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Abstract

State-of-the-art convolutional neural networks are enor-

mously costly in both compute and memory, demanding

massively parallel GPUs for execution. Such networks

strain the computational capabilities and energy available

to embedded and mobile processing platforms, restricting

their use in many important applications. In this paper,

we push the boundaries of hardware-effective CNN design

by proposing BCNN with Separable Filters (BCNNw/SF),

which applies Singular Value Decomposition (SVD) on

BCNN kernels to further reduce computational and stor-

age complexity. To enable its implementation, we provide a

closed form of the gradient over SVD to calculate the exact

gradient with respect to every binarized weight in backward

propagation. We verify BCNNw/SF on the MNIST, CIFAR-

10, and SVHN datasets, and implement an accelerator for

CIFAR-10 on FPGA hardware. Our BCNNw/SF acceler-

ator realizes memory savings of 17% and execution time

reduction of 31.3% compared to BCNN with only minor ac-

curacy sacrifices.

1. Introduction

Albeit the community of neural networks has been pros-

pering for decades, state-of-the-art CNNs still demand

significant computing resources (i.e., high-performance

GPUs), and are eminently unsuited for resource and power-

limited embedded hardware or Internet-of-Things (IoT)

platforms [13]. Reasons for high resource needs include the

complexity of connections among layers, the sheer number

of fixed-point multiplication and accumulation (MAC) op-

erations, and the storage requirements for weights and bi-

ases. Even if network training is done off-line, only a few

(a)

(b)

(c)

Figure 1. Comparison of filters: (a) original floating point filter;

(b) same filter binarized; (c) approximated separable binary filter.

high-end IoT devices can realistically carry out the forward

propagation of even a simple CNN for image classification.

Binarized convolutional neural networks (BCNNs) [6,

3, 18, 9, 13] have been proposed as a more hardware-

friendly model with extremely degenerated precision of

weights and activations. BCNN replaces floating or fixed-

point multiplies with XNOR operations (which can be im-

plemented extremely efficiently on ASIC or FPGA devices)

and achieved near state-of-the art accuracy on a number of

real-world image datasets at time of publication. Unfortu-

nately, this hardware efficiency is offset by the fact that a

BCNN model is typically tens or hundreds times the size of

a CNN model of equal accuracy. To make BCNNs practical,

an effective way to reduce the model size is required.

In this paper, we introduce Separable Filters (SF) on bi-

narized filters, as shown in Fig. 1(c), to further reduce the
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hardware complexity in two aspects:

• SF reduces the number of possible unique d-by-d fil-

ters from 2d
2

to just 22d−1, enabling the use of a small

look-up table during forward propagation. This di-

rectly results in the
(d−1)2

d2 reduction of memory foot-

print.

• SF replaces each d-by-d 2D convolution with two d-

length 1D convolutions, which reduces the number

of MAC operations by d/2. This translates to either

speedup or the same throughput with fewer resources.

In addition, we propose two methods to train BC-

NNw/SF:

Method 1 - Extended Straight-through Estimator

(eSTE): take the rank-1 approximation for SFs as a process

adding noise into the model and rely on batch normaliza-

tion to regularize the noise. During backward propagation,

we extend the straight-through estimator (STE) to propa-

gate gradient across the decomposition.

Method 2 - Gradient over SVD: go through the analytic

closed form of the gradient over SVD to push the chain rule

in backward propagation to the binarized filters, which is

the filter before SVD.

The rest of the paper is organized as follows: Sec. 2

provides a brief survey of previous works, Sec. 3 presents

the design of BCNNw/SF and some implementation details,

Sec. 4 presents two methods for the training of BCNNw/SF.,

Sec. 5 shows experimental results, Sec. 6 describes the im-

plementation of BCNNw/SF on an FPGA platform, and

Sec. 7 concludes the paper.

2. Related Works

We leverage the lightweight method for training a BCNN

as proposed by Hubara et al. [6, 3], which achieved state-

of-the-art results on datasets such as CIFAR-10 and SVHN.

