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Abstract

A convolutional neural network (CNN) has been de-

signed to interpret player actions in ice hockey video. The

hourglass network is employed as the base to generate

player pose estimation and layers are added to this network

to produce action recognition. As such, the unified architec-

ture is referred to as action recognition hourglass network,

or ARHN. ARHN has three components. The first compo-

nent is the latent pose estimator, the second transforms la-

tent features to a common frame of reference, and the third

performs action recognition. Since no benchmark dataset

for pose estimation or action recognition is available for

hockey players, we generate such an annotated dataset. Ex-

perimental results show action recognition accuracy of 65%

for four types of actions in hockey. When similar poses are

merged to three and two classes, the accuracy rate increases

to 71% and 78%, proving the efficacy of the methodology

for automated action recognition in hockey.

1. Introduction

Action recognition in computer vision is an important

and popular problem in the application of analyzing sport

videos. Action recognition provides a benefit to coaches,

analysts and spectators by providing content for coaches

and analysts to evaluate player performance and for spec-

tators to view content. Ice hockey is one example of a

sport with an application of action recognition. Although

only a limited amount of action recognition or even com-

puter vision research has been done in the field of hockey,

action recognition can be applied to hockey analytics to

analyze characteristics of hockey players and teams. Cur-

rent methods in hockey analytics utilize manually assessed

statistics to evaluate player performance, yet, practitioners

want more information using less time consuming methods.

Hockey player pose and hockey action recognition are valu-

able pieces of information that potentially can help coaches

in assessing player performance. The focus of this research

is to perform action recognition using latent pose in hockey

videos and images.

Pose estimation and action recognition are challenging

problems in hockey which can be scaled to other types of

sports. Action recognition challenges specific to hockey in-

clude bulky clothing that deforms a player’s body-shape,

a team’s jersey (white) that is highly similar to the back-

ground ( the ice and boards), equipment (padding) that tends

to occlude joints and limbs, and a high speed of movement

due to skating ability that leads to blurring. These chal-

lenges make automated action recognition and pose estima-

tion in hockey quite difficult.

In this article videos captured by a single camera is

employed, and a convolutional neural network (CNN),

called Action recognition Hourglass Network (ARHN), is

introduced that extracts pose features from hockey images

and/videos and utilizes them for action recognition. Al-

though the use of depth sensors can be employed (see the

background found in Section 2), that method is expensive

and the data gathered is too noisy. Action recognition for

broadcast videos, although more challenging, is more desir-

able and more realistic.

A dataset of annotated hockey images is generated; to

the best of our knowledge, there is no publicly available

benchmark hockey dataset for action recognition and pose

estimation. In this dataset, video frames of hockey play-

ers performing four types of activities (namely, cross-overs,

straight skating, per-shot, and post-shot) are labeled and

body joint locations are annotated.

The main contributions include the following: 1) intro-

ducing a framework for action recognition in videos (Sec-

tion 3), 2) proposing the ARHN architecture as a unified

deep structure for action recognition (Section 3), 3) cre-

ation of an action recognition dataset using frames from ice

hockey video (Section 4), and 4) successful application of
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the ARHN to the generated dataset for automatic recogni-

tion of hockey player actions (Section 4).

This research focuses on utilizing pose information for

action recognition and does not employ temporal features

for two reasons. First, a player’s pose, as a static feature, is a

strong clue for action recognition, and second incorporating

temporal information like motion descriptors arises the need

for a much bigger dataset to be used for training a deep

structure that incorporates temporal information.

2. Background

The background section is composed of two subsections:

current pose-based action recognition techniques used in

sports and computer vision research applied to ice hockey.

2.1. Pose-based Action Recognition

Many works in action recognition use dense trajectory

features including HOG, HOF, and MBH [8, 17, 19, 14, 4]

in addition to pose estimation. Pishchulin et al. [17] ex-

plore combinations of dense trajectories and pose estima-

tion noting that combinations may improve accuracy of ac-

tion recognition given that the pose estimates are unable to

accurately label the pose of a person. Jhuang et. al [19]

compares dense trajectory, a low/mid-level method, sep-

arately against pose estimation, a high-level method, de-

termining that methods incorporating pose features outper-

form low/mid level feature methods.

