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Abstract

Recent research on super-resolution has progressed with

the development of deep convolutional neural networks

(DCNN). In particular, residual learning techniques exhibit

improved performance. In this paper, we develop an en-

hanced deep super-resolution network (EDSR) with perfor-

mance exceeding those of current state-of-the-art SR meth-

ods. The significant performance improvement of our model

is due to optimization by removing unnecessary modules in

conventional residual networks. The performance is further

improved by expanding the model size while we stabilize

the training procedure. We also propose a new multi-scale

deep super-resolution system (MDSR) and training method,

which can reconstruct high-resolution images of different

upscaling factors in a single model. The proposed methods

show superior performance over the state-of-the-art meth-

ods on benchmark datasets and prove its excellence by win-

ning the NTIRE2017 Super-Resolution Challenge [26].

1. Introduction

Image super-resolution (SR) problem, particularly sin-

gle image super-resolution (SISR), has gained increasing

research attention for decades. SISR aims to reconstruct

a high-resolution image ISR from a single low-resolution

image ILR. Generally, the relationship between ILR and

the original high-resolution image IHR can vary depending

on the situation. Many studies assume that ILR is a bicubic

downsampled version of IHR, but other degrading factors

such as blur, decimation, or noise can also be considered for

practical applications.

Recently, deep neural networks [11, 12, 14] provide sig-

nificantly improved performance in terms of peak signal-to-

noise ratio (PSNR) in the SR problem. However, such net-

works exhibit limitations in terms of architecture optimality.

First, the reconstruction performance of the neural network

models is sensitive to minor architectural changes. Also, the

same model achieves different levels of performance by dif-
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Figure 1: ×4 Super-resolution result of our single-scale SR

method (EDSR) compared with existing algorithms.

ferent initialization and training techniques. Thus, carefully

designed model architecture and sophisticated optimization

methods are essential in training the neural networks.

Second, most existing SR algorithms treat super-

resolution of different scale factors as independent prob-

lems without considering and utilizing mutual relationships

among different scales in SR. As such, those algorithms re-

quire many scale-specific networks that need to to be trained

independently to deal with various scales. Exceptionally,
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VDSR [11] can handle super-resolution of several scales

jointly in the single network. Training the VDSR model

with multiple scales boosts the performance substantially

and outperforms scale-specific training, implying the redun-

dancy among scale-specific models. Nonetheless, VDSR

style architecture requires bicubic interpolated image as the

input, that leads to heavier computation time and memory

compared to the architectures with scale-specific upsam-

pling method [5, 22, 14].

While SRResNet [14] successfully solved those time

and memory issue with good performance, it simply em-

ploys the ResNet architecture from He et al. [9] without

much modification. However, original ResNet was pro-

posed to solve higher-level computer vision problems such

as image classification and detection. Therefore, applying

ResNet architecture directly to low-level vision problems

like super-resolution can be suboptimal.

To solve these problems, based on the SRResNet ar-

chitecture, we first optimize it by analyzing and removing

unnecessary modules to simplify the network architecture.

Training a network becomes nontrivial when the model is

complex. Thus, we train the network with appropriate loss

function and careful model modification upon training. We

experimentally show that the modified scheme produces

better results.

Second, we investigate the model training method that

transfers knowledge from a model trained at other scales.

To utilize scale-independent information during training,

we train high-scale models from pre-trained low-scale mod-

els. Furthermore, we propose a new multi-scale architecture

that shares most of the parameters across different scales.

The proposed multi-scale model uses significantly fewer pa-

rameters compared with multiple single-scale models but

shows comparable performance.

We evaluate our models on the standard benchmark

datasets and on a newly provided DIV2K dataset. The

proposed single- and multi-scale super-resolution networks

show the state-of-the-art performances on all datasets in

terms of PSNR and SSIM. Our methods ranked first and

second, respectively, in the NTIRE 2017 Super-Resolution

Challenge [26].

2. Related Works

To solve the super-resolution problem, early approaches

use interpolation techniques based on sampling theory [1,

15, 34]. However, those methods exhibit limitations in pre-

dicting detailed, realistic textures. Previous studies [25, 23]

adopted natural image statistics to the problem to recon-

struct better high-resolution images.