Two important ideas contributed to the effectiveness of their

BCNN:

Batch normalization with scaling and shifting [7]: A BN

layer regularizes the training process by shifting the mean

to zero, making binarization more discriminative. It also in-

troduces two extra degrees of freedom in every neuron to

further compensate for additive noises.

Larger Model: As with the well-known XOR prob-

lem [15], using a larger network increases the power of the

model by increasing the number of dimensions for projec-

tion and making the decision boundary more complex.

Rastegari et al. proposed XNOR-Net [13], an alternative

BCNN formulation which relies on a multiplicative scal-

ing layer instead batch normalization to regularize the ad-

ditive noise introduced by binarization. The scaling factors

are calculated to minimize the 1-norm error between real-

valued and binary filters. While Hubara’s BCNN did not

perform well with a larger dataset such as ImageNet [4],

obtaining a top-1 error rate of 72.1%, XNOR-Net improves

this error rate to 55.8%.

Rigamonti et al. [14] proposed a rank-1 approximate

method to replace the 2-D convolution in a CNN with two

successive 1-D convolutions. Every filter was approximated

by the outer product of a column vector and a row vec-

tor which were obtained through Singular Value Decom-

position (SVD). The authors proposed two schemes of the

learning of separable filters: (1) retain only the largest sin-

gular value and corresponding vectors to reconstruct a fil-

ter; (2) linearly combine the outer products to lower the

error rate. However, the first scheme sacrificed too much

performance because the the other singular values can be

comparable with the largest one in terms of magnitude. The

second scheme was designed to compensate for loss of per-

formance, but more singular values used to recover a filter

means a lesser benefit from the approximation. Although

learning with separable filters was computationally expen-

sive, the low rank approximation is an important idea to al-

leviate hardware complexity.

Inspired by Rigamonti’s work, more research projects

has been conducted to explore a more economic model,

i.e. networks with smaller memory requirements for the

kernels. Jaderberg et al. [8] proposed a filter compres-

sion method that analyzed the redundancy in a pre-trained

model, decomposed the filters into single-channel separa-

ble filters, and then linearly combined separable filters to

recover original filters. The decomposition was optimized

to minimize the L2 reconstruction error of original filters.

Alvarez et al. [1] presented DecomposeMe that further re-

duced the redundancy by sharing the separated filters in

the same layer. To alleviate the computational conges-

tion of GoogLeNet [22], Szegedy et al. [21, 20] proposed

a multi-channel asymmetric convolutional structure, which

has the same architecture as the second scheme in the work

of Jaderberg et al. [8] but in different purposes: Szegedy

used the asymmetric convolutional structure to avoid the ex-

pensive 2D convolutions and train the filter directly, while

Jaderberg decomposed pre-trained filters to exploit both in-

put and output redundancies. However, both Jaderberg’s

and Alvarez’s methods required a pre-trained model, and

both Jaderberg’s and Szegedy’s multi-channel asymmetric

convolution brought additional channels requiring a larger

memory footprint.

Our proposed method differs from the three methods

above because we maintain the network structure during

training phase, train rank-1 separable filters directly, and

then decompose the rank-1 filters into pairs of vector fil-

ters for hardware implementation. Last but not least, to the

best of our knowledge no existing work provides an analytic

closed form of the gradient of filter-decomposition process

for backward propagation.
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Figure 2. Comparison of the two SVD flows; (a) Flow 1: binarize

the result of SVD on the floating-point filter; (b) Flow 2: directly

decompose the binarized filters.

3. Binarized CNN with Separable Filters

Here we describe the theory of BCNN with Separable

filter in detail. Our main idea is to apply SVD on bina-

rized filters to further reduce the memory requirement and

computation complexity for hardware implementation. We

present the details of forward propagation in this section and

two methods of backward propagation in the next section.

3.1. The Subject of Decomposition

For BCNN, there are two approaches to binary filter de-

composition. Fig. 2 depicts the two choices. If we adopt

flow 1 and apply the rank-1 approximation (the red box)

directly on the real-valued filters, we cannot avoid real-

time decomposition during training because the input fil-

ter has an infinite number of possible combination of pixel

strengths. Therefore, we introduce an extra binarization (the

blue box) on the real-valued filters and apply the rank-1 ap-

proximation on the binarized filters. Then, the number of

possible input filters of rank-1 approximation are limited to

2d
2

, where d is the width or height of a filter. With flow 2,

we can build a look-up table beforehand and avoid real-time

SVD during training.