One method to incoporate dense trajectories and pose

estimation is using AND-OR graph models [8, 14]. One

implementation incorporates motion, geometry of joints

(pose) and appearance [8]. The model uses HOF/HOG for

motion appearance as a part node. The pose node has a pro-

jected 3D view and then it is placed into ’different’ view

nodes (difference viewpoints); this approach is tested using

2D video input and is to help evaluate actions in various

viewpoints. Another model incorporates poselets in addi-

tion to HOG/HOF within the And-Or graph model [14].

Similarily to incorporating poselets, Desai et al. [6]

present an approach based on combining 3 compositional

models (i.e., poselets, visual phrases, and pictorial structure

models) for modeling human pose and interacting objects.

Phraselets are introduced and employed in a Flexible Mix-

ture of Parts (FMP) framework to capture relations between

parts and a separate compositional model per action class is

defined. Output of the model are action labels, articulated

human pose, object pose, and occlusion flags. Phraselets,

like most of the methods in action recognition, are designed

for recognizing coarse actions that are quite different in na-

ture (like horse ridding verses taking photo), not for fine

action recognition (e.g., discriminating between 2 different

movements of a hockey player).

Iqbal and Gall [18] introduce a method for repeatedly

altering between pose estimation and action recognition.

They adopt standard pictorial structure model (PS model)

for human pose estimation and condition it on action types

to do efficient inference. Starting with uniform prior on all

action classes, the pose in each frame is predicted, and by

using the estimated poses, the probabilities of the actions

are estimated.

Recently, deep structures have dominated most of pre-

vious descriptors and models for pose estimation and are

giving promising results in action recognition.

In Chéron et al. [4], a pose based CNN providing a de-

scriptor for action recognition task is introduced. Pose es-

timation is performed using a method given by Cherian et

al. [3], and is utilized for determining four different regions

or body parts in images. Next, optical flow and raw im-

age pixels over patches of body parts are given to separate

CNNs to generate motion and appearance descriptors for

each frame. Descriptors per frame, and their consecutive

differences in successive frames, are aggregated by max and

min pooling over time and normalized to generate static

and dynamic video descriptors, which are concatenated to

form P-CNN descriptor. Beside P-CNN descriptor, three

different Improved Dense Trajectory features (i.e., HOG,

HOF,and MBH) with Fisher Vector coding are also com-

puted. Action recognition is performed using a linear SVM

over P-CNN descriptors and IDT features. This method

as explained does not use the pose estimation directly as

a feature but rather employs it for determining the region of

interest for patch selection from images, while we believe

pose information, if determined precisely, is intrinsically a

strong clue for action recognition.

Similar research in action recognition in sports uses pose

estimation as a latent variable in a unified action recognition

in still images [20]. Like Yang et al. [20], the authors seek

to unify pose estimation and action recognition to improve

action recognition performance.

This literature review shows pose can be used as a strong

feature for action recognition and employing power archi-

tectures such as deep networks will increase the accuracy

of pose-based action recognition. Therefore, in this work a

pose-based deep network incoporating latent pose estima-

tion is implemented for action recognition.

2.2. Computer Vision and Action Recognition in
Hockey

Within the sport of hockey, computer vision research has

been limited to tracking [2, 16, 15, 9, 11] , rectification of

broadcast hockey video [7], crowd analysis [5] providing a

hockey crowd dataset, and very few results in action recog-

nition [11, 10, 12].

In the three papers by Lu et al. [11, 10, 12], HOG

descriptors are used with various training methods such

as support vector machines, prior information is extracted

from videos and sequences of images are implemented as
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input for action recognition. The mentioned papers, how-

ever, do not describe methods for extracting higher level

features such as pose. The activities evaluated from the

aforementioned papers are based on actions of skating such

as skating left, skate right, skate in, skate out, skate left 45,

and skate right 45 rather than other action of hockey that

focus on the whole body.