Advanced works aim to learn mapping functions be-

tween ILR and IHR image pairs. Those learning meth-

ods rely on techniques ranging from neighbor embed-

ding [3, 2, 7, 21] to sparse coding [31, 32, 27, 33]. Yang et

al. [30] introduced another approach that clusters the patch

spaces and learns the corresponding functions. Some ap-

proaches utilize image self-similarities to avoid using exter-

nal databases [8, 6, 29], and increase the size of the limited

internal dictionary by geometric transformation of patches

[10].

Recently, the powerful capability of deep neural net-

works has led to dramatic improvements in SR. Since Dong

et al. [4, 5] first proposed a deep learning-based SR method,

various CNN architectures have been studied for SR. Kim

et al. [11, 12] first introduced the residual network for train-

ing much deeper network architectures and achieved su-

perior performance. In particular, they showed that skip-

connection and recursive convolution alleviate the burden

of carrying identity information in the super-resolution net-

work. Similarly to [20], Mao et al. [16] tackled the general

image restoration problem with encoder-decoder networks

and symmetric skip connections. In [16], they argue that

those nested skip connections provide fast and improved

convergence.

In many deep learning based super-resolution algo-

rithms, an input image is upsampled via bicubic interpo-

lation before they fed into the network [4, 11, 12]. Rather

than using an interpolated image as an input, training up-

sampling modules at the very end of the network is also pos-

sible as shown in [5, 22, 14]. By doing so, one can reduce

much of computations without losing model capacity be-

cause the size of features decreases. However, those kinds

of approaches have one disadvantage: They cannot deal

with the multi-scale problem in a single framework as in

VDSR [11]. In this work, we resolve the dilemma of multi-

scale training and computational efficiency. We not only

exploit the inter-relation of learned feature for each scale

but also propose a new multi-scale model that efficiently

reconstructs high-resolution images for various scales. Fur-

thermore, we develop an appropriate training method that

uses multiple scales for both single- and multi-scale mod-

els.

Several studies also have focused on the loss functions

to better train network models. Mean squared error (MSE)

or L2 loss is the most widely used loss function for general

image restoration and is also major performance measure

(PSNR) for those problems. However, Zhao et al. [35]

reported that training with L2 loss does not guarantee better

performance compared to other loss functions in terms of

PSNR and SSIM. In their experiments, a network trained

with L1 achieved improved performance compared with the

network trained with L2.

3. Proposed Methods

In this section, we describe proposed model architec-

tures. We first analyze recently published super-resolution

network and suggest an enhanced version of the residual
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network architecture with the simpler structure. We show

that our network outperforms the original ones while ex-

hibiting improved computational efficiency. In the follow-

ing sections, we suggest a single-scale architecture (EDSR)

that handles a specific super-resolution scale and a multi-

scale architecture (MDSR) that reconstructs various scales

of high-resolution images in a single model.

3.1. Residual blocks

Recently, residual networks [11, 9, 14] exhibit excellent

performance in computer vision problems from the low-

level to high-level tasks. Although Ledig et al. [14] success-

fully applied the ResNet architecture to the super-resolution

problem with SRResNet, we further improve the perfor-

mance by employing better ResNet structure.

(a) Original (b) SRResNet (c) Proposed

Figure 2: Comparison of residual blocks in original

ResNet, SRResNet, and ours.

In Fig. 2, we compare the building blocks of each net-

work model from original ResNet [9], SRResNet [14], and

our proposed networks. We remove the batch normalization

layers from our network as Nah et al.[19] presented in their

image deblurring work. Since batch normalization layers

normalize the features, they get rid of range flexibility from

networks by normalizing the features, it is better to remove

them. We experimentally show that this simple modifica-

tion increases the performance substantially as detailed in

Sec. 4.

Furthermore, GPU memory usage is also sufficiently re-

duced since the batch normalization layers consume the

same amount of memory as the preceding convolutional

layers. Our baseline model without batch normalization

layer saves approximately 40% of memory usage during

training, compared to SRResNet. Consequently, we can

build up a larger model that has better performance than

conventional ResNet structure under limited computational

resources.