Naturally, the rank-1 approximation and the extra bina-

rization will limit the size of the basis to recover the original

filters and equivalently introduce more noise into the model,

as shown in Fig. 1 from (b) to (c). Instead of introducing

an additional linear-combination layer to improve the accu-

racy, we leave the task to the two aforementioned reasons

that make BNN work.

3.2. Binarized Separable Filters

Here we provide the detailed steps from binarized filters

to binarized separable filters. The result of SVD on a matrix

(a)

(b)

(c)

Figure 3. (a) a kernel before approximation; (b) pairs of vectors

(u, vT ) in SVD; (c) a kernel after rank-1 approximation in which

every filter is an outer product of u, and v. The white and black

colors stand for +1 and −1, respectively.

A includes three matrices as shown in Eq. 1.

A = UDV T (1)

Similar to real value rank-1 approximation for separable fil-

ter, the binarized separable filters are obtained with an ex-

tra binarization process on the dominate singular vectors as

shown in Eq. 2.

Â = b(U [:, 1])b(V [:, 1]T ), (2)

where U [:, 1] and V [:, 1] stand for the left and right singular

vector corresponding to the largest singular value, respec-

tively, and the function b(.) denotes the binarization and

can be implemented in either a deterministic function or a

stochastic process [6]. Please note the largest singular value

is dropped because all singular values are always positive

and have no effect on binarization.

Fig. 3(a) and (c) illustrates a kernel with three filters be-

fore and after binarized rank-1 approximation. As with [6]

we keep a copy of the real-valued filters during each train-

ing iteration and accumulate the weight gradients on them

since SGD and other convex optimization methods presume

a continuous hypothesis space. This also allows us to train

the kernels as if the model is real-valued without the need

for penalty rules [14] during the backward propagation. For

the test phase, all filters are binarized and rank-1 approxi-

mated to be binarized separable.

In our FPGA implementation, we use the pairs of vec-

tors in Fig. 3(b) to replace 2-D filters and perform separable

convolution, which involves a row-wise 1D convolution fol-

lowed by a column-wise convolution in back-to-back fash-

ion before accumulating across different channels. More

details on the FPGA implementation are presented in Sec. 6.

3.3. Details of the Implementation

As mentioned in sec. 3.1, the benefit of flow 2 is to lever-

age a finite-sized look-up table (LUT) to replace the costly
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SVD computation during the forward propagation of train-

ing phase. Although the training takes place on a highly-

optimized parallel computing machine, the LUT access is

still a potential bottleneck if searching for an entry in the

mapping is not efficient enough.

We build two tables to avoid real-time SVD. The first

table is composed by all binarized separable filters. The

number of entries in the first table can be calculated with

Eq. 3.

K = 22d−1, (3)

where d is the width or height of a filter.

The second table is the mapping relationship between

all possible binary filters to their corresponding binarized

separable filters. We design an estimation function to make

the tables content-addressable. The key to index the first

table can be obtained with Eq. 4.

key = Λ ·A, (4)

where Λ is a vector or a matrix in the same size of A, and all

elements in Λ are the weightings to convert a matrix A into

a number. The simplest choice of Λ is the binary-to-integer

conversion method. We take the first element in A as the

least significant bit (LSB), so the Λ is designed as Eq. 5

Λ =
⇥

20 21 22 . . . 2N
⇤

, (5)

where N is the amount of elements of A, and N = d2.

With this simple hash function and the efficient broadcast-

ing technique in Theano [23], we are able to efficiently ob-

tain the keys for all filters in a convolutional layer.

4. Backward Propagation of Separable Filters

Besides the extra degrees of freedom introduced to BC-

NNw/SF’s forward propagation, there are two more impor-

tant techniques making binarized separable filters work. In

this section, we present two methods utilizing the two tech-

niques for the training of BCNNw/SF.

