
Extraction and Classification of Diving Clips from Continuous Video Footage

Aiden Nibali1 Zhen He1 Stuart Morgan1,2 Daniel Greenwood2

1 La Trobe University, 2 Australian Institute of Sport

Abstract

Due to recent advances in technology, the recording and

analysis of video data has become an increasingly common

component of athlete training programmes. Today it is in-

credibly easy and affordable to set up a fixed camera and

record athletes in a wide range of sports, such as diving,

gymnastics, golf, tennis, etc. However, the manual analy-

sis of the obtained footage is a time-consuming task which

involves isolating actions of interest and categorizing them

using domain-specific knowledge. In order to automate this

kind of task, three challenging sub-problems are often en-

countered: 1) temporally cropping events/actions of inter-

est from continuous video; 2) tracking the object of interest;

and 3) classifying the events/actions of interest.

Most previous work has focused on solving just one of

the above sub-problems in isolation. In contrast, this paper

provides a complete solution to the overall action monitor-

ing task in the context of a challenging real-world exemplar.

Specifically, we address the problem of diving classification.

This is a challenging problem since the person (diver) of in-

terest typically occupies fewer than 1% of the pixels in each

frame. The model is required to learn the temporal bound-

aries of a dive, even though other divers and bystanders

may be in view. Finally, the model must be sensitive to sub-

tle changes in body pose over a large number of frames to

determine the classification code. We provide effective solu-

tions to each of the sub-problems which combine to provide

a highly functional solution to the task as a whole. The tech-

niques proposed can be easily generalized to video footage

recorded from other sports.

1. Introduction

Extracting useful information from video data has be-

come more important in recent years due to the increasing

abundance of video data and the low cost of data storage.

Much research in this area is compartmentalized into either

solving action recognition and classification [28, 38, 14, 11,

46], where the algorithm predicts a discrete class label of ac-

tions, or object tracking [24, 2, 49], where continuous pixel

coordinates are predicted through time. However, applica-

t=0s 10s 20s 30s 40s 50s

Stage 1. Temporal action localization

Stage 2. Spatial localization

201B
Backwards, 1/2 somersault, pike position

Stage 3. Classification

Figure 1: Our action clip extraction and classification sys-

tem. Each stage drills deeper into the data.

tions in the sports domain often require both problems to be

solved together in order to formulate a useful system. For

example, isolating individual goal attempts made by a row

of training football players in order to find problematic tech-

nique, or labeling the actions performed by a gymnast when

there are other people moving in the background, or extract-

ing and separating every forehand/backhand for one player

in a game of tennis. In each of these examples the person of

interest may only occupy a small region of the input frame,

there are other people not of interest within the frame, and

an accurate understanding of their actions requires an eval-

uation over an arbitrary temporal span. This aspect of the

problem in particular requires a novel approach to learning.

We refer to these types of problems as action monitoring

problems.

Solving the action monitoring problem requires solu-

tions to the following three sub-problems: 1) temporally

cropping events/actions of interest from continuous video;

2) tracking the person/animal of interest; and 3) classify-

ing the event/action of interest. Due to a lack of publicly-

available action monitoring data sets, this paper primarily

38

focuses on solving the diving monitoring problem using a

novel data set provided by the Australian Institute of Sport,

as illustrated in Figure 1. A solution requires that we first

identify the temporal bounds of each dive. We then track

the diver of interest to generate suitable spatial crops. Fi-

nally, we need to feed the cropped images into a classi-

fier. The solutions presented have general application in the

sports domain, and our approach can be applied to solve

many other action monitoring problems. The diving moni-

toring problem is particularly hard since the diver occupies

a very small percentage of each frame (typically fewer than

1% of the pixels) and there are thousands of possible dif-

ferent dive codes. So, using just a few pixels per frame we

need to consistently separate different dive types which dif-

fer only on subtle changes in diver pose. In addition, the

system needs to look at the entire dive (which spans around

50-100 frames) to correctly assign a classification code. In

contrast, in most public video classification data sets the

vast majority of the classes can be assigned by just look-

ing at 1 frame of a video clip (e.g. playing tennis versus

playing basketball) [15].

We present a 3D convolutional neural network based so-

lution for all three sub-problems of temporal action local-

ization, object tracking, and action recognition. For tem-

poral action localization, we predict the probability that a

frame is from the start, middle, and end of a dive. This

gives us higher confidence that a dive is correctly detected

since all three labels must be detected in sequence. The re-

sults show we can correctly extract 98% of dives, with a

26% higher F1 score than a straightforward baseline ap-

proach. For object tracking we present a segmentation based

solution to finding the center of a diver in each frame.

The results show our segmentation based solution is ap-

preciably more accurate than a more conventional regres-

sion based solution. Finally, our proposed classification ap-

proach based on dilated convolutions can achieve an aver-

age of 93% accuracy for each component of the dive codes.

2. Related Work

Video representation and classification At the heart of

video analysis is the way the data is represented. Many tech-

niques extend 2D image representations to 3D by incorpo-

rating the temporal dimension, including HOG3D [16] from

HOG [3], extended SURF [43] from SURF [1], and 3D-

SIFT [28] from SIFT [22]. Other techniques such as optical

flow treat the temporal dimension as having properties dis-

tinct from spatial dimensions. The work on dense trajecto-

ries proposed by Wang et al. [38] takes such an approach,

and is currently a state-of-the-art hand-crafted feature al-

gorithm for video analysis. Unfortunately, the effectiveness

of optical flow-based techniques (including dense trajecto-

ries) comes at the price of computational efficiency, which

reduces their viability for real-time applications and large-

scale datasets.