This summary represents the limited extent of the pub-

lished research in the field of computer vision applied to ice

hockey. In this work, a significant state-of-the-art contribu-

tion by developing a methodology to automatically deter-

mine actions of a hockey player based on latent pose esti-

mation derived from video frames is presented.

3. Methodology

3.1. Overview

As indicated earlier, this research involves the develop-

ment, implementation, and testing of a new method to per-

form action recognition. This method is applied to recog-

nizing actions of ice hockey players as an example. The

ARHN uses features based on latent pose estimation to esti-

mate action recognition using single video frames of hockey

players. An overview of the framework is demonstrated in

Fig. 1 and is described in Section 3.2.

3.2. Proposed General Framework

Proposed action recognition framework in video, is il-

lustrated in Fig.1. As shown in Fig. 1, a hockey video-

segment is converted to a sequence of frames. In each frame

a player is tracked, and a coordinate of his body center is

determined. Next, the frame resolution is adjusted to the

proper input size (i.e., 720 × 1280) of the network. Then

a region of interest (with size 250 × 250), centered at a

player’s body-center is cropped from the image and is given

to the ARHN network. The network, by finding heatmaps

(where each heatmap corresponds to the predicted probabil-

ity of a joint’s presence at each image-pixel [13]), generates

the pose estimation which is then used to estimate player

action. Four different types of hockey player actions are

considered which are: cross-over, straight skating, pre-shot,

and post-shot. Details of the ARHN structure are presented

and discussed in the next subsection.

3.3. Network Architecture

The general structure of the ARHN is presented in Fig.

2 and broken into three components. The first component

is the stacked hourglass network ([13] which inputs the raw

image and generates a set of heatmaps that defines the pose,

as the latent feature. The second component of the net-

work is the latent feature transformer that receives the la-

tent features and transforms them to a common frame of

reference. The third component is the action recognition

Figure 1: Implemented framework for hockey action recog-

nition through pose estimation for hockey images/video

frames. The framework begins by extracting video frames

as input, the body-center of the player is determined us-

ing tracking means, then the image size is scaled and fed

into the network. The network then classifies the action and

overlays the estimated pose on the image.

classifier which is composed of six fully-connected layers

and classifies a hockey player’ s action type. Sequencing

these three parts, as shown in Fig.2, constructs the ARHN

network as a unified deep structure.

The pose estimator component, implicitly learns the pose

of a hockey player through the use of a generated set of sta-

tistical probability heatmaps that identify the joint locations

of a hockey player in a still image. Then the latent feature

transformer, scales and shifts the learned pose, forming a

feature vector. The fully connected layers in the third com-

ponent perform the action recognition task.

In order to understand the ARHN, a brief overview of

the original hourglass network, in conjunction with a de-

scription of latent feature transformer and fully-connected

layers are provided respectively in subsections 3.4, 3.5, and

3.6.

3.4. Latent Pose Estimation via Stacked Hourglass
Network

The stacked hourglass network is a deep convolutional

network architecture composed of multiple hourglass mod-

ules put together in series [13]. Each hourglass module has

convolutional, max-pooling, and up-sampling layers as its

basic elements to realize a bottom-up, top-down mecha-

nism for generating feature maps. In bottom-up sequence,

successive convolution and max pooling layers are engaged

to bring the resolution of feature maps to 4x4 pixels. In
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Figure 2: Proposed ARHN for action recognition identifying the three components. Component 1: pose estimation using an

hourglass network. Component 2: feature transformation to transform poses into a common frame of reference Component

3: action recognition represented by fully connected layers.

Figure 3: Statistical heat maps demonstrating the probabil-

ity of the location of the right ankle, right knee, and right

hip (left to right) for a hockey player.

the top-down sequence, feature maps are up-sampled using

nearest neighbor. The major elements of this architecture

are skip connections between bottom-up and top-down sec-

tions of the hourglass, which are shown by dashed arches in

Fig.2. These skip connections preserve information of high

resolution feature maps, in the first section of network, to be

combined with features of other scales, in the second sec-

tion. The hourglass network generates a set of 16 statistical

heatmaps. Fig.3 provides instances of some heat maps for

the right ankle, right knee and right hip of a hockey player.