4.1. Method 1: Extended STE

As shown in Fig. 2(b), during the forward propagation,

all filters must be degraded thrice. Since binarization can

be considered as noise addition into the model and be regu-

larized with batch normalization, the rank-1 approximation,

which is just another process adding extra noise, can be reg-

ularized as well. In details, we extend the straight-through

estimator across the three degradation processes in Fig. 2 to

update the real-valued filters with the rank-1 approximated

filters. Eq. 6 shows the backward propagation of the gra-

dient of rank-1 approximated filter,gbs, to the gradient of

real-valued filter, gr.

gr = gÂ1|r|≤1 (6)

This simple method totally relies on batch normalization to

regularize the noise introduced by two binarization and one

rank-1 approximation.

4.2. Method 2: Gradient over SVD

Whereas binarization is not a continuous function,

Hubara et al. [6] resorted to the STE to update the real-

valued weights with the gradient of loss w.r.t binarized

weights. Howbeit, owing to the continuity of singular value

decomposition, we are allowed to calculate the gradient

w.r.t. the resultant of the first binarization, Wb. More specif-

ically, the rank-1 approximation is differentiable because all

of the three resultant matrices, i.e. U ,D, and V , of SVD in

Eq. 1 are differentiable w.r.t. every element of the original

input matrix, A. From the approximation we adopt for sep-

arable filters as shown in Eq. 2, one can easily obtain the

derivative of Â w.r.t. the elements of the original matrix be-

fore the approximation as Eq. 7, if the STE for binarization

is applied.

∂Â

∂aij
=

∂U [:, 1]

∂aij
b(V [:, 1]T ) + b(U [: 1])

∂V [:, 1]T

∂aij
(7)

Papadopoulo et al. [11] provided the mathematical

closed form of the gradient of the three resultant matrices,

as shown in Eq. 8, and 9.

∂U

∂aij
= UΩij

U (8)

∂V

∂aij
= −V Ωij

V , (9)

where Ωi
U j and Ωi

V j are anti-symmetric matrices with ze-

ros on their diagonals, and all off-diagonal elements can be

obtained by Eq. 10 and 11.

Ωij
Ukl

=
dluikvjl + dkuilvjk

d2l − d2k
(10)

Ωij
Vkl

=
dkuikvjl + dluilvjk

d2k − d2l
(11)

Eq. 12 shows the general form of the differential equa-

tion.

∂Â

∂aij
=

2

6

6

6

6

4

∂â11

∂aij

∂â12

∂aij
. . . ∂â1N

∂aij

∂â21

∂aij

∂â22

∂aij
. . . ∂â2N

∂aij

...
...

. . .
...

∂âM1

∂aij

∂âM2

∂aij
. . . ∂ÂMN

∂aij

3

7

7

7

7

5

(12)

∂âkl
∂aij

= b(Uk1)
N
X

n=2

VknΩ
ij
V1n

− b(Vl1)
N
X

n=2

UlnΩ
ij
U1n

(13)

From Papadopoulo’s equations 8 to 11, we can derive every

element in Eq. 12 as shown in Eq. 13 and see there exist
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cross-terms between elements. The gradient of a SVD re-

sultant matrix w.r.t. one element in the original input matrix

is also a matrix of the same dimension, MbyN , i.e. a single

element’s change in the input matrix can affect all other el-

ements in the resultant of SVD. The intuition behind is that

the rank-1 approximation is a matrix-wise filter-level map-

ping relationship rather than an element-wise operation, and

multiple elements contribute to the mapping result of a fil-

ter.

To recap Eq. 12 with the chain rule calculation of back-

ward propagation, we follow the similar fashion how higher

layer neurons collect errors from the lower layer. Eq. 14

shows the inner product for collecting error from lower

layer and propagate the error to every element in binarized

filters A. For method 2, we also build a table of the deriva-

tives together with the binarized rank-1 approximation to

avoid real-time calculation of Eq. 12.