Using learnt features via convolutional neural networks

(CNNs) for video analysis have become more popular since

the huge success of AlexNet [17] in the ILSVR 2012 image

classification challenge. One of the directions this research

took was in finding direct ways of applying 2D CNNs to

video data by fusing 2D feature maps at different levels of

the network hierarchy. Karpathy et al. [15] demonstrated

that such fusion schemes only achieve a modest improve-

ment over using only a single frame of input. Another di-

rection taken was to treat video as 3D data (with time being

the 3rd dimension), and apply volumetric convolutions [36].

Such networks learn good representations of video data at

the cost of a large memory requirement.

There exist multiple more complex solutions for apply-

ing CNNs to action recognition [31, 44, 4, 47]. Some of

these solutions rely on optical flow [31, 47], which is slow

to evaluate. Others rely on a recurrent architecture [44, 4],

which is often difficult to train in practice.

Temporal action localization The dominant method for

detecting the temporal extent of actions involves sliding

windows of several fixed lengths through the video, and

classifying each video segment to determine whether it con-

tains an action [25, 42, 30]. The segment classifier can be

based on hand-engineered feature descriptors [25], trained

CNNs [30], or a combination of the two [42]. In contrast

to this segment-based approach, we are able to detect ac-

tions of arbitrary length without sliding multiple windows

through the video.

Other branches of work related to temporal action local-

ization attempt to solve different variations of the problem,

such as detecting temporal extents without explicit temporal

annotations [19, 18, 32], or simultaneously detecting tem-

poral and spatial boundaries [13, 8].

Object localization/detection Sermanet et al. [29] pro-

posed a neural network called OverFeat for object detec-

tion. OverFeat comprises of a convolutional feature extrac-

tor and two network “heads” - one for classification, and

another for regression. The feature extractor is similar to

what is now commonly referred to as a fully-convolutional

network. This allows it to efficiently slide a window around

the image to extract features for different crops. The clas-

sifier is a multi-layer perceptron which takes features from

the feature extractor as input and predicts a class as output.

This tells us what is in each crop (including confidence),

and is already sufficient to produce coarse bounding boxes.

However, these boxes are refined further by training a class-

specific regression head which outputs bounding box di-

mensions from image features.

Girshick et al. [7] proposed a different strategy called

R-CNN (regions with CNN features). They use an existing

39

algorithm (e.g. Selective Search [37] or EdgeBoxes [50]) to

produce region proposals, and warp the region of the im-

age described by each proposal to a fixed size. The warped

image is run through a CNN, the output features of which

are used to prune the proposed regions and generate final

predictions. There now exist more efficient works based on

R-CNN which improve evaluation time [6, 27].

Szegedy et al. [34] proposed a segmentation-style ap-

proach to object detection. Rather than dealing with region

proposals or output coordinates, the network takes the en-

tire image as input and produces a lower resolution “mask”

depicting filled-in bounding boxes at the output. The results

reported in the paper are considerably worse than R-CNN,

but we note that this system is a more natural fit for local-

ization than detection due to complications introduced by

overlapping bounding boxes.

Tracking There has been a lot of research in the area of

object tracking. In this section we will focus on CNN based

solutions [39, 21, 10, 20, 41, 40, 23]. They all take the ap-

proach of tracking-by-detection, where a binary classifier is

applied to positive and negative samples from each frame.

Typically, the object bounding box of just the first frame is

provided and the CNN models learnt in an online manner.

All methods need to somehow deal with the small number

of labeled training samples. [41] pretrains the network us-

ing an autoencoder, [39, 10, 40, 23] uses CNNs pretrained

on the large ImageNet dataset and [21, 20] uses special loss

functions and sampling techniques to cope with the small

number of training samples. In contrast to most existing

work, our solution first finds location candidates for each

frame and then applies global constraints to create the mo-

tion trajectory, which is used to provide smoothly tracked

output that aids the next stage of the system.

3. Overview

At a high level, our dive detection and classification sys-

tem consists of three distinct stages, as shown in Figure

1. Each stage uses a convolutional neural network at its

core. Firstly, we extract individual video clips of dives from

continuous video footage. Secondly, we localize the diver

within each frame of the clip to produce a tracking shot of

the dive, which allows us to improve the ratio of pixels in

the clip which are useful for classification. Thirdly, we use

the tracked clip to predict the dive code using a classifica-

tion network.

The three stages of the system are linked by dependen-

cies on preceding stages. There are a few places where these

dependencies led to different design decisions from consid-

ering each stage in isolation. For instance, during spatial

object localization we fit the motion trajectory by apply-

ing global constraints, and crop the images using a fixed-

P
r
o
b

a
b

il
it

y

1 2 3

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Threshold

?

(a) Single probability signal

1 2 3

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
r
o
b

a
b

il
it

y

(b) Three probability signals

Pr(mid)

Pr(start)

Pr(end)

Transition

period

Figure 2: (a) It’s difficult to tell precisely when a dive starts

and ends from the middle event probability only due to the

transition periods, (b) whereas the start and end probabili-

ties give more obvious time markers.

size box to keep the scale consistent between frames. This

smooth tracking increases the accuracy of the classifier.