C
o
n
v

S
h
u
ff
le

C
o
n
v

S
h
u
ff
le

X4

C
o
n
v

R
e
LU

C
o
n
v

M
u
lt

C
o
n
v

R
e
sB
lo
ck

R
e
sB
lo
ck

C
o
n
v

U
p
sa
m
p
le

C
o
n
v• • •

C
o
n
v

S
h
u
ff
le

X2

C
o
n
v

S
h
u
ff
le

X3

• • •

Figure 3: The architecture of the proposed single-scale SR

network (EDSR).

3.2. Singlescale model

The simplest way to enhance the performance of the net-

work model is to increase the number of parameters. In

the convolutional neural network, model performance can

be enhanced by stacking many layers or by increasing the

number of filters. General CNN architecture with depth (the

number of layers) B and width (the number of feature chan-

nels) F occupies roughly O(BF ) memory with O(BF 2)
parameters. Therefore, increasing F instead of B can max-

imize the model capacity when considering limited compu-

tational resources.

However, we found that increasing the number of feature

maps above a certain level would make the training pro-

cedure numerically unstable. A similar phenomenon was

reported by Szegedy et al. [24]. We resolve this issue by

adopting the residual scaling [24] with factor 0.1. In each

residual block, constant scaling layers are placed after the

last convolution layers. These modules stabilize the train-

ing procedure greatly when using a large number of filters.

In the test phase, this layer can be integrated into the previ-

ous convolution layer for the computational efficiency.

We construct our baseline (single-scale) model with our

proposed residual blocks in Fig. 2. The structure is similar

to SRResNet [14], but our model does not have ReLU acti-

vation layers outside the residual blocks. Also, our baseline

model does not have residual scaling layers because we use

only 64 feature maps for each convolution layer. In our final

single-scale model (EDSR), we expand the baseline model

by setting B = 32, F = 256 with a scaling factor 0.1. The

model architecture is displayed in Fig. 3.

When training our model for upsampling factor ×3 and

×4, we initialize the model parameters with pre-trained ×2
network. This pre-training strategy accelerates the training

and improves the final performance as clearly demonstrated

in Fig. 4. For upscaling ×4, if we use a pre-trained scale ×2
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model (blue line), the training converges much faster than

the one started from random initialization (green line).

 27.5
 28

 28.5

 29
 29.5

 30

 0  50  100  150  200  250  300
Updates (k)

PSNR(dB) on DIV2K validation set (x4)

From pre-trained x2
From scratch

From scratch (Best performance)

Figure 4: Effect of using pre-trained ×2 network for ×4
model (EDSR). The red line indicates the best performance

of green line. 10 images are used for validation during

training.

3.3. Multiscale model

From the observation in Fig. 4, we conclude that super-

resolution at multiple scales is inter-related tasks. We fur-

ther explore this idea by building a multi-scale architecture

that takes the advantage of inter-scale correlation as VDSR

[11] does. We design our baseline (multi-scale) models to

have a single main branch with B = 16 residual blocks

so that most of the parameters are shared across different

scales as shown in Fig. 5.

In our multi-scale architecture, we introduce scale-

specific processing modules to handle the super-resolution

at multiple scales. First, pre-processing modules are located

at the head of networks to reduce the variance from input

images of different scales. Each of pre-processing mod-

ule consists of two residual blocks with 5 × 5 kernels. By

adopting larger kernels for pre-processing modules, we can

keep the scale-specific part shallow while the larger recep-

tive field is covered in early stages of networks. At the end

of the multi-scale model, scale-specific upsampling mod-

ules are located in parallel to handle multi-scale reconstruc-

tion. The architecture of the upsampling modules is similar

to those of single-scale models described in the previous

section.

We construct our final multi-scale model (MDSR) with

B = 80 and F = 64. While our single-scale baseline mod-

els for 3 different scales have about 1.5M parameters each,

totaling 4.5M, our baseline multi-scale model has only 3.2

million parameters. Nevertheless, the multi-scale model ex-

hibits comparable performance as the single-scale models.

Furthermore, our multi-scale model is scalable in terms of

depth. Although our final MDSR has approximately 5 times
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Figure 5: The architecture of the proposed multi-scale SR

network (MDSR).