∂loss

∂aij
≡

dloss

dÂ
·
∂Â

∂aij
(14)

5. Experiments

We conduct experiments on the Theano [23] based on

the Courbariaux’s framework [2], using 2 GPUs: NVIDIA

GeForce GTX Titan X and GTX 970 to finish the train-

ing/testing process. In most of the experiments, we obtain

near state-of-the-art results using BCNNw/SF.

In this section, we describe the network structures we

use, and list the classification result on 3 datasets. We com-

pare our result with relevant works, and then make analysis

on different perspectives, including binarized separable fil-

ter and learning ripples.

5.1. Datasets and Models

We evaluate our methods on three benchmark image

classification datasets: MNIST, CIFAR-10 and SVHN.

MNIST is a dataset for 28x28 gray-scale handwritten digits,

which has a training set of 60K examples, and a testing set

of 10K examples. SVHN is a real-world image dataset for

street view house numbers, cropped to 32x32 color images,

with 604K digits for training, 26K digits for testing. Both of

these datasets classify digits ranging from 0 to 9. CIFAR-10

dataset consists of 60K 32x32 color images in 10 mutually

exclusive classes (airplane, automobile, bird, cat, deer, dog,

frog, horse, ship and truck), with 6, 000 images per class.

There are 50K training images and 10K test images.

The convolutional neural networks we use has almost the

same architecture as Hubara et al. [6]’s except for some

small modification. This architecture is inspired from the

VGG [17] network. It contains 3 fully-connected layers

and 6 convolutional layers, in which the kernels for con-

volutional layers is 3 x 3. For detailed network structure

parameters, see Table 1.

Name MNIST(CNN) CIFAR-10 SVHN

Input 1x28 3x32x32 3x32x32

Conv-1 64x3x3 128x3x3 64x3x3

Conv-2 64x3x3 128x3x3 64x3x3

Pooling 2 x 2 Max Pooling

Conv-3 128x3x3 256x3x3 128x3x3

Conv-4 128x3x3 256x3x3 128x3x3

Pooling 2 x 2 Max Pooling

Conv-5 256x3x3 512x3x3 256x3x3

Conv-6 256x3x3 512x3x3 256x3x3

Pooling 2 x 2 Max Pooling

FC-1 1024 1024 1024

FC-2 1024 1024 1024

FC-3 10 10 10

Table 1. Network architecture for different datasets. The dimen-

sion of a convolutional layer’s kernel stands for number of kernels

on the concerned layer M , number of channels C, the width of

a filter W , and the height of a filter H; the dimension of a fully-

connected layer’s weights means the number of preceding layer’s

neurons and the number of the concerned layers’ neurons.

In each experiment, we split the dataset into 3 parts: 90%
of the training set is used for training the network, the re-

maining 10% is used as validation set. During the train-

ing, we use both the training loss on training set and infer-

ence error-rate on the validation set as performance mea-

surements. To evaluate the different trained models, we use

the classification accuracy on the testing set as the evalua-

tion protocol.

In order for all these benchmark to remain challeng-

ing, We didn’t use any pre-processing, data-augmentation

or unsupervised learning. We use binarized hard tangent [6]

function as activation function. The ADAM adaptive learn-

ing rate method [10] is used while minimizing the square

hinge loss with an exponentially decayed learning rate. We

also apply batch normalization to our networks, with a mini-

batch of size 100, 50 and 50 (separately for MNIST, CIFAR-

10 and SVHN), to speed up the learning, and we scale the

learning rate for each convolutional layer with a factor from

Glorot’s batch normalization [7]. We train our networks

for 300 epochs on MNIST and CIFAR-10 datasets, and 200
epochs on SVHN datasets. The results are given in Sec. 5.2.

5.2. Benchmark Result

Fig. 4 depicts the learning curves on CIFAR-10 dataset.

There exists certain accuracy degradation if we compare

BCNN with our methods due to a more aggressive noise.