4. Temporal action localization

The first stage of the system involves extracting action

clips from continuous footage, a task known as temporal

action localization. Our aim is to predict the temporal ex-

tent of each dive as accurately as possible in order to crop

the extracted clip tightly, thus maximizing the number of

frames which are relevant for classification. Hence our net-

work needs to be able to indicate the start and end times

of dives in a dynamic way. This differs from the existing

temporal action localization work with CNNs, which slide

windows with one of several predetermined lengths through

the video [42, 30].

We explicitly identify three event states in the video

footage: a diver leaving a platform (start), a diver enter-

ing the water (end), and any time during which the diver

is airborne (mid). Our temporal action localization neural

network (TALNN) accepts 21 frames of video as input, and

outputs probabilities for the center frame containing each

of these events. These probabilities are predicted as inde-

pendent values (i.e. they are not part of a single softmax),

which allows the network to output high probabilities for

two events at once (e.g. start and middle). The network itself

is built from volumetric convolutional layers, with one head

per probability signal. Table 1a specifies the architecture in

detail. Each convolutional layer in the body is followed by

batch normalization and a ReLU non-linearity.

Let xt be the 21-frame window centered at time t. We

now define the time varying probability signals fM (t) as in

Equation 1, where M ∈ {start,mid, end}.

fM (t) = Pr(M |xt) (1)

At first it may seem unusual that we are considering the

start and end events at all, since the boundaries of the middle

40

22 23 24 25 26 27 28 29 30 31

t (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

f M
(t

)

mid

start

end

(a) Raw probability signals

22 23 24 25 26 27 28 29 30 31

t (seconds)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

g
M
(t

)

mid

start

end

(b) Smoothed probability signals

Figure 3: Raw and smoothed probability signals for a sec-

tion of video footage containing three dives.

event should be sufficient to determine when a dive starts

and ends. Figure 2a shows the problem with that approach.

Namely we would need to select some threshold (e.g. 0.5)

as to when the start and end boundaries are defined. In con-

trast, Figure 2b shows that using all three events (start, mid-

dle, and end) makes finding the start and end of the dive

less ambiguous. Note that we could theoretically remove

fmid(t) altogether, but we opt to keep it as a way of reduc-

ing the likelihood of false positives.

After training the TALNN to identify the different types

of events, fM (t) is obtained by sliding a 21-frame window

through the video and evaluating the network. Figure 3a

shows that although the output provides a strong indication

of when dives occur, it is not perfectly smooth.

Smoothing To make the peaks in the probability signals

more pronounced we process them further into smoothed

probability signals, gM (t) (Figure 3b). This makes the fi-

nal dive extraction step more robust. A common way of

smoothing signals is to apply a window function, as in

Equation 2.

gM (t) =

´

∞

−∞
fM (τ)w(τ − t+ T/2)dτ
´

∞

−∞
w(τ)dτ

(2)

We use the Hann window function (Equation 3) for

smoothing, which gives us the formula for calculating

gM (t) described in Equation 4.

w(t) =

{

sin2
(

πt
T

)

if 0 ≤ t ≤ T

0 otherwise
(3)

Body Head

conv3-32, strided conv1-1

conv3-32 avgpool

conv3-64, strided sigmoid

conv3-64

conv3-128, strided

conv3-128

conv3-256, strided

conv3-256

(a) Temporal localization

Kernel Dilation Maps

3x3x3 1x1x1 2

3x3x3 1x1x1 2

3x3x3 2x2x2 4

3x3x3 4x4x4 4

3x3x3 8x8x8 4/8

3x3x3 1x16x16 8/16

3x3x3 1x1x1 8/16

1x1x1 1x1x1 1/3

(b) Spatial localization context net

Table 1: CNN localization architectures.

gM (t) =
2

T

t+T/2
ˆ

t−T/2

fM (τ) sin2
(

π(τ − t)

T
+

π

2

)

dτ (4)

Extraction Given the three smoothed probability signals,

we can apply a simple algorithm to extract concrete dive

intervals. Firstly, identify candidate dives by locating peaks

in gmid(t). Secondly, perform a limited scan forwards and

backwards through time (we use 1 second) to locate the

dive’s start and end from peaks in their respective proba-

bility signals. If there are no strong nearby peaks in the start

and end probability signals, discard the dive candidate.

5. Spatial localization

The aim of the spatial localization stage is to produce a

trajectory consisting of the diver centroid in each frame of

the input clip. Given a list of centroids we can then take a

fixed size crop from each frame to produce a tracking clip,

which will supply the classifier with fixed size input of a

consistent scale that excludes most of the background.

We take a tracking-by-detection approach to spatial lo-

calization, which is separated into two steps. The first step

is to find object location candidates which indicate potential

locations for the diver in each frame. The second step is to

take these candidate locations and apply global constraints

to construct a motion trajectory.

5.1. Object location candidates

Here we compare three possible solutions to the object

location candidate proposal step which we refer to as full

regression, partial regression, and segmentation.

Full regression Perhaps the most straightforward ap-

proach to spatial localization is to take a complete video clip

as input, and attempt to train a network which outputs the

object location coordinates (lx, ly) directly for each frame.