Options
SRResNet [14]

(reproduced)

Baseline

(Single / Multi)
EDSR MDSR

# Residual blocks 16 16 32 80

# Filters 64 64 256 64

# Parameters 1.5M 1.5M / 3.2M 43M 8.0M

Residual scaling - - 0.1 -

Use BN Yes No No No

Loss function L2 L1 L1 L1

Table 1: Model specifications.

more depth compared to the baseline multi-scale model,

only 2.5 times more parameters are required, as the resid-

ual blocks are lighter than scale-specific parts. Note that

MDSR also shows the comparable performance to the scale-

specific EDSRs. The detailed performance comparison of

our proposed models is presented in Table 2 and 3.

4. Experiments

4.1. Datasets

DIV2K dataset [26] is a newly proposed high-quality

(2K resolution) image dataset for image restoration tasks.

The DIV2K dataset consists of 800 training images, 100

validation images, and 100 test images. As the test dataset

ground truth is not released, we report and compare the per-

formances on the validation dataset. We also compare the

performance on four standard benchmark datasets: Set5 [2],

Set14 [33], B100 [17], and Urban100 [10].

4.2. Training Details

For training, we use the RGB input patches of size

48×48 from LR image with the corresponding HR patches.

We augment the training data with random horizontal flips

and 90 rotations. We pre-process all the images by subtract-

ing the mean RGB value of the DIV2K dataset. We train
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Scale
SRResNet

(L2 loss)

SRResNet

(L1 loss)

Our baseline

(Single-scale)
Our baseline

(Multi-scale)

EDSR

(Ours)

MDSR

(Ours)

EDSR+

(Ours)

MDSR+

(Ours)

×2 34.40 / 0.9662 34.44 / 0.9665 34.55 / 0.9671 34.60 / 0.9673 35.03 / 0.9695 34.96 / 0.9692 35.12 / 0.9699 35.05 / 0.9696

×3 30.82 / 0.9288 30.85 / 0.9292 30.90 / 0.9298 30.91 / 0.9298 31.26 / 0.9340 31.25 / 0.9338 31.39 / 0.9351 31.36 / 0.9346

×4 28.92 / 0.8960 28.92 / 0.8961 28.94 / 0.8963 28.95 / 0.8962 29.25 / 0.9017 29.26 / 0.9016 29.38 / 0.9032 29.36 / 0.9029

Table 2: Performance comparison between architectures on the DIV2K validation set (PSNR(dB) / SSIM). Red indicates the

best performance and blue indicates the second best. EDSR+ and MDSR+ denote self-ensemble versions of EDSR and

MDSR.

our model with ADAM optimizer [13] by setting β1 = 0.9,

β2 = 0.999, and ǫ = 10−8. We set minibatch size as 16.

The learning rate is initialized as 10−4 and halved at every

2× 105 minibatch updates.

For the single-scale models (EDSR), we train the net-

works as described in Sec. 3.2. The ×2 model is trained

from scratch. After the model converges, we use it as a pre-

trained network for other scales.

At each update of training a multi-scale model (MDSR),

we construct the minibatch with a randomly selected scale

among ×2,×3 and ×4. Only the modules that correspond

to the selected scale are enabled and updated. Hence, scale-

specific residual blocks and upsampling modules that corre-

spond to different scales other than the selected one are not

enabled nor updated.

We train our networks using L1 loss instead of L2. Min-

imizing L2 is generally preferred since it maximizes the

PSNR. However, based on a series of experiments we em-

pirically found that L1 loss provides better convergence

than L2. The evaluation of this comparison is provided in

Sec. 4.4

We implemented the proposed networks with the Torch7

framework and trained them using NVIDIA Titan X GPUs.

It takes 8 days and 4 days to train EDSR and MDSR, re-

spectively. The source code is publicly available online.1

4.3. Geometric Selfensemble

In order to maximize the potential performance of our

model, we adopt the self-ensemble strategy similarly to

[28]. During the test time, we flip and rotate the input

image ILR to generate seven augmented inputs ILR
n,i =

Ti

(

ILR
n

)

for each sample, where Ti represents the 8 ge-

ometric transformations including indentity. With those

augmented low-resolution images, we generate correspond-

ing super-resolved images
{

ISR
n,1 , · · · , I

SR
n,8

}

using the net-

works. We then apply inverse transform to those output

images to get the original geometry ĨSR
n,i = T−1

i

(

ISR
n,i

)

.