By the end of the training phase, our method 1 yields an ac-

curacy less than that of BCNN by roughly 2.72%, and the

method 2 reaches a even more inferior accuracy. For the

sake of CIFAR-10’s higher difficulty, the loss of accuracy

meets our expectation. We will discuss in detail the bene-
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Dataset MNIST(CNN) CIFAR-10 SVHN

No binarization (standard results)

Maxout Networks [5] 0.94% 11.68% 2.47%

Binarized Network

BCNN(BinaryNet) [6] 0.47% 11.40% 2.80%

Binarized Network with Separable Filters

BCNNw/SF Method 1 (this work) 0.48% 14.12% 4.60%

BCNNw/SF Method 2 (this work) 0.56% 15.46% 4.18%

Table 2. Error Rate Comparison on Different Datasets. BCNNw/SF1 stands for our training method 1; BCNNw/SF2 denotes for our

training method 2.

Figure 4. Learning Curves of ConvNets for BNN(red),

BNNw/SF1(green) and BNNw/SF2(blue) on CIFAR-10 dataset.

The dotted lines represent the training costs(square hinge losses)

and the continuous lines the corresponding validation accuracy.

fit of using exact gradient over the rank-1 approximation in

next sub-section.

Tab. 2 summarizes the experimental results in terms of

error rate. Compared with BNN [6], for the gray-scale

manuscript number classification, both of our two training

methods achieve a accuracy close to that of the binarized

convolutional neural networks. The difference is within

0.09%. It is noteworthy that our method 2 outperforms

method 1 on SVHN by 0.42% error rate. For CIFAR-10 and

SVHN, our methods are inferior to BCNN by a difference

less than 2.72% because we limit choices of filters from a

number of 512 to 32, where the filter size is 3x3. Since

the performance degradation on CIFAR-10 is the largest,

we implement a hardware accelerator in FPGA to inspect at

what extent of hardware complexity can be improved with

the sacrifice of the 2.72% accuracy loss. Sec. 6 provides

the details and a comparison with a BCNN accelerator to

demonstrate the benefits of BCNNw/SF.

5.3. Scalability

We also explore different sizes of networks to improve

the accuracy and exam the scalability of BCNNw/SF. Tab. 3

lists two additional larger models and an AlexNet-like

model for CIFAR-10. The wider one stands for a model

with all numbers of kernels doubled, and the deeper one is

a network including two extra convolutional layers. Differ-

ent from the models above, the AlexNet-like model includes

three sizes of filters: 5-by-5, 3-by-3, and 1-by-1. Applying

our rank-1 approximation on 5-by-5 filter, we can get 64%
memory reduction. We train the three bigger networks

Name Deeper Wider AlexNet-like

Input 3x32x32 3x32x32 3x32x32

Conv-1 128x3x3 256x3x3 96x5x5

Conv-2 128x3x3 256x3x3 256x5x5

Pooling 2 x 2 Max Pooling

Conv-3 256x3x3 512x3x3 512x3x3

Conv-4 256x3x3 512x3x3 512x3x3

Pooling 2 x 2 Max Pooling

Conv-5 512x3x3 1024x3x3 256x3x3

Conv-6 512x3x3 1024x3x3 512x1x1

Pooling 2 x 2 Max Pooling

Conv-7 512x3x3 - -

Conv-8 512x3x3 - -

Pooling 2x2 Max Pooling - -

FC-1 1024 1024 1024

FC-2 1024 1024 128

FC-3 10 10 10

Table 3. The 1st column shows a deeper model with two extra

convolutional layers, and the 2nd column shows a widened net-

work with all numbers of kernels doubled. The 3rd column is

inspired by AlexNet to include 3 sizes of filters.

with our method 1, and Fig. 5 shows the learning curves of

the two enlarged models for CIFAR-10. Since the number

of trainable parameters has been increased, it requires more

epochs to travel in the hypothesis space and reach a local

minimum. Therefore, we train these two bigger networks

with 500 epochs, and compare with BCNN(BinaryNet). As

shown in Fig. 5 the wider one (blue) starts with largest rip-

ple yet catch up the same performance as BCNN(black)

does around the 175th epoch.
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Figure 5. Learning Curves of ConvNets for BCNNw/SF with

deeper Network(red), BCNNw/SF with wider Network(blue) and

original BCNN on CIFAR-10 dataset. The dotted lines represent

the training costs(square hinge losses) and the continuous lines the

corresponding validation error rates.