We call this approach “full regression”. One advantage of

41

(a) Input (b) Target (c) Output

Figure 4: Using a “hot-spot” for localization via segmenta-

tion. Diver location is marked on input for reference only.

full regression is that it gives a single location per frame,

which removes the need for a second step to construct the

motion trajectory. In practice we found full regression to

yield very poor accuracy of predicted locations, with a high

amount of location “jitter” between neighboring frames.

Partial regression An alternative to full regression is to

only consider a small crop of the input at a time (an “input

patch”), and train a network to predict whether the object is

contained in the patch. The network is also trained to output

its location relative to the input patch’s frame of reference,

though patches which do not contain the object exclude the

location from loss calculations. This is an approach used

successfully in prominent object detection systems includ-

ing OverFeat [29] and Fast R-CNN [6].

The network used in this paper for partial regression is a

stack of two context networks [45] followed by an average

pooling layer. Table 1b specifies our configuration for the

context networks. The use of dilated convolutions improves

the scale invariance of the network, which helps with the

fact that divers are at different distances from the camera.

Furthermore, we were able to construct the network with

very few feature maps, resulting in a compact model.

An important aspect of our implementation of partial

regression is that the network is fully convolutional. This

means that at inference time we can provide the entire im-

age as input (rather than patches). The network will then

implicitly slide a window through the image, but do so in

a way which shares common intermediate activations. This

is much more efficient than explicitly making overlapping

crops and feeding them through the network separately. The

overlap of the windows can be adjusted by altering the stride

of the average pooling layer.

Segmentation We observe that going from full to partial

regression resulted in much more accurate location candi-

dates, and that a key difference is that the latter places less

emphasis on regressing coordinates. We decided to take a

step further in this direction and eliminate regression com-

pletely, which is achieved by reframing the problem as a

segmentation problem. Instead of using numeric coordi-

nates as the target, we artificially generate target images for

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

L

ŷ

β = 0.5

y = 0
y = 1

ŷ

β = 0.8

y = 0
y = 1

Figure 5: Side-by-side comparison of standard BCE (left)

and weighted BCE (right).

each frame where the location of the diver is indicated with

a fixed-size “hot-spot” (Figure 4b). The network learns to

output blob-like approximations of these hot-spots (Figure

4c) which can then be converted into centroids using exist-

ing techniques for blob detection [26]. The main advantage

of this approach is that it unburdens the network of trans-

forming spatial activations into numeric coordinates.

The segmentation style of temporal localization has an

imbalance in the output, as the hot-spot occupies a small

portion of the patch. With a traditional loss function like

binary cross-entropy (BCE), this makes the prediction of

all zeros an attractive behavior for the network to learn in

terms of loss minimization. To counteract this, we modified

BCE to weight positive outputs higher, thus penalizing the

network more harshly for ignoring them (Equation 5).

L =
− log(ŷ)y

2(1− β)
+

− log(1− ŷ)(1− y)

2β
(5)

When β = 0.5, weighted BCE is equivalent to the usual

BCE formulation. When β ∈ (0.5, 1), the positive exam-

ple term of the loss function is weighted higher. Figure 5

illustrates how weighted BCE imposes a greater loss for

misclassified positive examples than negative ones when

β > 0.5. We found β = 0.8 to work well in practice.

As with partial regression, we train the segmentation net-

work on input patches. The network architecture is simi-

lar, the main difference being that the average pooling layer

is removed and second context network adjusted such that

there is 1 output per pixel.

5.2. Global constraints

Neither the partial regression nor the segmentation ap-

proach is able to produce a proper motion trajectory alone,

as there can be many (or zero) locations output for each

frame. We get around this by using a second step which ap-

plies global constraints to refine the location candidates and

produce a motion trajectory. Ultimately this produces one

location per frame to center the crop on when constructing

a tracking clip. During this step bad location candidates are

rejected and missing locations are interpolated.

42

Algorithm 1 Creating a motion trajectory model.

function CREATEMODEL(ts[], xs[], ys[])

a0, a1 ← LinearRegression(ts, xs)
b0, b1, b2 ← QuadraticRegression(xs, ys)
function MODEL(t)

x← a0 + a1t

y ← b0 + b1x+ b2x
2

return x, y

return Model

Frames

Handstand?
Rotation type
somersaults
twists
Pose type

Head

Body

Figure 6: High-level view of the classifier architecture with

a head for each part of the dive code.

The appropriate constraints to apply when constructing

a motion trajectory will depend on the problem. For diving,

we have the ability to apply very strong constraints derived

from basic kinematic formulae. In fact, we can go so far as

to specify a model for the trajectory which has only five pa-

rameters – two for a linear mapping from time to horizontal

location, and three for a quadratic mapping from horizon-

tal location to vertical location. Algorithm 1 describes how

the model is constructed. Once we have a known model we

can use the RANSAC [5] algorithm to find the instance of

the model which best fits the location candidates. RANSAC

is an iterative algorithm which fits the data by repeatedly

creating model instances for random subsets of points and

selecting whichever one fits the complete set of points best.

The main benefit of using RANSAC is that it is very ro-

bust to contamination from outliers, and is therefore able

to ignore bad location candidates. In practice we used the

improved MSAC [35] variant of RANSAC which generally

fits the model in fewer iterations.