Finally, we average the transformed outputs all together to

make the self-ensemble result as follows. ISR
n = 1

8

8
∑

i=1

ĨSR
n,i .

1https://github.com/LimBee/NTIRE2017

This self-ensemble method has an advantage over other

ensembles as it does not require additional training of sepa-

rate models. It is beneficial especially when the model size

or training time matters. Although self-ensemble strategy

keeps the total number of parameters same, we notice that

it gives approximately same performance gain compared

to conventional model ensemble method that requires in-

dividually trained models. We denote the methods using

self-ensemble by adding ’+’ postfix to the method name;

i.e. EDSR+/MDSR+. Note that geometric self-ensemble

is valid only for symmetric downsampling methods such as

bicubic downsampling.

4.4. Evaluation on DIV2K Dataset

We test our proposed networks on the DIV2K dataset.

Starting from the SRResNet, we gradually change various

settings to perform ablation tests. We train SRResNet [14]

on our own. 2 3 First, we change the loss function from

L2 to L1, and then the network architecture is reformed as

described in the previous section and summarized in Table

1.

We train all those models with 3 × 105 updates in this

experiment. Evaluation is conducted on the 10 images of

DIV2K validation set, with PSNR and SSIM criteria. For

the evaluation, we use full RGB channels and ignore the (6

+ scale) pixels from the border.

Table 2 presents the quantitative results. SRResNet

trained with L1 gives slightly better results than the orig-

inal one trained with L2 for all scale factors. Modifications

of the network give an even bigger margin of improvements.

The last 2 columns of Table 2 show significant performance

gains of our final bigger models, EDSR+ and MDSR+ with

the geometric self-ensemble technique Note that our mod-

els require much less GPU memory since they do not have

batch normalization layers.

2We confirmed our reproduction is correct by getting comparable re-

sults in an individual experiment, using the same settings of the pa-

per [14]. In our experiments, however, it became slightly different to

match the settings of our baseline model training. See our codes at

https://github.com/LimBee/NTIRE2017.
3We used the original paper (https://arxiv.org/abs/1609.04802v3) as a

reference.
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img034 from Urban100 [10]

HR

(PSNR / SSIM)

Bicubic

(21.41 dB / 0.4810)

A+ [27]

(22.21 dB / 0.5408)

SRCNN [4]

(22.33 dB / 0.5461)

VDSR [11]

(22.62 dB / 0.5657)

SRResNet [14]

(23.14 dB / 0.5891)

EDSR+ (Ours)

(23.48 dB / 0.6048)

MDSR+ (Ours)

(23.46 dB / 0.6039)

img062 from Urban100 [10]

HR

(PSNR / SSIM)

Bicubic

(19.82 dB / 0.6471)

A+ [27]

(20.43 dB 0.7145)

SRCNN [4]

(20.61 dB / 0.7218)

VDSR [11]

(20.75 dB / 0.7504)

SRResNet [14]

(21.70 dB / 0.8054)

EDSR+ (Ours)

(22.70 dB / 0.8537)

MDSR+ (Ours)

(22.66 dB / 0.8508)

0869 from DIV2K [26]

HR

(PSNR / SSIM)

Bicubic

(22.66 dB / 0.8025)

A+ [27]

(23.10 dB / 0.8251)

SRCNN [4]

(23.14 dB / 0.8280)

VDSR [11]

(23.36 dB / 0.8365)

SRResNet [14]

(23.71 dB / 0.8485)

EDSR+ (Ours)

(23.89 dB / 0.8563)

MDSR+ (Ours)

(23.90 dB / 0.8558)

Figure 6: Qualitative comparison of our models with other works on ×4 super-resolution.
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Dataset Scale Bicubic A+ [27] SRCNN [4] VDSR [11] SRResNet [14]
EDSR

(Ours)

MDSR

(Ours)

EDSR+

(Ours)

MDSR+

(Ours)

×2 33.66 / 0.9299 36.54 / 0.9544 36.66 / 0.9542 37.53 / 0.9587 - / - 38.11 / 0.9601 38.11 / 0.9602 38.20 / 0.9606 38.17 / 0.9605