Dataset CIFAR-10

BCNN(BinaryNet) [6] 11.40%

Binarized Network with Separable Filters (this work)

BCNNw/SF Method 1 14.12%

BCNNw/SF Method 1 depper 14.11%

BCNNw/SF Method 1 wider 11.68%

BCNNw/SF Method 1 AlexNet-like 15.1%

Table 4. Classification Accuracy (Error Rate) of the three larger

models.

Tab. 4 lists the results on CIFAR-10 of the three big-

ger models as well as the CIFAR-10 results in Tab. 2.

The performance improvement of deeper network is very

scarce since the feature maps experience the extra destruc-

tive max pooling layer as shown in Tab. 3, which re-

duces the size of the first fully-connected layer, FC-1, and

hence suppresses the improvement. The wider network

achieves 11.68%, which is very close to the performance of

BCNN(BinaryNet). The AlexNet-like model demonstrates

that a model with 5-by-5 filters sacrifices more accuracy to

provide higher memory reduction. In summary, the accu-

racy degradation of BCNNw/SF can be compensated by en-

larging the size of network.

5.4. Discussion

In this section, we use the experimental results on

CIFAR-10 as an example of detailed analysis. We unpack

the trained rank-1 filters and learning curves to gain a better

understanding of the mechanism of BCNNw/SF.

Fig. 6 lists all the 32 rank-1 filters and their frequency

on CIFAR-10. Although certain filters are rarely used, there

is no filter forsaken. In Fig. 6 we can learn that the all-

positive and all-negative filters are trained most frequently,

Figure 6. Separable Filters & Frequencies used in CIFAR Model

Statistics mean std max

BCNN(BinaryNet) [6] 0.052 1.213 5.09

BCNNw/SF Method 1 0.055 1.059 4.465

BCNNw/SF Method 2 0.035 0.723 3.622

Table 5. The statistics of the ripples in terms of percent of error

rate.

and these two filters render the convolution to running-

sum calculation with a sliding window. As mentioned in

Sec. 3.1,through the summation of separated convolution

from a preceding layer, we can achieve the tangled linear

combinations, which are essential to BCNNw/SF.

Unknowing the spectrum of the ripple, we apply

Savitsky-Golay filter [16] to obtain the baseline of valida-

tion accuracy and, thereby, subtract the original accuracy

with the baseline to get the ripple. The window width of the

Savitsky-Golay filter is 51, and we use quadratic equation to

fit the original learning curve. All ripples are quantized into

100 categories for the statistic analysis. Tab. 5 compares our

method 1 and methods 2 with BCNN. All three statistic val-

ues of the method 2 are reduced. The analytic gradient over

the rank-1 approximation stabilizes the descending trajec-

tory with more accurate gradient calculation. Both BCNN

and our method 1 rely on the gradient w.r.t. binarized filters

to update all parameters due to the lack of analytic gradient

w.r.t. real-valued filters. However, it is also the rigorous gra-

dient that limits the possibility to escape a local minimum

on the error surface. As we can see in Tab. 2, the results of

our method 1 are closer to that of BCNN. We use the trained

binarized separable filter from our method 1 to implement a

FPGA accelerator for CIFAR-10 in the following section.

6. FPGA Accelerator

6.1. Platform and Implementation

To quantify the benefits that BCNNw/SF can achieve for

hardware BCNN accelerators, we created an FPGA accel-

erator for the six convolutional layers of the Courbariaux’s

7 33



CIFAR-10 network. Our accelerator is built from the open-

source FPGA implementation in [24]. The dense layers

were excluded as they are not affected by our technique. As

BCNNw/SF is ideal for small, low-power platforms, we tar-

geted a Zedboard with a Xilinx XC7Z020 FPGA and an em-

bedded ARM processor. This is a much smaller FPGA de-

vice compared to existing CNN FPGA accelerators [12, 19].

We write our design in C++ and use Xilinx’s SDSoC tool to

generate Verilog through high-level synthesis. We imple-

ment both BCNN and BCNNw/SF and examine the perfor-

mance and resource usage of the accelerator with and with-

out separable filters.