For less tightly constrained problems, an alternative

method for constructing the motion trajectory must be em-

ployed. Although we did not explore this space ourselves,

one approach would be to use local feature descriptors to

track candidate locations through time.

6. Classification

Classifying dives involves outputting a five-part code,

where each part represents a different property of the dive.

An example of a dive code is 201B, where the 2 means

backwards rotation, the 1 means one half-somersault, the B

means pike position, and the overall code implies that there

are no twists and no handstand start. We could try to classify

the entire code using a single output representation, which

equates to a 1-in-k classification problem where k is the

number of combinations of all properties. This would re-

C3D C3D (alt.) Dilated

Body

conv3-64 conv3-32, BN conv3-32, BN

1x2x2 maxpool 1x2x2 maxpool 1x2x2 maxpool

conv3-128 conv3-64, BN conv3-64, BN

2x2x2 maxpool 2x2x2 maxpool 2x2x2 maxpool

conv3-256 (×2) conv3-128, BN (×2) conv3-128, BN (×2)

2x2x2 maxpool 2x2x2 maxpool 2x2x2 maxpool

conv3-512 (×2) conv3-256, BN (×2) conv3-256, BN (×2)

2x2x2 maxpool 2x2x2 maxpool -

conv3-512 (×2) conv3-256, BN (×2) conv3-d2-256, BN (×2)

2x2x2 maxpool 2x2x2 maxpool -

- dropout-0.5 dropout-0.5

Head

fc-4096 fc-2048, BN conv1-12

dropout-0.5 - context net

fc-4096 fc-2048, BN 2x2x2 maxpool

dropout-0.5 - conv3-12, BN

fc-output fc-output conv3-output, avgpool

Table 2: Architectural differences between vanilla C3D and

our variations used for classification.

sult in thousands of possible output classes, most of which

would have just a few or zero training examples.

Instead, we propose using multi-task learning consisting

of a single network with 5 heads, each outputting a separate

property (Figure 6). One way to reason about the architec-

ture is that the network body learns to extract features from

the input which are relevant for predicting one or more parts

of the dive code. The heads take these features and use them

to predict a particular part of the dive code. Our hypothesis

is that some intermediate features can be shared between

heads, making it easier for the network to rule out unlikely

dive code combinations. We use a deep convolutional net-

work for the model body, and multi-layer perceptrons for

the heads. The internal structure of each head is identical,

except for the number of outputs.

The classification network takes tracked video clips as

input. Since the clips are now cropped around the diver, we

can use a higher resolution than the previous networks un-

der the same memory constraints. To keep the input size

constant we always temporally downsample the clip to a

length of 16 frames, which we verified is sufficient to solve

the classification task as a human annotator.

In this paper we consider three classifier architectures

(Table 2), all of which are based on the “C3D” volumet-

ric convolutional network proposed by Tran et al. [36].

The first is a direct implementation of the C3D architecture

which follows the original work closely. All layers up until

and excluding the first fully connected layer form the model

body, and the rest form a head. The second is an altered

43

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IoU threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
 s

c
o
r
e

All prob. signals

Mid. prob. signal only

Segment-based

Figure 7: Temporal action localization results as the IoU

threshold was varied.

version of C3D which makes room for batch normalization

(BN) [12] by halving the number of features throughout the

network. The third architecture introduces dilated convolu-

tions for scale invariance [45]. Pooling in the latter half of

the body is removed, and the last two convolutional layers

given a dilation of 2 (conv3-d2) to maintain receptive field

size. A context network [45] with layers 5 and 6 removed is

introduced into the head for multi-scale aggregation.

7. Data set

The data set consists of 25 hours of video footage con-

taining 4716 non-overlapping sport dives. The video was

recorded over 10 days of athlete training at the Brisbane

Aquatic Centre. The scene is observed from the perspective

of a fixed camera which has 9 platforms and springboards at

varying heights and distances in view. Each dive is labeled

with a start and end time, along with a code representing

the type of dive performed. 20% of the dives are also la-

beled with a quadratic curve describing the location of the

athlete in each frame of the dive. An additional day’s worth

of footage containing 612 dives is kept aside as the test set.

The dive code encodes 5 distinct properties of the dive:

rotation type, pose type, number of somersaults, number

of twists, and whether the dive began with a handstand.

These properties are not all represented uniformly in the

data set. For instance, dives involving twists are uncommon,

and dives starting with a handstand are even rarer.

8. Experiments

8.1. Temporal action localization

As a point of comparison we implement a segment-based

temporal action localization method based on the work of

Shou et al. [30]. We use a single C3D-based network to di-

rectly predict how well a particular segment matches any

sort of dive. We incorporate batch normalization into the

network in the same way as the classification network, and

do not perform any pretraining. Although we did not explic-

itly gather time metrics, we will note that performing infer-

ence on multiple segment lengths did make the segment-

Precision Recall F1 score

Segment-based [30] 0.7671 0.7157 0.7405

Ours 0.8825 0.9829 0.9296

Table 3: Action clip extraction results.

based system very slow to evaluate.

With the segment-based approach established as a base-

line, we consider two of our own approaches to temporal

action localization as discussed in Section 4. The first ap-

proach uses only a single probability signal indicating the

middle of a dive (Figure 2a), with the transition threshold

set to 0.5. The second approach uses three probability sig-

nals for the start, middle, and end (Figure 2b). Each net-

work was trained to convergence using ADADELTA [48].