Set5 ×3 30.39 / 0.8682 32.58 / 0.9088 32.75 / 0.9090 33.66 / 0.9213 - / - 34.65 / 0.9282 34.66 / 0.9280 34.76 / 0.9290 34.77 / 0.9288

×4 28.42 / 0.8104 30.28 / 0.8603 30.48 / 0.8628 31.35 / 0.8838 32.05 / 0.8910 32.46 / 0.8968 32.50 / 0.8973 32.62 / 0.8984 32.60 / 0.8982

×2 30.24 / 0.8688 32.28 / 0.9056 32.42 / 0.9063 33.03 / 0.9124 - / - 33.92 / 0.9195 33.85 / 0.9198 34.02 / 0.9204 33.92 / 0.9203

Set14 ×3 27.55 / 0.7742 29.13 / 0.8188 29.28 / 0.8209 29.77 / 0.8314 - / - 30.52 / 0.8462 30.44 / 0.8452 30.66 / 0.8481 30.53 / 0.8465

×4 26.00 / 0.7027 27.32 / 0.7491 27.49 / 0.7503 28.01 / 0.7674 28.53 / 0.7804 28.80 / 0.7876 28.72 / 0.7857 28.94 / 0.7901 28.82 / 0.7876

×2 29.56 / 0.8431 31.21 / 0.8863 31.36 / 0.8879 31.90 / 0.8960 - / - 32.32 / 0.9013 32.29 / 0.9007 32.37 / 0.9018 32.34 / 0.9014

B100 ×3 27.21 / 0.7385 28.29 / 0.7835 28.41 / 0.7863 28.82 / 0.7976 - / - 29.25 / 0.8093 29.25 / 0.8091 29.32 / 0.8104 29.30 / 0.8101

×4 25.96 / 0.6675 26.82 / 0.7087 26.90 / 0.7101 27.29 / 0.7251 27.57 / 0.7354 27.71 / 0.7420 27.72 / 0.7418 27.79 / 0.7437 27.78 / 0.7425

×2 26.88 / 0.8403 29.20 / 0.8938 29.50 / 0.8946 30.76 / 0.9140 - / - 32.93 / 0.9351 32.84 / 0.9347 33.10 / 0.9363 33.03 / 0.9362

Urban100 ×3 24.46 / 0.7349 26.03 / 0.7973 26.24 / 0.7989 27.14 / 0.8279 - / - 28.80 / 0.8653 28.79 / 0.8655 29.02 / 0.8685 28.99 / 0.8683

×4 23.14 / 0.6577 24.32 / 0.7183 24.52 / 0.7221 25.18 / 0.7524 26.07 / 0.7839 26.64 / 0.8033 26.67 / 0.8041 26.86 / 0.8080 26.86 / 0.8082

DIV2K

validation

×2 31.01 / 0.9393 32.89 / 0.9570 33.05 / 0.9581 33.66 / 0.9625 - / - 35.03 / 0.9695 34.96 / 0.9692 35.12 / 0.9699 35.05 / 0.9696

×3 28.22 / 0.8906 29.50 / 0.9116 29.64 / 0.9138 30.09 / 0.9208 - / - 31.26 / 0.9340 31.25 / 0.9338 31.39 / 0.9351 31.36 / 0.9346

×4 26.66 / 0.8521 27.70 / 0.8736 27.78 / 0.8753 28.17 / 0.8841 - / - 29.25 / 0.9017 29.26 / 0.9016 29.38 / 0.9032 29.36 / 0.9029

Table 3: Public benchmark test results and DIV2K validation results (PSNR(dB) / SSIM). Red indicates the best

performance and blue indicates the second best. Note that DIV2K validation results are acquired from published demo

codes.

4.5. Benchmark Results

We provide the quantitative evaluation results of our final

models (EDSR+, MDSR+) on public benchmark datasets in

Table 3. The evaluation of the self-ensemble is also pro-

vided in the last two columns. We trained our models using

106 updates with batch size 16. We keep the other settings

same as the baseline models. We compare our models with

the state-of-the-art methods including A+ [27], SRCNN [4],

VDSR [11], and SRResNet [14]. For comparison, we mea-

sure PSNR and SSIM on the y channel and ignore the same

amount of pixels as scales from the border. We used MAT-

LAB [18] functions for evaluation. Comparative results on

DVI2K dataset are also provided. Our models exhibit a sig-

nificant improvement compared to the other methods. The

gaps further increase after performing self-ensemble. We

also present the qualitative results in Fig. 6. The proposed

models successfully reconstruct the detailed textures and

edges in the HR images and exhibit better-looking SR out-

puts compared with the previous works.

