BTSRN model

Figure 2: Comparison of different residual block designs

B(XLR)):

L(Θ) =
1

mn

n∑

i=1

m∑

j=1

||F (XLR
ij ; Θ)−(XHR

ij −B(XLR
ij ))||2

(1)

where B represents bicubic operation over low resolution

image patches, n is the number of training samples and m

is the number of patches of one training sample.

4. Experiments

4.1. Implementation

The proposed method is evaluated in the super-resolution

challenge of NTIRE 2017 [33]. The challenge takes DIV2K

dataset as benchmark, which includes 1000 DIVerse 2K res-

olution RGB images. 800 images are for training, 100 are

for validation and 100 are for testing. The challenge con-

tains two tracks with different down-sampling method (i.e.

bicubic and unknown). For each track, there are three com-

petitions with different down-sampling scale (i.e. x2, x3,

x4). The models are evaluated in term of Peak Signal-to-

Noise Ratio (PSNR) on RGB channels. 6 + s boundary

pixels are ignored in the evaluation, where s is the magnifi-

cation factor,

During training, all the images are cropped into

108x108-pixel patches with random flipping and rotation

for augmentation. Each step takes 32 image patches as a

batch. Adam optimizer [17] is used with the initial learning

rate of 0.001. The learning rate is exponentially decreased

by a fixed factor 0.6 after each iteration for faster conver-

gence. For each track, we train separate models for each

scale (i.e. x2, x3, x4) on pairs of high-resolution and down-

scaled low-resolution images.

During testing, data augmentations of flipping and ro-

tation are used and averaged on the float data type. The

float images are then rounded to uint8 data type and saved.

For single image and its augmented images, the testing is

performed on 8 GPUs synchronously, which are fully par-

alleled and achieve nearly 8x speed up.

The system is implemented in Python with Tensorflow,

and runs on modern GPUs. Because the networks are

trained with small patches, they can be fitted into regu-

lar GPUs with 8GBs memory. Our training is performed

on single GPU, enabling us to have better utilization of

GPUs and compare different network topologies and hyper-

parameters.

4.2. Results

To find the optimal model structure, we trained models

on DIV2K 800-image training set and evaluated them on

100-image validation set.
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High Stage PSNR (dB)

3 34.14024

4 34.16181

5 34.12123

Table 1: Comparison of blocks in high resolution stage

given low stage with 6 blocks

Low Stage PSNR (dB)

5 34.15799

6 34.16181

7 34.15126

8 34.16568

9 34.18892

Table 2: Comparison of blocks in low resolution stage given

high stage with 4 blocks

4.2.1 Balanced Two Stages

Different combinations of number of blocks in low and high

resolution stages are tried to verify the advances of balanced

structure.

First, by fixing the low resolution stages to 6 blocks,

performance of different number of high resolution stage

is shown in Table 1. The results show that 4 blocks in

high resolution stage is adequate for image refinement, ad-

ditional blocks will cause the models slow to converge.

Then, by fixing the high resolution stages to 4 blocks,

performance of different number of high resolution stage is

shown in Table 2. The results show that the more blocks

(less than 10) in low resolution, the better the performance

is. And networks with 6 low resolution blocks are good

compromise between accuracy and speed.

In addition, by fixing the total number of blocks in low

and high resolution stages to 10, which equals to fix the

number of model parameters, performance is shown in Fig-

ure 3. The results show that networks, with 7 and 3 layers

for low and high resolution stages respectively, achieve the

best performance.

By quantitatively comparing results between different ar-

chitectures, we can draw the conclusion that the proposed

balanced two-stage residual networks (BTSRN) yield best

trade-off between accuracy and speed.

4.2.2 Residual Blocks

To compare different design of residual blocks, including

residual block in PixelCNN 2a, gated convolution in Pixel-

CNN++ 2c and proposed PConv blocks 2d, we fix the input

of residual blocks to 128 nodes and input 1x1 convolution

Figure 3: Comparison of low and high stages residual

blocks combination (low+high)

Figure 4: Comparison of residual blocks design

to 32 nodes, and results are shown in Figure 4. Compared

to residual block in PixelCNN, the proposed PConv blocks

achieve better performance, need the same time and less

memory for training. Although gated convolution in Pix-

elCNN++ has better performance, it needs nearly double

time and memory for training compared to proposed resid-

ual blocks. So the proposed PConv blocks make good trade-

off between accuracy and efficiency.

4.3. NTIRE 2017 Challenge

The submitted models for NTIRE 2017 super-resolution

challenge are based on the proposed balanced two stage

residual networks (BTSRN) with 6 and 4 residual blocks

in low and high resolution stage respectively. The proposed

PConv blocks are employed with 128 nodes as input and

64 nodes after 1x1 convolution layer. The networks are

trained with training and validation dataset, totally 900 im-

ages, and evaluated on the 100-image testing set. The re-

sults are shown in Table 3.

Qualitative comparison results can be found in Figure
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Scale BTSRN Bicubic

x2 34.19 31.01

x3 30.44 28.22

x4 28.49 26.65

Table 3: Final results in NTIRE 2017 super-resolution chal-

lenge

Dataset Scale BTSRN VDSR Bicubic

x2 37.75 37.53 33.64

Set5 x3 34.03 33.66 30.38

x4 31.85 31.35 28.42

x2 33.20 33.03 30.22

Set14 x3 29.90 29.77 27.51

x4 28.20 28.01 25.95

x2 32.05 31.90 29.55

B100 x3 28.97 28.82 27.20

x4 27.47 27.29 25.97

x2 31.63 30.76 26.87

Urban100 x3 27.75 27.14 24.46

x4 25.74 25.18 23.14

Table 4: Benchmark results in PSNR

5 and the results clearly demonstrate our method achieves

much sharper super-resolved images in general and signifi-

cant smoother results in edges compared with bicubic inter-

polation method.

4.4. Benchmarks

The proposed balanced two stage residual networks

(BTSRN) are further evaluated on benchmarks including

Set5 [2], Set14 [43], B100 [21, 35] and Urban100 [12].

To make the results comparable with state-of-the-art meth-

ods, we follow the same evaluation procedure by calculat-

ing PSNR on luminance channel and ignoring two bound-

ary pixels. The results are shown in Table 4. Compared

with state-of-the-art VDSR [15] approach, our proposed

BTSRN achieves significant improvements in PSNR on all

the benchmarks.

5. Conclusion

In this work, we proposed novel balanced two-stage

residual networks (BTSRN) with lightweight yet efficient

two-layer PConv residual blocks. The experiments show

that our proposed model achieves well-balanced results in

terms of both model accuracy and efficiency. For future

work, we will further explore the proposed model structure

in two directions: speed-up without losing accuracy and

deeper models with better performance.
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(a) (b) (c) (d) (e)

Figure 5: Visual comparison results on 200×200 image patches: (a) output using bicubic interpolation, (b) absolute difference

summed over rgb channels between bicubic interpolation’s output and ground truth, (c) output using our proposal method, (d)

absolute difference summed over rgb channels between our proposed method’s output and ground truth, (e) ground truth. As

can be seen from the visual results, our method produces much sharper results in general and significantly smoother results

on image edges.
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