These heatmaps actually form the latent pose features for

the ARHN network.

3.5. Latent Feature Transformer

The second component is a feature transformer that

transforms pose heatmaps to a common frame of reference

by performing spatial translation and scaling in 2-D plane.

The location of a peak in a heatmap gives the predicted co-

ordinate of a joint for the input image. A specific constel-

lation of joints (i.e., geometrical arrangement of a set of

joints) shows the pose of a player. A player’s pose poten-

tially should represent a particular type of action, that is

performed; typical poses for four types of actions in hockey

are indicated in Fig. 4. However, poses that represent the

(a) cross-over (b) straight skating

(c) pre-shot (d) post-shot

Figure 4: Typical poses for 4 different actions of a hockey

player

same action type can vary significantly in the joint posi-

tion, orientation, and sizes. To generate a more consistent

representation for poses, referred to as canonical poses, the

feature transformer is used. This component generates the

canonical poses from the heatmaps to generate a better pose

representation to be used as input into the action recognition

component.

The latent feature transformer, is demonstrated in

Fig.5(a). All joint coordinates are shifted with respect to a

point defined as the body center (x0, y0), namely, the point
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halfway between the thorax and pelvis keypoints indicated

by ”O” on the stickmen in Fig. 4. Joint coordinates are

scaled by scaling ratio S as per Eq. (1). S is the ratio of the

average head size of players in all training images (N) and

Hn is the head size of the player in the nth image. Head size

is the distance between the ”head top” and ”upper neck”

keypoints (Fig. 4).

S =

∑N

n=1
Hn

Hn

(1)

As shown in Fig. 5, besides transformed coordinates (i.e.,

[xi, yi]
T

) of 16 body-joints, angles (αj) between some

joints are also calculated. Angles which are computed are

between (right & left)- shoulder, (right & left)-elbow, (right

& left)-hip, and (right & left)- knee joints. The output of the

latent feature transformer is a 40-dimensional vector named

the canonical pose (pc) given in Eq. (2). This vector is

formed by concatenation of joint angles and transformed

keypoint coordinates. The canonical pose is the feature that

is next evaluated by the third component of the ARHN to

perform action recognition.

pc =
[

α X Y
]

(2)

X =
[

x1, x2, ..., xi, ... x16

]

, Y =
[

y1, y2, ..., yi, ... y16
]

, α =
[

α1, α2, ..., αj , ... α8

]

3.6. Action Recognition Component

The last component of the network is illustrated in Fig. 6.

This component is composed of six fully connected layers

to recognize activities. The fully connected layers receive

the 40-dimensional feature vector from the latent feature

transformer, passing it through five fully connected layers

with sigmoid activation functions and a final layer of four

neurons with a hard-limit function to recognize one of the

four types of activities for the input image. The number of

neurons in each layer is indicated in Fig. 6. Note that the

number of layers and the number of neurons per layer are

determined empirically.

4. Testing and Results

Experiments that are conducted here assess the perfor-

mance of ARHN for action recognition in the context of

hockey. Both visual and numerical evaluations are pro-

vided.

4.1. Dataset Preparation

In machine learning, and particularly deep learning prob-

lems, having access to a proper dataset is a crucial require-

ment. Deep networks generally use supervised or semi-

supervised algorithms for learning, which heavily rely on

(a)

(b)

Figure 5: (a) Latent feature transformer, which generates

canonical pose vector by shifting and scaling joint coordi-

nates and computing the joint angles. (b) Angle of joint ”j”

(i.e., αj) is the smaller angle between vectors ja and jb.