A predicted dive interval is deemed “correct” if it matches

a labeled dive interval with an IoU (intersection over union)

above a certain threshold. A “false positive” is a predicted

interval without a corresponding labeled dive, and a “false

negative” is a labeled dive not predicted by the system.

Figure 7 shows a plot of the F1 score for the different

approaches as the IoU threshold was varied. Both of our

approaches (all probability signals and middle probability

signal only) perform much better than the segment-based

approach, which is unable to reach an F1 score of 0.8 for

any IoU threshold. Although the performance of our own

two approaches are similar, we advocate using all three sig-

nals since doing so shows slightly better results, and in other

situations it may be more difficult to threshold the middle

probability signal.

Table 3 shows the precision, accuracy, and F1 score for

our three-signal approach and the segment-based approach,

with the IoU threshold set to 0.5. At first it seems as if the

precision of the TALNN is much worse than its recall. How-

ever, upon examining the false positives it was found that

the vast majority did in fact contain dives that were simply

not labeled in the data set. During our manual inspection

of the false positives we did not find a single example that

wasn’t a labeling mistake. On the other hand, dives which

were missed by the TALNN were mostly legitimate over-

sights, with dives from the furthest springboard being the

most common culprit.

The results of the TALNN stage are very convincing,

and provide a solid starting point for the rest of the system.

The segment-based approach does not achieve performance

metrics which are as strong. We believe that the main reason

for this is the fixed segment lengths – any dive which does

not perfectly match a segment length will inevitably incur

error from the difference.

8.2. Spatial localization

Each network was trained to convergence using

ADADELTA [48]. The hot-spot to location conversion for

44

0 2 4 6 8 10 12 14 16 18 20

Mean distance to actual diver location

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

D
e
t
e
c
t
io

n
 r

a
t
e

Segmentation

Full regression

Full regression + RANSAC

Partial regression

Figure 8: Spatial localization network results. Three dis-

tances are marked on a video frame for reference.

Handstand?
Rotation type

somersaults
twists

Pose type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
r
a
c
y

Baseline

C3D

C3D (alt.)

Dilated

Figure 9: Classifier network accuracy.

the segmentation approach was handled using OpenCV’s

blob detector [26], which leverages the contour finding al-

gorithms proposed by Suzuki et al. [33].

Figure 8 shows, for a range of distance error thresholds,

the percentage of dive clips that had a mean error distance

below that threshold. Closer to the top-left is better, as this

indicates high detection rate within a strict distance limit.

The results show just how poorly the full regression ap-

proach performs, even when global constraints are applied

using RANSAC. Upon inspecting individual examples, we

found that the full regression network often seemed to ig-

nore subtleties of the current dive instance in favor of some

learnt statistical average across the training set location la-

bels. The margin between the partial regression approach

and our novel segmentation approach is less pronounced,

but shows that segmentation does indeed work best.

In practice we found that partial regression resulted in

many more candidate locations than segmentation. This was

not an issue for RANSAC due to its speed and robustness

to contamination, but we note that other techniques for con-

structing motion trajectories may benefit heavily from the

reduced number of candidates produced by segmentation.

8.3. Classification

Since the data set does not contain an equal number of

examples for each type of dive, we include a baseline to help

visualize this skew. The baseline shows the results of always

outputting the statistical mode for each part of the dive code.

Gains in accuracy above this baseline are indicative of the

system’s ability to discriminate between classes.

Table 2 specified the architecture of each classifier

Isolated Combined

Handstand? 100.00% 99.67%

Rotation type 89.81% 77.54%

somersaults 86.89% 66.72%

twists 95.15% 93.51%

Pose type 90.78% 82.36%

Table 4: Combined classification accuracy.

model. The networks make heavy use of volumetric convo-

lutions with 3×3×3 kernels and use ReLU non-linearities.

Regularization is provided by dropout [9] and, for two of

the architectures, batch normalization. Each network was

trained until convergence using stochastic gradient descent

with a momentum of 0.9 and an initial learning rate of 0.006

(0.003 for vanilla C3D), which is halved every 30 epochs.

Figure 9 shows accuracy results for the classification net-

works when isolated from the other stages (i.e. using ground

truth labels for diver locations). Despite halving the number

of feature maps in order to fit batch normalization, we ob-

serve that doing so still leads to a marked improvement in

accuracy. We suspect that the increased regularization pro-

vided by batch normalization is contributing a lot to the per-

formance of the network, as our data set is relatively small

in comparison to existing large-scale public image data sets.

Adding dilated convolutions to the altered C3D network

resulted in a boost to classification accuracy for all parts

of the dive code except the twist count. We theorize that the

dilations increase the network’s ability to recognize features

irrespective of the distance of the diver from the camera.

8.3.1 Combined classification

In order to measure the impact that errors introduced in the

temporal and spatial localization stages have on classifica-

tion, we conducted a combined classification experiment

using three-signal temporal action localization, localization

by segmentation, and classification with dilations. Table 4

shows that although error from the earlier stages does have

a negative impact on classification accuracy, the complete

system is still viable.

9. Conclusions

There are challenges involved with composing multi-

ple stages of deep learning computer vision processing to-

gether. Using dive classification as a case study, we have

demonstrated that such a composite system can be success-

fully constructed for sports action monitoring of continuous

video. Novel techniques for extracting action clips and lo-

calizing an object of interest were presented with strong re-

sults. As future work we would like to modify our system to

assign dive scores like a judge, which is a difficult problem

due to the subtle and subjective nature of the task.