Our accelerator is designed to be small and resource-

efficient; it classifies a single image at a time, and executes

each layer sequentially. The accelerator contains two pri-

mary compute complexes: Conv1 computes the first (non-

binary) convolutional layer, and Conv2-5 is configurable

to compute any of the binary convolutional layers. Other el-

ements include hardware to perform pooling and batch nor-

malization, as well as on-chip RAMs to store the feature

maps and weights. Computation with the accelerator pro-

ceeds as follows. Initially all input images and layer weights

are stored in off-chip memory accessible from both CPU

and FPGA. The FPGA loads an image into local RAM,

then for each layer it loads the layer’s weights and performs

computation. Larger layers require several accelerator calls

due to limited on-chip weight storage. Intermediate feature

maps are fully stored on-chip. After completing the con-

volutional layers we write the feature maps back to main

memory and the CPU computes the dense layers.

We kept the BCNN and BCNNw/SF implementations as

similar as possible, with the main difference being the con-

volution logic and storage of the weights. For BCNN, each

output pixel requires 3 × 3 = 9 MAC operations to com-

pute. For BCNNw/SF we can apply a 3x1 vertical followed

by a 1x3 horizontal convolution, a total of 6 MACs. As the

MACs are implemented by XORs and an adder tree, BC-

NNw/SF can potentially save resource.

In terms of storage, BCNN requires the 9 bits to store

each filter. Naively, BCNNw/SF requires 6 bits, as each

filter is represented as two 3-bit vectors. However, recall

we only use rank-1 filters — Eq. 3 shows that the number of

unique 3× 3 is 32, meaning we can encode them losslessly

with only 5 bits. A small decoder in the design is used to

map the 5-bit encodings into 6-bit filters.

6.2. Results and Discussion

Table 6 compares the execution time and resource us-

age of the two FPGA implementations. Resource numbers

are reported post place and route, and runtime is wall clock

measured on a real Zedboard. We exclude the time taken to

transfer the final feature maps from FPGA to main memory,

as it is equal between the two networks; transfer time for the

initial image and weights are included.

BCNN BCNNw/SF (this work) δ

Conv layer
0.949 0.652 -31.3%

runtime (ms)

LUT 35255 36384 +3.2%

FF 41418 41054 -1.0%

Block RAM 94 78 -17.0%

DSP 8 8 0.0%

Table 6. Comparison of performance and resource usage between

BCNN and BCNNw/SF FPGA implementations. Runtime is for a

single image, averaged over 10000 samples.

Our experimental results show that BCNNw/SF achieves

runtime reduction of 31% over BCNN, which equates to

a 1.46X speedup. This is due mostly to the reduction of

memory transfer time of the compressed weight filters. For

similar reasons BCNNw/SF is able to save 17% of the total

block RAM (RAMs are used for both features and weights).

Look-up table (LUT) counts have increased slightly, due

most likely to the additional logic needed to map the 5-bit

encodings to actual filters. Overall, BCNNw/SF realizes

significant improvements to performance and memory re-

quirement with minimal logic overhead.

7. Conclusion and Future Work

In this paper, we proposed binarized convolutional neu-

ral network with Separable Filters (BCNNw/SF) to make

BCNN more hardware-friendly. Through binarized rank-

1 approximation, 2D filters are separated into two vectors,

which reduce memory footprint and the number of logic op-

erations. We have implemented two methods to train BC-

NNw/SF with Theano and verified our methods with vari-

ous CNN architectures on a suite of realistic image datasets.

The first method relies on batch normalization to regular-

ize noise, making it simpler and faster to train, while the

second method uses gradient over SVD to make the learn-

ing curve more smooth and potentially achieves better accu-

racy. We also implement an accelerator for the inference of

a CIFAR-10 network on an FPGA platform. With separable

filters, the total memory footprint is reduced by 17.0% and

the performance of the convolution layers is improved by

1.46X compared to baseline BCNN.

Integrating probabilistic methods [18] to reduce the

training time and exploring more elegant structures of net-

works [20] will be a promising direction for future works.
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