Figure 6: Action recognition component consisting of 6

fully connected layers beginning with a layer of 100 neu-

rons to 50, 90, 20, 40 and ending with a fully connected

layer of 4 to perform action recognition.

annotated data during training. Deep networks are designed

to extract information from raw input data, therefore, per-

formance relies on the data samples presented to deep net-

works. If the provided data are not representative of the

problem, or the number of training samples is limited, the

machine learning method fails to properly tune its param-

eters and cannot provide an accurate model for solving the

problem.

In the context of hockey, no standard set of annotated

hockey images for pose estimation or action recognition

is available. Therefore, in this work, a dataset, named
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# Key-point # Key-point

1 Right ankle 10 Head top

2 Right knee 11 Right wrist

3 Right hip 12 Right elbow

4 Left hip 13 Right shoulder

5 Left knee 14 Left shoulder

6 Left ankle 15 Left elbow

7 Pelvis 16 Left wrist

8 Thorax 17 top of stick

9 Upper neck 18 end of stick

Table 1: List of annotated key-points for each frame.

HARPE, has been collected and annotated for this purpose.

• Video segments are captured from a set of hockey

videos and converted to video frames.

• Video frames are categorized into classes based on the

four hockey actions: cross-overs, straight skating, pre-

shot, and post-shot.

• Very low quality frames, and frames unrepresentative

of classes, are manually detected and discarded.

• Spatial resolution of each frame is adjusted to the

proper size for delivering to the network i.e., 720 ×

1280.

• A hockey player is tracked in all frames to determine

his body center in pixel coordinates.

• For each frame, the positions of 16 body joints (Table

1) for the player of interest is annotated and the action

type is labeled.

• The two ends of the hockey sticks are also annotated

in each frame for future use.

In summary, keypoints are annotated in 887 frames with

an associated action label. The dataset has 1676 frames

of cross-overs, 271 frames of straight skating, 245 frames

of pre-shooting, and 203 frames of post-shooting. We are

planning to make the dataset publicly available.

4.2. Accuracy of Action Recognition

To evaluate the accuracy of action recognition the im-

ages are randomly divided into three groups: 70% training,

15% validation, and 15% validation. Training images are

passed through the ARHN network and the parameters of

network are tuned accordingly. Due to the limited size of

the provided data, parameters of hourglass layers are hardly

affected (weights of hourglass layer are pre-trained by gen-

eral human poses on MPII dataset [1]), while parameters

Class # 1 2 3 4

Precision (%) 68.3 7.18 75.9 79.5

Recall (%) 68.6 74.1 77.0 73.0

Table 2: Performance of ARHN for training.

Class # 1 2 3 4

Precision (%) 64.5 68.8 72.6 64.1

Recall (%) 69.5 68.9 68.4 64.1

Table 3: Performance of ARHN for validation.

Class # 1 2 3 4

Precision (%) 61.7 67.0 68.3 63.1

Recall (%) 61.7 67.0 68.1 63.1

Table 4: Performance of ARHN for testing.

of the fully connected layers are the ones that are mainly

learned during the training phase. This process has been re-

peated with fifteen randomly selected groups, and the aver-

age performance of ARHN network for action recognition

is reported. The 70/15/15 splitting of data and averaging

over 15 runs, is validated in subsection 4.3.

For this purpose, precision and recall rates for training,

testing, and validation images are computed and provided

respectively in Tables 2, 3, and 4 for each of the four class

types; where 1 represents cross-overs, 2 represents straight

skating, 3 represents pre-shot, and 4 represents post-shot.

The precision and recall rates of Table 4, for the test data,

show that the network has precision of about 65% for each

class. However, in many cases, a hockey players’ pose in

cross-over and straight skating (the two first classes) are

quite similar to each other. It is also the case for pre-shot

and post-shot (the two last classes). For each type of action,

some examples of correctly classified and misclassified im-

ages are illustrated in Figs. 7 and 8. In Fig. 7, all images

follow the typical action poses shown in Fig. 4, so they are

all correctly classified by the ARHN. In contrast, images of

Fig. 8 are all misclassified because they deviate from their

true class and mimic a different class. Considering player

poses, misclassification of Fig. 8 by ARHN can be justified.

This subject is further investigated in the next experiment.