45

References

[1] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded

Up Robust Features. In A. Leonardis, H. Bischof,

and A. Pinz, editors, Computer Vision – ECCV 2006,

number 3951 in Lecture Notes in Computer Sci-

ence, pages 404–417. Springer Berlin Heidelberg,

May 2006. DOI: 10.1007/11744023_32.

[2] D. Comaniciu, V. Ramesh, and P. Meer. Real-

time tracking of non-rigid objects using mean shift.

In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2000. Proceedings, volume 2, pages

142–149 vol.2, 2000.

[3] N. Dalal and B. Triggs. Histograms of oriented gra-

dients for human detection. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition (CVPR’05), volume 1, pages 886–893

vol. 1, June 2005.

[4] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for

visual recognition and description. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2625–2634, 2015.

[5] M. A. Fischler and R. C. Bolles. Random Sample

Consensus: A Paradigm for Model Fitting with Ap-

plications to Image Analysis and Automated Cartog-

raphy. Commun. ACM, 24(6):381–395, June 1981.

[6] R. Girshick. Fast R-CNN. pages 1440–1448, 2015.

[7] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich

Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation. pages 580–587, 2014.

[8] G. Gkioxari and J. Malik. Finding action tubes. In

Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 759–768, 2015.

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky,

I. Sutskever, and R. R. Salakhutdinov. Improv-

ing neural networks by preventing co-adaptation of

feature detectors. arXiv:1207.0580 [cs], July 2012.

arXiv: 1207.0580.

[10] S. Hong, T. You, S. Kwak, and B. Han. On-

line tracking by learning discriminative saliency map

with convolutional neural network. arXiv preprint

arXiv:1502.06796, 2015.

[11] E. P. Ijjina and K. M. Chalavadi. Human action recog-

nition using genetic algorithms and convolutional neu-

ral networks. Pattern Recognition, 59:199–212, Nov.

2016.

[12] S. Ioffe and C. Szegedy. Batch Normalization: Accel-

erating Deep Network Training by Reducing Internal

Covariate Shift. In Proceedings of The 32nd Interna-

tional Conference on Machine Learning, pages 448–

456, 2015.

[13] M. Jain, J. Van Gemert, H. Jégou, P. Bouthemy, and

C. G. Snoek. Action localization with tubelets from

motion. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 740–

747, 2014.

[14] S. Ji, W. Xu, M. Yang, and K. Yu. 3d Convolu-

tional Neural Networks for Human Action Recogni-

tion. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 35(1):221–231, Jan. 2013.

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Suk-

thankar, and L. Fei-Fei. Large-Scale Video Classifi-

cation with Convolutional Neural Networks. In 2014

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1725–1732, June 2014.

[16] A. Klaser, M. Marszałek, and C. Schmid. A Spatio-

Temporal Descriptor Based on 3d-Gradients. pages

275:1–10. British Machine Vision Association, Sept.

2008.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet classification with deep convolutional neural

networks. In Advances in Neural Information Process-

ing Systems, page 2012.

[18] K.-T. Lai, X. Y. Felix, M.-S. Chen, and S.-F. Chang.

Video event detection by inferring temporal instance

labels. In 2014 IEEE Conference on Computer Vision

and Pattern Recognition, pages 2251–2258. IEEE,

2014.

[19] K.-T. Lai, D. Liu, M.-S. Chen, and S.-F. Chang. Rec-

ognizing complex events in videos by learning key

static-dynamic evidences. In European Conference on

Computer Vision, pages 675–688. Springer, 2014.

[20] H. Li, Y. Li, and F. Porikli. Robust online visual

tracking with a single convolutional neural network.

In Asian Conference on Computer Vision, pages 194–

209. Springer, 2014.

[21] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning dis-

criminative feature representations online for robust

visual tracking. IEEE Transactions on Image Process-

ing, 25(4):1834–1848, 2016.

[22] D. G. Lowe. Distinctive Image Features from Scale-

Invariant Keypoints. International Journal of Com-

puter Vision, 60(2):91–110.

[23] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hier-

archical convolutional features for visual tracking. In

Proceedings of the IEEE International Conference on

Computer Vision, pages 3074–3082, 2015.

46

[24] L. Mihaylova, P. Brasnett, N. Canagarajah, and

D. Bull. Object Tracking by Particle Filtering Tech-

niques in Video Sequences.

[25] D. Oneata, J. Verbeek, and C. Schmid. Action and

event recognition with fisher vectors on a compact fea-

ture set. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1817–1824,

2013.

[26] OpenCV. cv::SimpleBlobDetector class

reference. Available: http://docs.

opencv.org/3.1.0/d0/d7a/classcv_

1_1SimpleBlobDetector.html.

[27] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-

CNN: Towards Real-Time Object Detection with Re-

gion Proposal Networks. arXiv:1506.01497 [cs], June

2015. arXiv: 1506.01497.

[28] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional

Sift Descriptor and Its Application to Action Recog-

nition. In Proceedings of the 15th ACM International

Conference on Multimedia, MM ’07, pages 357–360,

New York, NY, USA, 2007. ACM.