5. NTIRE2017 SR Challenge

This work is initially proposed for the purpose of par-

ticipating in the NTIRE2017 Super-Resolution Challenge

[26]. The challenge aims to develop a single image super-

resolution system with the highest PSNR.

In the challenge, there exist two tracks for different de-

graders (bicubic, unknown) with three downsample scales

(×2, 3, 4) each. Input images for the unknown track are

not only downscaled but also suffer from severe blurring.

Therefore, more robust mechanisms are required to deal

with the second track. We submitted our two SR models

(EDSR and MDSR) for each competition and prove that our

algorithms are very robust to different downsampling con-

ditions. Some results of our algorithms on the unknown

downsampling track are illustrated in Fig. 7. Our meth-

ods successfully reconstruct high-resolution images from

severely degraded input images. Our proposed EDSR+ and

MDSR+ won the first and second places, respectively, with

outstanding performances as shown in Table 4.

6. Conclusion

In this paper, we proposed an enhanced super-resolution

algorithm. By removing unnecessary modules from con-

ventional ResNet architecture, we achieve improved results

while making our model compact. We also employ resid-

ual scaling techniques to stably train large models. Our

proposed singe-scale model surpasses current models and

achieves the state-of-the-art performance.

Furthermore, we develop a multi-scale super-resolution

network to reduce the model size and training time. With

scale-dependent modules and shared main network, our

multi-scale model can effectively deal with various scales

of super-resolution in a unified framework. While the

multi-scale model remains compact compared with a set of

single-scale models, it shows comparable performance to

the single-scale SR model.

Our proposed single-scale and multi-scale models have

achieved the top ranks in both the standard benchmark

datasets and the DIV2K dataset.
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0791 from DIV2K [26]

HR

(PSNR / SSIM)

Bicubic

(22.20 dB / 0.7979)

EDSR (Ours)

(29.05 dB / 0.9257)

MDSR (Ours)

(28.96 dB / 0.9244)

0792 from DIV2K [26]

HR

(PSNR / SSIM)

Bicubic

(21.59 dB / 0.6846)

EDSR (Ours)

(27.24 dB / 0.8376)

MDSR (Ours)

(27.14 dB / 0.8356)

0793 from DIV2K [26]

HR

(PSNR / SSIM)

Bicubic

(23.81 dB / 0.8053)

EDSR (Ours)

(30.94 dB / 0.9318)

MDSR (Ours)

(30.81 dB / 0.9301)

0797 from DIV2K [26]

HR

(PSNR / SSIM)

Bicubic

(19.77 dB / 0.8937)

EDSR (Ours)

(25.48 dB / 0.9597)

MDSR (Ours)

(25.38 dB / 0.9590)

Figure 7: Our NTIRE2017 Super-Resolution Challenge results on unknown downscaling ×4 category. In the challenge, we

excluded images from 0791 to 0800 from training for validation. We did not use geometric self-ensemble for unknown

downscaling category.

Track1: bicubic downscailing Track2: unknown downscailing

×2 ×3 ×4 ×2 ×3 ×4

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR+ (Ours) 34.93 0.948 31.13 0.889 29.09 0.837 34.00 0.934 30.78 0.881 28.77 0.826

MDSR+ (Ours) 34.83 0.947 31.04 0.888 29.04 0.836 33.86 0.932 30.67 0.879 28.62 0.821

3rd method 34.47 0.944 30.77 0.882 28.82 0.830 33.67 0.930 30.51 0.876 28.54 0.819

4th method 34.66 0.946 30.83 0.884 28.83 0.830 32.92 0.921 30.31 0.871 28.14 0.807

5th method 34.29 0.948 30.52 0.889 28.55 0.752 - - - - - -

Table 4: Performance of our methods on the test dataset of NTIRE2017 Super-Resolution Challenge [26]. The results of top

5 methods are displayed for two tracks and six categories. Red indicates the best performance and blue indicates the second

best.
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