4.3. Effect of Merging Classes

The purpose of this experiment is to show that by merg-

ing similar classes, accuracy of classification can be im-

proved. In Fig. 9, a confusion matrix for one run on training

data is provided.

The confusion matrix in Fig. 9 shows that most mis-
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(a) Cross-over (b) Straight skating

(c) Pre-shot (d) Post-shot

Figure 7: Examples of activities, correctly classified.

(a) Cross-over –> Straight

skating

(b) Straight skating–>Cross-

over

(c) Pre-shot–>Post-shot (d) Post-shot–>Pre-shot

Figure 8: Examples of missclassified activities. In each case

the true class-type followed by the predicted class-type are

shown under the image in question.

classifications occur between classes 3 and 4 (pre-shot and

post-shot), as well as classes 1 and 2 (cross-over and straight

skating); shooting classes are clearly distinct from the skat-

Figure 9: Confusion matrix of action recognition for one

run.

Class Indices 1,2,3,4 1,2,(3,4) (1,2),(3,4)

Mean 15 runs(%) 65.14 71.13 78.32

Mean 1000 runs(%) 65.47 69.08 78.49

Variance 1000 runs 0.0064 0.0043 0.0030

Table 5: Accuracy of action recognition over 15 and 1000

runs for three testing conditions: evaluating classes 1,2,3

and 4 as separate classes, evaluating class 1 and 2 separately

with classes 3 and 4 as a single class, and evaluating classes

1 and 2 as one separate class and classes 3 and 4 as another

class.

ing classes. Therefore, in Table 5, the effect of merging

similar classes on accuracy of action recognition is investi-

gated. Mean classification accuracy averaged over 15 and

then 1000 runs are reported for three different testing con-

ditions.

In the first test none of the classes are merged together. In

the second test the two last classes (i.e., pre-shot and post-

shot) are merged together. Finally, in the third test the first

two classes (i.e., cross-over and straight skating) are also

combined. Accuracy of recognition for each of these test-

ing conditions are provided in the three columns of Table

5. Table 5 demonstrates that by unifying similar classes,

the mean accuracy increases. Also, Table 5 shows that the

mean accuracy over 15 runs is close to the mean accuracy

over 1000 runs. The low variance over 1000 runs validates

that fewer runs (e.g., 15) should be sufficient for represen-

tative results. The result of this test for 1000 runs are also

demonstrated in the form of histograms in Fig. 10 for each

of the three testing conditions. The histograms show that by

merging the classes, mean accuracy increases and variance

decreases resulting in the histogram to look more concen-

trated.

5. Conclusion

In this article, a deep structure called ARHN network is

designed and implemented that successfully performs ac-
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(a) (b)

(c)

Figure 10: Histograms of accuracy over 1000 runs for ran-

dom selection of test samples. (a) all 4 classes as separate

classes (b) classes 3 and 4 acting as one class and class 1

and 2 as separate classes and (c) classes 1 and 2 are a single

class as well as classes 3 and 4.

tion recognition in the sport of hockey using latent pose es-

timation features. A labeled dataset of hockey poses and

of four action classes have also been introduced as a bench

mark dataset for action recognition in hockey. Body joint

locations in all images of this dataset are annotated and can

be used as ground-truth for pose estimation.

Hockey analytics derived from computer vision methods

is in its infancy. So, this work could help the coaches and

hockey analysts to evaluate player performance from a more

scientific viewpoint. Note that pose estimation in a hockey

game is extremely challenging due to occlusions caused by

protective equipment, high level of motion blur due to the

speed of the game, and a high degree of player interactions

caught in a standard camera view.

In the collected dataset, images of goalies are excluded,

because of their inconsistency in clothing with other play-

ers’. Therefore,in feature works a separate network for

goalies could be trained. Applying the proposed method

to goalies would require a complete adjustment of the pose

estimation to account for goalie pads. This is far more work

especially with respect to preparing training data for the

hourglass network.

Moreover, architecture of ARHN network could be

changed to include the hockey stick key-points and improve

the accuracy of action recognition.
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