[29] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fer-

gus, and Y. LeCun. OverFeat: Integrated Recogni-

tion, Localization and Detection using Convolutional

Networks. arXiv:1312.6229 [cs], Dec. 2013. arXiv:

1312.6229.

[30] Z. Shou, D. Wang, and S.-F. Chang. Temporal Action

Localization in Untrimmed Videos via Multi-stage

CNNs. arXiv:1601.02129 [cs], Jan. 2016. arXiv:

1601.02129.

[31] K. Simonyan and A. Zisserman. Two-stream convo-

lutional networks for action recognition in videos. In

Advances in Neural Information Processing Systems,

pages 568–576, 2014.

[32] C. Sun, S. Shetty, R. Sukthankar, and R. Nevatia. Tem-

poral localization of fine-grained actions in videos by

domain transfer from web images. In Proceedings of

the 23rd ACM international conference on Multime-

dia, pages 371–380. ACM, 2015.

[33] S. Suzuki and K. be. Topological structural analy-

sis of digitized binary images by border following.

Computer Vision, Graphics, and Image Processing,

30(1):32–46, Apr. 1985.

[34] C. Szegedy, A. Toshev, and D. Erhan. Deep Neural

Networks for Object Detection. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q.

Weinberger, editors, Advances in Neural Information

Processing Systems 26, pages 2553–2561. Curran As-

sociates, Inc., 2013.

[35] P. Torr and A. Zisserman. MLESAC: A New Robust

Estimator with Application to Estimating Image Ge-

ometry. Computer Vision and Image Understanding,

78(1):138–156, Apr. 2000.

[36] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and

M. Paluri. Learning Spatiotemporal Features with 3d

Convolutional Networks. arXiv:1412.0767 [cs], Dec.

2014. arXiv: 1412.0767.

[37] J. R. R. Uijlings, K. E. A. v. d. Sande, T. Gevers,

and A. W. M. Smeulders. Selective Search for Ob-

ject Recognition. Int J Comput Vis, 104(2):154–171,

Sept. 2013.

[38] H. Wang, A. Kläser, C. Schmid, and C. L. Liu. Action

recognition by dense trajectories. In 2011 IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR), pages 3169–3176, June 2011.

[39] L. Wang, W. Ouyang, X. Wang, and H. Lu. Vi-

sual tracking with fully convolutional networks. In

Proceedings of the IEEE International Conference on

Computer Vision, pages 3119–3127, 2015.

[40] L. Wang, W. Ouyang, X. Wang, and H. Lu. Stct: Se-

quentially training convolutional networks for visual

tracking. CVPR, 2016.

[41] N. Wang and D.-Y. Yeung. Learning a deep compact

image representation for visual tracking. In Advances

in neural information processing systems, pages 809–

817, 2013.

[42] P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Learn-

ing to track for spatio-temporal action localiza-

tion. arXiv:1506.01929 [cs], June 2015. arXiv:

1506.01929.

[43] G. Willems, T. Tuytelaars, and L. V. Gool. An Effi-

cient Dense and Scale-Invariant Spatio-Temporal In-

terest Point Detector. In D. Forsyth, P. Torr, and

A. Zisserman, editors, Computer Vision – ECCV 2008,

number 5303 in Lecture Notes in Computer Sci-

ence, pages 650–663. Springer Berlin Heidelberg,

Oct. 2008. DOI: 10.1007/978-3-540-88688-4_48.

[44] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei.

End-to-end learning of action detection from frame

glimpses in videos. arXiv preprint arXiv:1511.06984,

2015.

[45] F. Yu and V. Koltun. Multi-Scale Context Aggrega-

tion by Dilated Convolutions. arXiv:1511.07122 [cs],

Nov. 2015. arXiv: 1511.07122.

[46] Y. Yuan, L. Qi, and X. Lu. Action recognition by joint

learning. Image and Vision Computing, 55, Part 2:77–

85, Nov. 2016.

[47] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan,

O. Vinyals, R. Monga, and G. Toderici. Beyond short

snippets: Deep networks for video classification. In

Proceedings of the IEEE Conference on Computer

47

http://docs.opencv.org/3.1.0/d0/d7a/classcv_1_1SimpleBlobDetector.html
http://docs.opencv.org/3.1.0/d0/d7a/classcv_1_1SimpleBlobDetector.html
http://docs.opencv.org/3.1.0/d0/d7a/classcv_1_1SimpleBlobDetector.html

Vision and Pattern Recognition, pages 4694–4702,

2015.

[48] M. D. Zeiler. ADADELTA: An Adaptive Learn-

ing Rate Method. arXiv:1212.5701 [cs], Dec. 2012.

arXiv: 1212.5701.

[49] K. Zhang, Q. Liu, Y. Wu, and M.-H. Yang.

Robust Visual Tracking via Convolutional Net-

works. arXiv:1501.04505 [cs], Jan. 2015. arXiv:

1501.04505.

[50] C. L. Zitnick and P. Dollár. Edge boxes: Locating

object proposals from edges. In D. Fleet, T. Pa-

jdla, B. Schiele, and T. Tuytelaars, editors, Computer

Vision – ECCV 2014: 13th European Conference,

Zurich, Switzerland, September 6-12, 2014, Proceed-

ings, Part V, pages 391–405. Springer International

Publishing, Cham, 2014.

48

